3 M3-4-5A16 Assessed Problems # 3: Do all four problems

Exercise 3.1 (Momentum map for the Heisenberg group).

The Heisenberg group is a subgroup of $SL(3,\mathbb{R})$ given by the *upper triangular matrices*

$$\left\{ H = \begin{bmatrix} 1 & \xi_1 & \xi_3 \\ 0 & 1 & \xi_2 \\ 0 & 0 & 1 \end{bmatrix} \quad \xi_1, \xi_2, \xi_3 \in \mathbb{R} \right\}$$

Its matrix action on elements of \mathbb{R}^2 is computed as

$$\begin{bmatrix} 1 & \xi_1 & \xi_3 \\ 0 & 1 & \xi_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + \xi_1 y + \xi_3 \\ y + \xi_2 \\ 1 \end{bmatrix}$$

This defines the action of H on \mathbb{R}^2 : $(x, y)^T \longrightarrow (x + \xi_1 y + \xi_3, y + \xi_2)^T$, with infinitesimal action $\Phi_{\xi}(x, y) = (\xi_1 y + \xi_3, \xi_2).$

- (A) (i) Linearise around the identity of the matrix Lie group H to find the matrix representation of its Lie algebra, \mathfrak{h} .
 - (ii) Write the isomorphism between the matrix representation of \mathfrak{h} and vectors in \mathbb{R}^3 .
 - (iii) Compute the ad-operation $ad_{\eta}\xi$, $ad: \mathfrak{h} \times \mathfrak{h} \to \mathfrak{h}$ on the matrix Lie algebra for $\eta, \xi \in \mathfrak{h}$.
 - (iv) Use the isomorphism $\mathfrak{h} \longleftrightarrow \mathbb{R}^3$ to write the ad-operation in \mathfrak{h} as a vector operation in \mathbb{R}^3 .
- (B) Compute the dual operation $ad_{\eta}^{*}\mu$, where $ad^{*}: \mathfrak{h}^{*} \times \mathfrak{h} \to \mathfrak{h}^{*}$ for $\eta \in \mathfrak{h}$ and $\mu \in \mathfrak{h}^{*}$ by using the trace pairing for matrices.
- (C) Compute the cotangent lift of the infinitesimal action $\Phi_{\xi}(x, y) = (\xi_1 y + \xi_3, \xi_2)$.
- (D) Compute the cotangent-lift momentum map for the action of the Heisenberg Lie group on phase space $T^*\mathbb{R}^2$ with coordinates (x, y, p_x, p_y) .
- (E) Compute the Poisson brackets among the components of the cotangent-lift momentum map.
- (F) Write the dynamics for the components of the cotangent-lift momentum map in \mathbb{R}^3 vector form and give a geometric interpretation of the motion in \mathbb{R}^3 .

Answer.

(A) (i) Elements of the 3×3 matrix Lie algebra \mathfrak{h} take the matrix form,

$$\xi = \begin{bmatrix} 0 & \xi_1 & \xi_3 \\ 0 & 0 & \xi_2 \\ 0 & 0 & 0 \end{bmatrix}$$

(ii) The isomorphism between \mathfrak{h} and \mathbb{R}^3 is given by

$$\xi = \begin{bmatrix} 0 & \xi_1 & \xi_3 \\ 0 & 0 & \xi_2 \\ 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \boldsymbol{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}$$

(iii) The matrix form of the ad-operation in \mathfrak{h} is given by

$$\mathrm{ad}_{\eta}\xi = \begin{bmatrix} 0 & 0 & \eta_{1}\xi_{2} - \eta_{2}\xi_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(iv) The ad-operation in \mathfrak{h} as a vector operation in \mathbb{R}^3

$$\mathrm{ad}_{\eta}\xi = \begin{bmatrix} 0 & 0 & \eta_{1}\xi_{2} - \eta_{2}\xi_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 0 \\ 0 \\ \eta_{1}\xi_{2} - \eta_{2}\xi_{1} \end{bmatrix} = (\hat{\boldsymbol{z}} \cdot \boldsymbol{\eta} \times \boldsymbol{\xi})\hat{\boldsymbol{z}}$$

(B) The inner product on the Heisenberg Lie algebra $\mathfrak{h} \times \mathfrak{h} \to \mathbb{R}$ is defined by the matrix trace pairing

$$\langle \eta, \xi \rangle = \operatorname{Tr}(\eta^T \xi) = \eta \cdot \xi$$

Thus, elements of the dual Lie algebra $\mathfrak{h}^*(\mathbb{R})$ may be represented as *lower triangular matrices*,¹

$$\mu = \begin{bmatrix} 0 & 0 & 0 \\ \mu_1 & 0 & 0 \\ \mu_3 & \mu_2 & 0 \end{bmatrix} \in \mathfrak{h}^*(\mathbb{R}) \,.$$

Likewise, the ad^{*} operation of the Heisenberg Lie algebra \mathfrak{h} on its dual \mathfrak{h}^* is defined in terms of the matrix pairing by $\langle \operatorname{ad}_n^* \mu, \xi \rangle := \langle \mu, \operatorname{ad}_n \xi \rangle$

$$\langle \mu, \, \mathrm{ad}_{\eta} \xi \rangle = \operatorname{Tr} \left(\begin{bmatrix} 0 & 0 & 0 \\ \mu_{1} & 0 & 0 \\ \mu_{3} & \mu_{2} & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \eta_{1} \xi_{2} - \xi_{1} \eta_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right)$$

$$= \operatorname{Tr} \left(\begin{bmatrix} 0 & 0 & 0 \\ -\eta_{2} \mu_{3} & 0 & 0 \\ 0 & \eta_{1} \mu_{3} & 0 \end{bmatrix} \begin{bmatrix} 0 & \xi_{1} & \xi_{3} \\ 0 & 0 & \xi_{2} \\ 0 & 0 & 0 \end{bmatrix} \right)$$

$$= \langle \mathrm{ad}_{\eta}^{*} \mu, \xi \rangle.$$

$$(3.1)$$

Thus, we have the formula for $ad_{\eta}^{*}\mu$:

$$\dot{\mu} = \mathrm{ad}_{\eta}^{*} \mu = \begin{bmatrix} 0 & 0 & 0 \\ -\eta_{2}\mu_{3} & 0 & 0 \\ 0 & \eta_{1}\mu_{3} & 0 \end{bmatrix} \implies \begin{bmatrix} \dot{\mu}_{1} \\ \dot{\mu}_{2} \\ \dot{\mu}_{3} \end{bmatrix} = \begin{bmatrix} 0 & \mu_{3} & 0 \\ -\mu_{3} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \end{bmatrix}.$$

This defines a Lie-Poisson bracket whose Casimir is μ_3 . On restricting it to a level set of μ_3 , it becomes canonical, as expected from the Marsden-Weinstein theorem.

(C) The cotangent lift of the infinitesimal action $\Phi_{\xi}(x,y) = (\xi_1 y + \xi_3, \xi_2)$ is computed from the Hamiltonian vector field for $J^{\xi} = p_x(\xi_1 y + \xi_3) + p_y\xi_2 = p_xy\xi_1 + p_y\xi_2 + p_x\xi_3$, namely

$$\{\cdot, J^{\xi}\} = (\xi_1 y + \xi_3)\frac{\partial}{\partial x} + \xi_2 \frac{\partial}{\partial y} - p_x \xi_1 \frac{\partial}{\partial p_y}$$

Note that the flow of this Hamiltonian vector field leaves p_x invariant.

$$\mu = \begin{bmatrix} k_1 & \mu_1 & \mu_3 \\ \mu_1 & k_2 & \mu_2 \\ \mu_3 & \mu_2 & k_3 \end{bmatrix} \in \mathfrak{h}^*(\mathbb{R})$$

but here we choose the equivalent representation by lower triangular matrices.

¹The dual Lie algebra $\mathfrak{h}^*(\mathbb{R})$ may be represented equally well as *symmetric matrices*, with arbitrary entries on the diagonal,

(D) The cotangent-lift momentum map J for the action of the Heisenberg Lie group on phase space $T^*\mathbb{R}^2$ is obtained from the formula

$$J^{\xi} = \langle J, \xi \rangle = \boldsymbol{J} \cdot \boldsymbol{\xi} = J_1 \xi_1 + J_2 \xi_2 + J_3 \xi_3 = p_x y \xi_1 + p_y \xi_2 + p_x \xi_3 = \operatorname{tr} \left(\begin{bmatrix} J_1, J_2, J_3 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} \right)$$

Thus the momentum map is given by

$$J = (J_1, J_2, J_3) = (p_x y, p_y, p_x)$$

(E) The Poisson brackets among the components of the cotangent-lift momentum map are given by

$$\{J_1, J_2\} = \{p_x y, p_y\} = p_x = J_3, \quad \{J_2, J_3\} = \{p_y, p_x\} = 0, \quad \{J_3, J_1\} = \{p_x, p_x y\} = 0$$

In tabular form, these Poisson brackets are

$\{J_i, J_k\} =$	$\{\cdot, \cdot\}$	J_1	J_2	J_3
	J_1	0	J_3	0
	J_2	$-J_3$	0	0
	J_3	0	0	0

This Lie-Poisson bracket for (J_1, J_2, J_3) is the same as the one we had above for (μ_1, μ_2, μ_3) , and J_3 is its Casimir.

The corresponding Lie-Poisson Hamiltonian equation is

$$\frac{df}{dt} = \frac{\partial f}{\partial J_i} \{J_i, J_k\} \frac{\partial h}{\partial J_k} = J_3 \underbrace{\left(\frac{\partial f}{\partial J_1} \frac{\partial h}{\partial J_2} - \frac{\partial h}{\partial J_1} \frac{\partial f}{\partial J_2}\right)}_{\text{Canonical}} = \frac{1}{2} \frac{\partial J_3^2}{\partial \mathbf{J}} \cdot \frac{\partial f}{\partial \mathbf{J}} \times \frac{\partial h}{\partial \mathbf{J}}$$

(F) Geometric interpretation. Upon expressing the Lie-Poisson bracket in vector form, the motion of $\mathbf{J} \in \mathbb{R}^3$ may be written as a cross product. Namely,

$$\frac{d\mathbf{J}}{dt} = -\frac{1}{2}\frac{\partial J_3^2}{\partial \mathbf{J}} \times \frac{\partial h}{\partial \mathbf{J}} = -J_3\,\hat{\mathbf{z}} \times \frac{\partial h}{\partial \mathbf{J}} = -\operatorname{ad}^*_{\partial h/\partial \mathbf{J}}\,(\hat{\mathbf{z}}J_3)$$

so the motion takes place in \mathbb{R}^3 along intersections of level sets of J_3^2 and the Hamiltonian $h(\mathbf{J})$. In components, this is

$$\begin{bmatrix} \dot{J}_1 \\ \dot{J}_2 \\ \dot{J}_3 \end{bmatrix} = \begin{bmatrix} 0 & J_3 & 0 \\ -J_3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \partial h/\partial J_1 \\ \partial h/\partial J_2 \\ \partial h/\partial J_3 \end{bmatrix} = \begin{bmatrix} -J_3\partial h/\partial J_2 \\ J_3\partial h/\partial J_1 \\ 0 \end{bmatrix}.$$

In the equivalent matrix form, this is

$$\dot{J} = \begin{bmatrix} 0 & 0 & 0 \\ \dot{J}_1 & 0 & 0 \\ \dot{J}_3 & \dot{J}_2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ J_3 \frac{\partial h}{\partial J_2} & 0 & 0 \\ 0 & -J_3 \frac{\partial h}{\partial J_1} & 0 \end{bmatrix} = -\operatorname{ad}^*_{\partial h/\partial J} J_3.$$

3

	ι.
	۸
_	

Exercise 3.2 (Quadratic Poisson brackets).

(A) Prove that the *quadratic Poisson bracket* on \mathbb{R}^N given by

$$\{x_i, x_j\} = x_i x_j (\delta_{i,j+1} - \delta_{i+1,j})$$
 $1 \le i, j \le N$ with $x_0 = 0 = x_N$

satisfies the Jacobi identity.

- (B) Write out the quadratic Poisson structure for N = 5 as a 5×5 matrix.
- (C) Does the quadratic Poisson bracket on \mathbb{R}^N have a Casimir? If so, what is it?
- (D) Prove the Jacobi identity for the quadratic Poisson structure on \mathbb{R}^3 , by writing it as a Nambu bracket. Discuss the resulting motion as intersections of level sets of constants of motion for the case that the Hamiltonian is given by $h(\mathbf{x}) = \frac{1}{2} |\mathbf{x}|^2 = \frac{1}{2} (x_1^2 + x_2^2 + x_3^2)$.
- (E) Introduce the symmetric matrix

$$L_3 = \begin{pmatrix} 0 & x_1 & 0 & 0 \\ x_1 & 0 & x_2 & 0 \\ 0 & x_2 & 0 & x_3 \\ 0 & 0 & x_3 & 0 \end{pmatrix}$$

and express the dynamical equation for the Hamiltonian in part (D) as a Lax pair in the form,

$$\frac{dL_3}{dt} = [L_3, \widetilde{J}_3].$$

In particular, find the 4×4 skew symmetric matrix \tilde{J}_3 by deforming the 3×3 skew symmetric matrix J_3 . Hint: this matrix calculation is easy because the deformation of the matrix J_3 only involves inserting zeros.

Answer.

- (A) The Jacobi identity is verified by a direct calculation, or maybe there is a smarter way . . .
- (B) The quadratic Poisson structure on \mathbb{R}^5 is a *banded* matrix

$$J_5 = \begin{pmatrix} 0 & x_1 x_2 & 0 & 0 & 0 \\ -x_1 x_2 & 0 & x_2 x_3 & 0 & 0 \\ 0 & -x_2 x_3 & 0 & x_3 x_4 & 0 \\ 0 & 0 & -x_3 x_4 & 0 & x_4 x_5 \\ 0 & 0 & 0 & -x_4 x_5 & 0 \end{pmatrix}$$

whose bands are revealed clearly for N = 5.

- (C) There seems to be no Casimir for the quadratic Poisson structure on \mathbb{R}^N for N > 3.
- (D) The quadratic Poisson structure on \mathbb{R}^3

$$J_3 = \begin{pmatrix} 0 & x_1 x_2 & 0 \\ -x_1 x_2 & 0 & x_2 x_3 \\ 0 & -x_2 x_3 & 0 \end{pmatrix} = x_2 \begin{pmatrix} 0 & x_1 & 0 \\ -x_1 & 0 & x_3 \\ 0 & -x_3 & 0 \end{pmatrix} = x_2 \nabla(x_1 x_3) \times$$

Thus, because x_2 factors out, the case N = 3 simplifies to a Nambu bracket and we may write the dynamical equations for the quadratic Poisson bracket in \mathbb{R}^3 as

$$\dot{\mathbf{x}} = J_3 \frac{\partial h}{\partial \mathbf{x}} = {\mathbf{x}, h} = x_2 \nabla(x_1 x_3) \times \nabla h$$

For the case N = 3, the Casimir is $C_3 = x_1 x_3$.

When the Hamiltonian is

$$h(\mathbf{x}) = \frac{1}{2}|\mathbf{x}|^2 = \frac{1}{2}\left(x_1^2 + x_2^2 + x_3^2\right)$$

then the motion for N = 3 takes place in \mathbb{R}^3 along intersections of level sets of x_1x_3 (hyperbolic cylinders aligned with x_2) and h (coincident spheres with center at the origin). The level set $x_2 = 0$ is a plane of fixed points and the motion consists of heteroclinic orbits that connect points on the equator of the sphere to each other along the intersections with a family of hyperbolic cylinders, $x_1x_3 = const$.

(E) For N = 3 the Hamiltonian form of the equations for $h = \frac{1}{2} \left(x_1^2 + x_2^2 + x_3^2 \right)$ may be written as

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = J_3(\mathbf{x}) \frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} 0 & x_1 x_2 & 0 \\ -x_1 x_2 & 0 & x_2 x_3 \\ 0 & -x_2 x_3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 x_2^2 \\ x_2 (x_3^2 - x_1^2) \\ -x_3 x_2^2 \end{pmatrix}$$

Remarkably, the matrix of quadratic quantities in the Hamiltonian matrix representation of these cubic dynamical equations plays a role in recognising their Lax pair, or commutator form.

We introduce the symmetric matrix

$$L_3 = \begin{pmatrix} 0 & x_1 & 0 & 0\\ x_1 & 0 & x_2 & 0\\ 0 & x_2 & 0 & x_3\\ 0 & 0 & x_3 & 0 \end{pmatrix}$$

and express its dynamical equation as a Lax pair in the form,

$$\frac{dL_3}{dt} = [L_3, \widetilde{J}_3]$$

with

$$\widetilde{J}_{3}(\mathbf{x}) = \begin{pmatrix} 0 & 0 & x_{1}x_{2} & 0 \\ 0 & 0 & 0 & x_{2}x_{3} \\ -x_{1}x_{2} & 0 & 0 & 0 \\ 0 & -x_{2}x_{3} & 0 & 0 \end{pmatrix}$$

The 4 × 4 matrix $\widetilde{J}_3(\mathbf{x})$ is a deformation of the 3 × 3 Hamiltonian matrix $J_3(\mathbf{x})$ obtained by replacing the zeros on the diagonal of J by the tridiagonal zeros of the matrix \widetilde{J} .

Exercise 3.3 (Lie-Poisson brackets for the group $S \otimes (T \times T)$).

Consider a semidirect-product Lie group $S(\mathfrak{S}(T \times T))$ comprising a radial scaling transformation Sin the *xy*-plane and two affines translations (shears) $T \times T$ of z depending linearly on x and y. The matrix representation of its action on \mathbb{R}^3 is given by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} e^{\epsilon_1} & 0 & 0 \\ 0 & e^{\epsilon_1} & 0 \\ \epsilon_2 & \epsilon_3 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

This defines the Lie group of lower-triangular 3×3 matrices

$$\begin{pmatrix} e^{\epsilon_1} & 0 & 0\\ 0 & e^{\epsilon_1} & 0\\ \epsilon_2 & \epsilon_3 & 1 \end{pmatrix} \in G_{\triangleright}$$

▲

- (A) Compute the group product and inverse element for the matrix Lie group G_{\triangleright} .
- (B) Find the matrix representation of its Lie algebra $\mathfrak{g}_{\triangleright}$ and explicitly compute the adjoint operation. Write the formula for $\mathrm{ad}_{\xi}\eta$ in matrix form for $\xi, \eta \in \mathfrak{g}_{\triangleright}$.
- (C) Compute the coadjoint action of its Lie algebra on its dual Lie algebra. Write the formula for $\mathrm{ad}_{\mathcal{E}}^*\mu$ in matrix form for $\xi \in \mathfrak{g}_{\triangleright}$ and $\mu \in \mathfrak{g}_{\triangleright}^*$.
- (D) Write the Euler-Poincaré equation

$$\dot{\mu} = \mathrm{ad}_{\xi}^* \mu \quad \mathrm{with} \quad \mu = \frac{\partial l}{\partial \xi}$$

in which $\xi := g_t^{-1} \dot{g}_t$ for a Lagrangian $l(\xi)$ that is invariant under $S \otimes (T \times T)$.

- (E) Legendre transform this equation to the (Lie-Poisson) Hamiltonian side. What infinitesimal transformations are generated, when the Lie-Poisson structure is regarded as a matrix operator acting on $\nabla h \in \mathbb{R}^3$? Hint: think of the Lie-Poisson form as a Hamiltonian vector field.
- (F) Does the final Poisson bracket have a Casimir? If so, express it as a function on \mathbb{R}^3 .
- (G) Describe the solution when the Hamiltonian is given by $h = \frac{1}{2} |\mathbf{x}|^2$. Does the dynamics have a plane of fixed points?

Answer.

(A) The group product is

$$g_1g_2 = \begin{pmatrix} e^{\epsilon_1} & 0 & 0\\ 0 & e^{\epsilon_1} & 0\\ \epsilon_2 & \epsilon_3 & 1 \end{pmatrix} \begin{pmatrix} e^{\beta_1} & 0 & 0\\ 0 & e^{\beta_1} & 0\\ \beta_2 & \beta_3 & 1 \end{pmatrix} = \begin{pmatrix} e^{\epsilon_1 + \beta_1} & 0 & 0\\ 0 & e^{\epsilon_1 + \beta_1} & 0\\ \epsilon_2 e^{\beta_1} + \beta_2 & \epsilon_3 e^{\beta_1} + \beta_3 & 1 \end{pmatrix}$$

The inverse is

$$g_1^{-1} = \begin{pmatrix} e^{-\epsilon_1} & 0 & 0\\ 0 & e^{-\epsilon_1} & 0\\ -\epsilon_2 e^{-\epsilon_1} & -\epsilon_3 e^{-\epsilon_1} & 1 \end{pmatrix}$$

(B) The matrix representation of its Lie algebra \mathfrak{g}_{\rhd} is given by

$$g_t = \begin{pmatrix} e^{\epsilon_1} & 0 & 0\\ 0 & e^{\epsilon_1} & 0\\ \epsilon_2 & \epsilon_3 & 1 \end{pmatrix} \quad \text{and} \quad \xi := g_t^{-1} \dot{g}_t = \begin{pmatrix} \xi_1 & 0 & 0\\ 0 & \xi_1 & 0\\ \xi_2 & \xi_3 & 0 \end{pmatrix}$$

(C) The adjoint and coadjoint actions of the group $S(\mathfrak{S})(T \times T)$. The Lie algebra commutator is given for two Lie algebra elements ξ and η in $\mathfrak{g}_{\triangleright}$ by

$$\mathrm{ad}_{\xi}\eta = [\xi,\eta] = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ \xi_2\eta_1 - \eta_2\xi_1 & \xi_3\eta_1 - \eta_3\xi_1 & 0 \end{pmatrix}$$

(D) An element of the dual Lie algebra is represented by the transpose matrix

$$\mu = \begin{pmatrix} \mu_1 & 0 & \mu_2 \\ 0 & \mu_1 & \mu_3 \\ 0 & 0 & 0 \end{pmatrix}$$

The coadjoint action of its Lie algebra on its dual Lie algebra is computed, as follows.

$$\begin{aligned} \langle \mu, \, \mathrm{ad}_{\xi} \eta \rangle &= \frac{1}{2} \mathrm{trace}(\mu \, \mathrm{ad}_{\xi} \eta) \\ &= \mu_2(\xi_2 \eta_1 - \eta_2 \xi_1) + \mu_3(\xi_3 \eta_1 - \eta_3 \xi_1) \\ &= (\mu_2 \xi_2 + \mu_3 \xi_3, \, -\mu_2 \xi_1, \, -\mu_3 \xi_1) \cdot (\eta_1, \, \eta_2, \, \eta_3)^T \\ &= \frac{1}{2} \mathrm{trace} \left(\mathrm{ad}_{\xi}^* \mu \, \eta \right) \\ &= \langle \mathrm{ad}_{\xi}^* \mu, \, \eta \rangle \end{aligned}$$

In matrix form, the formula for $\mathrm{ad}_{\mathcal{E}}^*\mu$ is

$$\mathrm{ad}_{\xi}^{*}\mu = \begin{pmatrix} \mu_{2}\xi_{2} + \mu_{3}\xi_{3} & 0 & -\mu_{2}\xi_{1} \\ 0 & \mu_{2}\xi_{2} + \mu_{3}\xi_{3} & -\mu_{3}\xi_{1} \\ 0 & 0 & 0 \end{pmatrix}$$

This formula is the ingredient needed for writing the Euler-Poincaré equation

$$\dot{\mu} = \mathrm{ad}_{\xi}^* \mu \quad \mathrm{with} \quad \mu = \frac{\partial l}{\partial \xi}$$

in which $\xi := g_t^{-1} \dot{g}_t$ for a Lagrangian $l(\xi)$ that is invariant under $S(\mathfrak{S}(T \times T))$. In components, the Euler-Poincaré equation is

$$\dot{\mu}_1 = \mu_2 \xi_2 + \mu_3 \xi_3 \dot{\mu}_2 = -\mu_2 \xi_1 \dot{\mu}_3 = -\mu_3 \xi_1$$

(E) After Legendre transforming to the corresponding Hamiltonian, $h(\mu)$, with $\xi_k = \partial h/\partial \mu_k$ and rearrangement into a matrix product form, this set of formulas becomes

$$\begin{pmatrix} \dot{\mu}_1 \\ \dot{\mu}_2 \\ \dot{\mu}_3 \end{pmatrix} = \begin{pmatrix} 0 & \mu_2 & \mu_3 \\ -\mu_2 & 0 & 0 \\ -\mu_3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \partial h/\partial \mu_1 \\ \partial h/\partial \mu_2 \\ \partial h/\partial \mu_3 \end{pmatrix}$$

Upon identifying $\mu = (x, y, z)$, this becomes

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} 0 & y & z \\ -y & 0 & 0 \\ -z & 0 & 0 \end{pmatrix} \begin{pmatrix} \partial h/\partial x \\ \partial h/\partial y \\ \partial h/\partial z \end{pmatrix} = \begin{pmatrix} y\partial h/\partial y + z\partial h/\partial z \\ -y\partial h/\partial x \\ -z\partial h/\partial x \end{pmatrix} = \begin{pmatrix} y\partial_y + z\partial_z \\ -y\partial_x \\ -z\partial_x \end{pmatrix} h$$

These are the infinitesimal transformations of $S(S)(T \times T)$, represented as a vector field. This make sense, because it means that given a Hamiltonian Lie-Poisson structure one may convert it to an Euler-Poincaré formulation, by identifying the infinitesimal transformations associated with the Lie-Poisson structure.

In our case, the scaling transformation in our case leaves invariant the ratio y/z for any Hamiltonian; so C = y/z will be the Casimir in the Hamiltonian formulation.

(F) Our Poisson bracket expresses the dynamics in \mathbb{R}^3 as

$$\dot{\mathbf{x}} = {\mathbf{x}, h} = z^2 \nabla \frac{y}{z} \times \nabla h$$

so C = y/z is its Casimir.

D. D. Holm

(G) On the plane z = 0, the dynamics reduces to

$$\dot{x} = y \partial h / \partial y$$
, $\dot{y} = -y \partial h / \partial x$, $\dot{z} = 0$,

so the plane z = 0 is an invariant plane, but not a plane of fixed points.

The x-axis z = 0 = y is a *line* of fixed points.

When $\nabla h = \mathbf{x}$ the dynamics becomes

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} y^2 + z^2 \\ -xy \\ -xz \end{pmatrix}$$

The x-axis y = 0 = z is a line of fixed points. We have y/z = const by construction, and the motion off the x-axis moves in planes whose yz-orientation remains constant. Cylindrical polar coordinates in one of these planes are given by

$$r = \sqrt{y^2 + z^2}, \quad \tan \theta = y/z$$

Then we have

$$\dot{x} = r^2, \quad \dot{r} = -xr, \quad \dot{\theta} = 0$$

So the line of fixed points along the x-axis is attracting for x > 0 and repelling for x < 0. The motion is in the positive x direction and eventually approaches the x-axis in a plane that stays oriented at a constant angle θ .

Exercise 3.4 (Canonical variables for the rigid body on SU(n)).

- (A) Compute the Euler-Poincaré equation for the inverse AD-action, $Q_t = AD_{U_t^{-1}}Q_0 = U_t^{-1}Q_0U_t$, of the matrix Lie group SU(n) on itself.
- (B) Specialise to n = 2 and write the equations explicitly as 2×2 matrices.
- (C) Transform to the Lie-Poisson Hamiltonian formulation for the case of SU(n).

Answer.

(A) The tangent lift of the AD-action is found by taking the time derivative of the AD-action, from which (suppressing subscript t's)

$$\dot{Q} = -[\Omega, Q]$$
 with $\Omega := U^{-1} \dot{U} \in su(n)$,

in which the left-invariant $\Omega := U^{-1}\dot{U} \in su(n)$ is skew-Hermitian,

$$\Omega^{\dagger} + \Omega = 0.$$

This skew-Hermitian property may be seen by expanding the unitary condition near the identity of the SU(n) matrices,

$$Id = U^{\dagger}U = (Id + s\Omega^{\dagger})(Id + s\Omega) = Id + s(\Omega^{\dagger} + \Omega) + O(s^2).$$

From Hamilton's principle $\delta S = 0$ with action integral

$$S(\Omega, Q, P) = \int_{a}^{b} l(\Omega) + \left\langle P, \dot{Q} + [\Omega, Q] \right\rangle$$

=
$$\int_{a}^{b} l(\Omega) + \operatorname{tr}\left(P\left(\dot{Q} + [\Omega, Q]\right)\right) dt,$$

▲

constrained by the tangent lift relation $\dot{Q} + [\Omega, Q] = 0$, we have

$$\begin{split} \delta S &= \int_{a}^{b} \left\{ \left\langle \frac{\delta l}{\delta \Omega} - \left[P, Q \right], \, \delta \Omega \right\rangle \right. \\ &+ \left\langle \left. \delta P, \, \dot{Q} + \left[\Omega, \, Q \right] \right\rangle + \left\langle \left. \delta Q, \, \dot{P} + \left[\Omega, \, P \right] \right\rangle \right\} dt \,, \end{split}$$

for which $\delta l/\delta \Omega = [P, Q]$ and $Q, P \in SU(n)$ satisfy the following equations,

$$\dot{Q} = -[\Omega, Q]$$
 and $\dot{P} = -[\Omega, P],$ (3.2)

as a result of the constraints.

This expands to the Euler-Poincaré equation

$$\dot{M} = \mathrm{ad}_{\Omega}^* M = -\left[\Omega, M\right], \tag{3.3}$$

with $M = \delta l / \delta \Omega = [P, Q].$

Momentum map: The vector field

$$(\dot{Q}, \dot{P}) = (-[\Omega, Q], -[\Omega, P]) = \left(\frac{\partial J^{\Omega}}{\partial P}, -\frac{\partial J^{\Omega}}{\partial Q}\right)$$

is the Hamiltonian vector field

$$(\dot{Q}, \dot{P}) = \left(\frac{\partial J^{\Omega}}{\partial P}, -\frac{\partial J^{\Omega}}{\partial Q}\right)$$

with Hamiltonian J^Ω given for fixed Ω by

$$J^{\Omega} = \left\langle \left[P, Q \right], \Omega \right\rangle =: \left\langle J, \Omega \right\rangle$$

with variations at fixed Ω given by

$$\delta J^{\Omega} = \left\langle \left[\delta P, Q\right], \Omega \right\rangle + \left\langle \left[P, \delta Q\right], \Omega \right\rangle = \left\langle -\left[\Omega, Q\right], \delta P \right\rangle + \left\langle \left[\Omega, P\right], \delta Q \right\rangle$$

obtained, for example, from the $n \times n$ matrix trace pairing,

$$\left\langle \left[\delta P, Q\right], \Omega \right\rangle = \operatorname{tr}\left((\delta P)Q\Omega - Q\delta P\Omega\right) = \left\langle \delta P, \left[Q, \Omega\right] \right\rangle.$$

The corresponding momentum map $J: T^*SO(n) \to su^*(n)$ is given by J above, namely,

$$J = [P, Q].$$

(B) Pauli matrices:

For the case of 2×2 matrices in su(2), the commutator $[\Omega, M]$ can be written as a vector cross product, by using the property of the (skew-Hermitian) Pauli matrices,

$$\sigma_1 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \sigma_3 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$
(3.4)

that their matrix commutator $[\sigma_a, \sigma_b] := \sigma_a \sigma_b - \sigma_b \sigma_a$ obeys

$$[\sigma_a, \sigma_b] = -2\epsilon_{abc}\sigma_c, \qquad a, b, c \in \{1, 2, 3\}$$

This is the basis for identifying su(2) and $su(2)^*$ with \mathbb{R}^3 . By writing the vector of Pauli matrices $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$, so that

$$\Omega = \mathbf{\Omega} \cdot \boldsymbol{\sigma}$$
 and $M = \boldsymbol{M} \cdot \boldsymbol{\sigma}$

one finds $[\Omega, M] = \mathbf{\Omega} \times \mathbf{M} \cdot \boldsymbol{\sigma}$, so that

$$0 = M + [\Omega, M] = (M + \Omega \times M) \cdot \sigma.$$

Geodesic motion:

For geodesic motion on SU(2) the Lagrangian is $l = \frac{1}{2} \langle \Omega, \mathbb{I}\Omega \rangle$, where $\Omega \in su(2)$ with $\Omega^{\dagger} = -\Omega$ and $M = \mathbb{I}\Omega \in su(2)^*$ with $\mathbb{I}^T = \mathbb{I}$ a real symmetric matrix. Consequently, the Lie-algebra isomorphism $su(2) \simeq \mathbb{R}^3$ implies that geodesic motion on SU(2) satisfies the \mathbb{R}^3 vector equation

$$\dot{M} + \Omega \times M = 0$$
 with $M = \mathbb{I}\Omega$,

in the same form as Euler's rigid body equations.

(C) The Hamiltonian form is found by taking the time derivative of a smooth function F of M,

$$\frac{d}{dt}F(M) = \left\langle \frac{\partial F}{\partial M}, \dot{M} \right\rangle \\
= \left\langle \frac{\partial F}{\partial M}, \operatorname{ad}_{\partial H/\partial M}^{*} M \right\rangle \\
= -\left\langle M, \left[\frac{\partial F}{\partial M}, \frac{\partial H}{\partial M} \right] \right\rangle$$

Hence, the Poisson bracket is given by the Lie-Poisson form,

$$\{F, H\} = -\left\langle M, \left[\frac{\partial F}{\partial M}, \frac{\partial H}{\partial M}\right] \right\rangle$$

1	۱.	
	_	