3 M3-4-5A16 Assessed Problems \# 3: Do all four problems

Exercise 3.1 (Momentum map for the Heisenberg group).
The Heisenberg group is a subgroup of $S L(3, \mathbb{R})$ given by the upper triangular matrices

$$
\left\{H=\left[\begin{array}{ccc}
1 & \xi_{1} & \xi_{3} \\
0 & 1 & \xi_{2} \\
0 & 0 & 1
\end{array}\right] \quad \xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{R}\right\}
$$

Its matrix action on elements of \mathbb{R}^{2} is computed as

$$
\left[\begin{array}{ccc}
1 & \xi_{1} & \xi_{3} \\
0 & 1 & \xi_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\xi_{1} y+\xi_{3} \\
y+\xi_{2} \\
1
\end{array}\right]
$$

This defines the action of H on $\mathbb{R}^{2}:(x, y)^{T} \longrightarrow\left(x+\xi_{1} y+\xi_{3}, y+\xi_{2}\right)^{T}$, with infinitesimal action $\Phi_{\xi}(x, y)=\left(\xi_{1} y+\xi_{3}, \xi_{2}\right)$.
(A) (i) Linearise around the identity of the matrix Lie group H to find the matrix representation of its Lie algebra, \mathfrak{h}.
(ii) Write the isomorphism between the matrix representation of \mathfrak{h} and vectors in \mathbb{R}^{3}.
(iii) Compute the ad-operation $\operatorname{ad}_{\eta} \xi$, ad $: \mathfrak{h} \times \mathfrak{h} \rightarrow \mathfrak{h}$ on the matrix Lie algebra for $\eta, \xi \in \mathfrak{h}$.
(iv) Use the isomorphism $\mathfrak{h} \longleftrightarrow \mathbb{R}^{3}$ to write the ad-operation in \mathfrak{h} as a vector operation in \mathbb{R}^{3}.
(B) Compute the dual operation $\operatorname{ad}_{\eta}^{*} \mu$, where $\operatorname{ad}^{*}: \mathfrak{h}^{*} \times \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ for $\eta \in \mathfrak{h}$ and $\mu \in \mathfrak{h}^{*}$ by using the trace pairing for matrices.
(C) Compute the cotangent lift of the infinitesimal action $\Phi_{\xi}(x, y)=\left(\xi_{1} y+\xi_{3}, \xi_{2}\right)$.
(D) Compute the cotangent-lift momentum map for the action of the Heisenberg Lie group on phase space $T^{*} \mathbb{R}^{2}$ with coordinates $\left(x, y, p_{x}, p_{y}\right)$.
(E) Compute the Poisson brackets among the components of the cotangent-lift momentum map.
(F) Write the dynamics for the components of the cotangent-lift momentum map in \mathbb{R}^{3} vector form and give a geometric interpretation of the motion in \mathbb{R}^{3}.

Answer.

(A) (i) Elements of the 3×3 matrix Lie algebra \mathfrak{h} take the matrix form,

$$
\xi=\left[\begin{array}{ccc}
0 & \xi_{1} & \xi_{3} \\
0 & 0 & \xi_{2} \\
0 & 0 & 0
\end{array}\right]
$$

(ii) The isomorphism between \mathfrak{h} and \mathbb{R}^{3} is given by

$$
\xi=\left[\begin{array}{ccc}
0 & \xi_{1} & \xi_{3} \\
0 & 0 & \xi_{2} \\
0 & 0 & 0
\end{array}\right] \longleftrightarrow \boldsymbol{\xi}=\left[\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right]
$$

(iii) The matrix form of the ad-operation in \mathfrak{h} is given by

$$
\operatorname{ad}_{\eta} \xi=\left[\begin{array}{ccc}
0 & 0 & \eta_{1} \xi_{2}-\eta_{2} \xi_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(iv) The ad-operation in \mathfrak{h} as a vector operation in \mathbb{R}^{3}

$$
\operatorname{ad}_{\eta} \xi=\left[\begin{array}{ccc}
0 & 0 & \eta_{1} \xi_{2}-\eta_{2} \xi_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \longleftrightarrow\left[\begin{array}{c}
0 \\
0 \\
\eta_{1} \xi_{2}-\eta_{2} \xi_{1}
\end{array}\right]=(\hat{\boldsymbol{z}} \cdot \boldsymbol{\eta} \times \boldsymbol{\xi}) \hat{\boldsymbol{z}}
$$

(B) The inner product on the Heisenberg Lie algebra $\mathfrak{h} \times \mathfrak{h} \rightarrow \mathbb{R}$ is defined by the matrix trace pairing

$$
\langle\eta, \xi\rangle=\operatorname{Tr}\left(\eta^{T} \xi\right)=\boldsymbol{\eta} \cdot \boldsymbol{\xi}
$$

Thus, elements of the dual Lie algebra $\mathfrak{h}{ }^{*}(\mathbb{R})$ may be represented as lower triangular matrices, ${ }^{1}$

$$
\mu=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mu_{1} & 0 & 0 \\
\mu_{3} & \mu_{2} & 0
\end{array}\right] \in \mathfrak{h}^{*}(\mathbb{R})
$$

Likewise, the ad* operation of the Heisenberg Lie algebra \mathfrak{h} on its dual \mathfrak{h}^{*} is defined in terms of the matrix pairing by

$$
\begin{align*}
&\left\langle\operatorname{ad}_{\eta}^{*} \mu, \xi\right\rangle:=\left\langle\mu, \operatorname{ad}_{\eta} \xi\right\rangle \\
&\left\langle\mu, \operatorname{ad}_{\eta} \xi\right\rangle= \operatorname{Tr}\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
\mu_{1} & 0 & 0 \\
\mu_{3} & \mu_{2} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & \eta_{1} \xi_{2}-\xi_{1} \eta_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \\
&= \operatorname{Tr}\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\eta_{2} \mu_{3} & 0 & 0 \\
0 & \eta_{1} \mu_{3} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \xi_{1} & \xi_{3} \\
0 & 0 & \xi_{2} \\
0 & 0 & 0
\end{array}\right]\right) \\
&=\left\langle\mathrm{ad}_{\eta}^{*} \mu, \xi\right\rangle . \tag{3.1}
\end{align*}
$$

Thus, we have the formula for $\mathrm{ad}_{\eta}^{*} \mu$:

$$
\dot{\mu}=\mathrm{ad}_{\eta}^{*} \mu=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\eta_{2} \mu_{3} & 0 & 0 \\
0 & \eta_{1} \mu_{3} & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{c}
\dot{\mu}_{1} \\
\dot{\mu}_{2} \\
\dot{\mu}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \mu_{3} & 0 \\
-\mu_{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] .
$$

This defines a Lie-Poisson bracket whose Casimir is μ_{3}. On restricting it to a level set of μ_{3}, it becomes canonical, as expected from the Marsden-Weinstein theorem.
(C) The cotangent lift of the infinitesimal action $\Phi_{\xi}(x, y)=\left(\xi_{1} y+\xi_{3}, \xi_{2}\right)$ is computed from the Hamiltonian vector field for $J^{\xi}=p_{x}\left(\xi_{1} y+\xi_{3}\right)+p_{y} \xi_{2}=p_{x} y \xi_{1}+p_{y} \xi_{2}+p_{x} \xi_{3}$, namely

$$
\left\{\cdot, J^{\xi}\right\}=\left(\xi_{1} y+\xi_{3}\right) \frac{\partial}{\partial x}+\xi_{2} \frac{\partial}{\partial y}-p_{x} \xi_{1} \frac{\partial}{\partial p_{y}}
$$

Note that the flow of this Hamiltonian vector field leaves p_{x} invariant.

[^0](D) The cotangent-lift momentum map J for the action of the Heisenberg Lie group on phase space $T^{*} \mathbb{R}^{2}$ is obtained from the formula
\[

J^{\xi}=\langle J, \xi\rangle=\boldsymbol{J} \cdot \boldsymbol{\xi}=J_{1} \xi_{1}+J_{2} \xi_{2}+J_{3} \xi_{3}=p_{x} y \xi_{1}+p_{y} \xi_{2}+p_{x} \xi_{3}=\operatorname{tr}\left(\left[J_{1}, J_{2}, J_{3}\right]\left[$$
\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}
$$\right]\right)
\]

Thus the momentum map is given by

$$
\boldsymbol{J}=\left(J_{1}, J_{2}, J_{3}\right)=\left(p_{x} y, p_{y}, p_{x}\right)
$$

(E) The Poisson brackets among the components of the cotangent-lift momentum map are given by

$$
\left\{J_{1}, J_{2}\right\}=\left\{p_{x} y, p_{y}\right\}=p_{x}=J_{3}, \quad\left\{J_{2}, J_{3}\right\}=\left\{p_{y}, p_{x}\right\}=0, \quad\left\{J_{3}, J_{1}\right\}=\left\{p_{x}, p_{x} y\right\}=0
$$

In tabular form, these Poisson brackets are

$$
\left\{J_{i}, J_{k}\right\}=\begin{array}{|c|ccl|}
\hline\{\cdot, \cdot\} & J_{1} & J_{2} & J_{3} \\
\hline J_{1} & 0 & J_{3} & 0 \\
J_{2} & -J_{3} & 0 & 0 \\
J_{3} & 0 & 0 & 0 \\
\hline
\end{array}
$$

This Lie-Poisson bracket for $\left(J_{1}, J_{2}, J_{3}\right)$ is the same as the one we had above for $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$, and J_{3} is its Casimir.

The corresponding Lie-Poisson Hamiltonian equation is

$$
\frac{d f}{d t}=\frac{\partial f}{\partial J_{i}}\left\{J_{i}, J_{k}\right\} \frac{\partial h}{\partial J_{k}}=J_{3} \underbrace{\left(\frac{\partial f}{\partial J_{1}} \frac{\partial h}{\partial J_{2}}-\frac{\partial h}{\partial J_{1}} \frac{\partial f}{\partial J_{2}}\right)}_{\text {Canonical }}=\frac{1}{2} \frac{\partial J_{3}^{2}}{\partial \mathbf{J}} \cdot \frac{\partial f}{\partial \mathbf{J}} \times \frac{\partial h}{\partial \mathbf{J}}
$$

(F) Geometric interpretation. Upon expressing the Lie-Poisson bracket in vector form, the motion of $\mathbf{J} \in \mathbb{R}^{3}$ may be written as a cross product. Namely,

$$
\frac{d \mathbf{J}}{d t}=-\frac{1}{2} \frac{\partial J_{3}^{2}}{\partial \mathbf{J}} \times \frac{\partial h}{\partial \mathbf{J}}=-J_{3} \hat{\mathbf{z}} \times \frac{\partial h}{\partial \mathbf{J}}=-\operatorname{ad}_{\partial h / \partial \mathbf{J}}^{*}\left(\hat{\mathbf{z}} J_{3}\right)
$$

so the motion takes place in \mathbb{R}^{3} along intersections of level sets of J_{3}^{2} and the Hamiltonian $h(\mathbf{J})$. In components, this is

$$
\left[\begin{array}{l}
\dot{J}_{1} \\
\dot{J}_{2} \\
\dot{J}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & J_{3} & 0 \\
-J_{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\partial h / \partial J_{1} \\
\partial h / \partial J_{2} \\
\partial h / \partial J_{3}
\end{array}\right]=\left[\begin{array}{c}
-J_{3} \partial h / \partial J_{2} \\
J_{3} \partial h / \partial J_{1} \\
0
\end{array}\right]
$$

In the equivalent matrix form, this is

$$
\dot{J}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\dot{J}_{1} & 0 & 0 \\
\dot{J}_{3} & \dot{J}_{2} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
J_{3} \frac{\partial h}{\partial J_{2}} & 0 & 0 \\
0 & -J_{3} \frac{\partial h}{\partial J_{1}} & 0
\end{array}\right]=-\operatorname{ad}_{\partial h / \partial J}^{*} J_{3}
$$

Exercise 3.2 (Quadratic Poisson brackets).
(A) Prove that the quadratic Poisson bracket on \mathbb{R}^{N} given by

$$
\left\{x_{i}, x_{j}\right\}=x_{i} x_{j}\left(\delta_{i, j+1}-\delta_{i+1, j}\right) \quad 1 \leq i, j \leq N \quad \text { with } \quad x_{0}=0=x_{N}
$$

satisfies the Jacobi identity.
(B) Write out the quadratic Poisson structure for $N=5$ as a 5×5 matrix.
(C) Does the quadratic Poisson bracket on \mathbb{R}^{N} have a Casimir? If so, what is it?
(D) Prove the Jacobi identity for the quadratic Poisson structure on \mathbb{R}^{3}, by writing it as a Nambu bracket. Discuss the resulting motion as intersections of level sets of constants of motion for the case that the Hamiltonian is given by $h(\mathbf{x})=\frac{1}{2}|\mathbf{x}|^{2}=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$.
(E) Introduce the symmetric matrix

$$
L_{3}=\left(\begin{array}{cccc}
0 & x_{1} & 0 & 0 \\
x_{1} & 0 & x_{2} & 0 \\
0 & x_{2} & 0 & x_{3} \\
0 & 0 & x_{3} & 0
\end{array}\right)
$$

and express the dynamical equation for the Hamiltonian in part (D) as a Lax pair in the form,

$$
\frac{d L_{3}}{d t}=\left[L_{3}, \widetilde{J}_{3}\right] .
$$

In particular, find the 4×4 skew symmetric matrix \widetilde{J}_{3} by deforming the 3×3 skew symmetric matrix J_{3}. Hint: this matrix calculation is easy because the deformation of the matrix J_{3} only involves inserting zeros.

Answer.

(A) The Jacobi identity is verified by a direct calculation, or maybe there is a smarter way . .
(B) The quadratic Poisson structure on \mathbb{R}^{5} is a banded matrix

$$
J_{5}=\left(\begin{array}{ccccc}
0 & x_{1} x_{2} & 0 & 0 & 0 \\
-x_{1} x_{2} & 0 & x_{2} x_{3} & 0 & 0 \\
0 & -x_{2} x_{3} & 0 & x_{3} x_{4} & 0 \\
0 & 0 & -x_{3} x_{4} & 0 & x_{4} x_{5} \\
0 & 0 & 0 & -x_{4} x_{5} & 0
\end{array}\right)
$$

whose bands are revealed clearly for $N=5$.
(C) There seems to be no Casimir for the quadratic Poisson structure on \mathbb{R}^{N} for $N>3$.
(D) The quadratic Poisson structure on \mathbb{R}^{3}

$$
J_{3}=\left(\begin{array}{ccc}
0 & x_{1} x_{2} & 0 \\
-x_{1} x_{2} & 0 & x_{2} x_{3} \\
0 & -x_{2} x_{3} & 0
\end{array}\right)=x_{2}\left(\begin{array}{ccc}
0 & x_{1} & 0 \\
-x_{1} & 0 & x_{3} \\
0 & -x_{3} & 0
\end{array}\right)=x_{2} \nabla\left(x_{1} x_{3}\right) \times
$$

Thus, because x_{2} factors out, the case $N=3$ simplifies to a Nambu bracket and we may write the dynamical equations for the quadratic Poisson bracket in \mathbb{R}^{3} as

$$
\dot{\mathbf{x}}=J_{3} \frac{\partial h}{\partial \mathbf{x}}=\{\mathbf{x}, h\}=x_{2} \nabla\left(x_{1} x_{3}\right) \times \nabla h
$$

For the case $N=3$, the Casimir is $C_{3}=x_{1} x_{3}$.
When the Hamiltonian is

$$
h(\mathbf{x})=\frac{1}{2}|\mathbf{x}|^{2}=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

then the motion for $N=3$ takes place in \mathbb{R}^{3} along intersections of level sets of $x_{1} x_{3}$ (hyperbolic cylinders aligned with x_{2}) and h (coincident spheres with center at the origin). The level set $x_{2}=0$ is a plane of fixed points and the motion consists of heteroclinic orbits that connect points on the equator of the sphere to each other along the intersections with a family of hyperbolic cylinders, $x_{1} x_{3}=$ const.
(E) For $N=3$ the Hamiltonian form of the equations for $h=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$ may be written as

$$
\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=J_{3}(\mathbf{x}) \frac{\partial h}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
0 & x_{1} x_{2} & 0 \\
-x_{1} x_{2} & 0 & x_{2} x_{3} \\
0 & -x_{2} x_{3} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} x_{2}^{2} \\
x_{2}\left(x_{3}^{2}-x_{1}^{2}\right) \\
-x_{3} x_{2}^{2}
\end{array}\right)
$$

Remarkably, the matrix of quadratic quantities in the Hamiltonian matrix representation of these cubic dynamical equations plays a role in recognising their Lax pair, or commutator form.
We introduce the symmetric matrix

$$
L_{3}=\left(\begin{array}{cccc}
0 & x_{1} & 0 & 0 \\
x_{1} & 0 & x_{2} & 0 \\
0 & x_{2} & 0 & x_{3} \\
0 & 0 & x_{3} & 0
\end{array}\right)
$$

and express its dynamical equation as a Lax pair in the form,

$$
\frac{d L_{3}}{d t}=\left[L_{3}, \widetilde{J}_{3}\right]
$$

with

$$
\widetilde{J}_{3}(\mathbf{x})=\left(\begin{array}{cccc}
0 & 0 & x_{1} x_{2} & 0 \\
0 & 0 & 0 & x_{2} x_{3} \\
-x_{1} x_{2} & 0 & 0 & 0 \\
0 & -x_{2} x_{3} & 0 & 0
\end{array}\right)
$$

The 4×4 matrix $\widetilde{J}_{3}(\mathbf{x})$ is a deformation of the 3×3 Hamiltonian matrix $J_{3}(\mathbf{x})$ obtained by replacing the zeros on the diagonal of J by the tridiagonal zeros of the matrix \widetilde{J}.

Exercise 3.3 (Lie-Poisson brackets for the group $S(S)(T \times T)$).
Consider a semidirect-product Lie group $S(S)(T \times T)$ comprising a radial scaling transformation S in the $x y$-plane and two affines translations (shears) $T \times T$ of z depending linearly on x and y. The matrix representation of its action on \mathbb{R}^{3} is given by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
e^{\epsilon_{1}} & 0 & 0 \\
0 & e^{\epsilon_{1}} & 0 \\
\epsilon_{2} & \epsilon_{3} & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)
$$

This defines the Lie group of lower-triangular 3×3 matrices

$$
\left(\begin{array}{ccc}
e^{\epsilon_{1}} & 0 & 0 \\
0 & e^{\epsilon_{1}} & 0 \\
\epsilon_{2} & \epsilon_{3} & 1
\end{array}\right) \in G_{\triangleright}
$$

(A) Compute the group product and inverse element for the matrix Lie group G_{\triangleright}.
(B) Find the matrix representation of its Lie algebra $\mathfrak{g}_{\triangleright}$ and explicitly compute the adjoint operation. Write the formula for $\operatorname{ad}_{\xi} \eta$ in matrix form for $\xi, \eta \in \mathfrak{g}_{\triangleright}$.
(C) Compute the coadjoint action of its Lie algebra on its dual Lie algebra. Write the formula for $\operatorname{ad}_{\xi}^{*} \mu$ in matrix form for $\xi \in \mathfrak{g}_{\triangleright}$ and $\mu \in \mathfrak{g}_{\triangleright}^{*}$.
(D) Write the Euler-Poincaré equation

$$
\dot{\mu}=\operatorname{ad}_{\xi}^{*} \mu \quad \text { with } \quad \mu=\frac{\partial l}{\partial \xi},
$$

in which $\xi:=g_{t}^{-1} \dot{g}_{t}$ for a Lagrangian $l(\xi)$ that is invariant under $S(S(T \times T)$.
(E) Legendre transform this equation to the (Lie-Poisson) Hamiltonian side. What infinitesimal transformations are generated, when the Lie-Poisson structure is regarded as a matrix operator acting on $\nabla h \in \mathbb{R}^{3}$? Hint: think of the Lie-Poisson form as a Hamiltonian vector field.
(F) Does the final Poisson bracket have a Casimir? If so, express it as a function on \mathbb{R}^{3}.
(G) Describe the solution when the Hamiltonian is given by $h=\frac{1}{2}|\mathbf{x}|^{2}$. Does the dynamics have a plane of fixed points?

Answer.

(A) The group product is

$$
g_{1} g_{2}=\left(\begin{array}{ccc}
e^{\epsilon_{1}} & 0 & 0 \\
0 & e^{\epsilon_{1}} & 0 \\
\epsilon_{2} & \epsilon_{3} & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{\beta_{1}} & 0 & 0 \\
0 & e^{\beta_{1}} & 0 \\
\beta_{2} & \beta_{3} & 1
\end{array}\right)=\left(\begin{array}{ccc}
e^{\epsilon_{1}+\beta_{1}} & 0 & 0 \\
0 & e^{\epsilon_{1}+\beta_{1}} & 0 \\
\epsilon_{2} e^{\beta_{1}}+\beta_{2} & \epsilon_{3} e^{\beta_{1}}+\beta_{3} & 1
\end{array}\right)
$$

The inverse is

$$
g_{1}^{-1}=\left(\begin{array}{ccc}
e^{-\epsilon_{1}} & 0 & 0 \\
0 & e^{-\epsilon_{1}} & 0 \\
-\epsilon_{2} e^{-\epsilon_{1}} & -\epsilon_{3} e^{-\epsilon_{1}} & 1
\end{array}\right)
$$

(B) The matrix representation of its Lie algebra $\mathfrak{g}_{\triangleright}$ is given by

$$
g_{t}=\left(\begin{array}{ccc}
e^{\epsilon_{1}} & 0 & 0 \\
0 & e^{\epsilon_{1}} & 0 \\
\epsilon_{2} & \epsilon_{3} & 1
\end{array}\right) \quad \text { and } \quad \xi:=g_{t}^{-1} \dot{g}_{t}=\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{1} & 0 \\
\xi_{2} & \xi_{3} & 0
\end{array}\right)
$$

(C) The adjoint and coadjoint actions of the group $S(S(T \times T)$. The Lie algebra commutator is given for two Lie algebra elements ξ and η in $\mathfrak{g}_{\triangleright}$ by

$$
\operatorname{ad}_{\xi} \eta=[\xi, \eta]=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\xi_{2} \eta_{1}-\eta_{2} \xi_{1} & \xi_{3} \eta_{1}-\eta_{3} \xi_{1} & 0
\end{array}\right)
$$

(D) An element of the dual Lie algebra is represented by the transpose matrix

$$
\mu=\left(\begin{array}{ccc}
\mu_{1} & 0 & \mu_{2} \\
0 & \mu_{1} & \mu_{3} \\
0 & 0 & 0
\end{array}\right)
$$

The coadjoint action of its Lie algebra on its dual Lie algebra is computed, as follows.

$$
\begin{aligned}
\left\langle\mu, \operatorname{ad}_{\xi} \eta\right\rangle & =\frac{1}{2} \operatorname{trace}\left(\mu \operatorname{ad}_{\xi} \eta\right) \\
& =\mu_{2}\left(\xi_{2} \eta_{1}-\eta_{2} \xi_{1}\right)+\mu_{3}\left(\xi_{3} \eta_{1}-\eta_{3} \xi_{1}\right) \\
& =\left(\mu_{2} \xi_{2}+\mu_{3} \xi_{3},-\mu_{2} \xi_{1},-\mu_{3} \xi_{1}\right) \cdot\left(\eta_{1}, \eta_{2}, \eta_{3}\right)^{T} \\
& =\frac{1}{2} \operatorname{trace}\left(\operatorname{ad}_{\xi}^{*} \mu \eta\right) \\
& =\left\langle\operatorname{ad}_{\xi}^{*} \mu, \eta\right\rangle
\end{aligned}
$$

In matrix form, the formula for $\operatorname{ad}_{\xi}^{*} \mu$ is

$$
\operatorname{ad}_{\xi}^{*} \mu=\left(\begin{array}{ccc}
\mu_{2} \xi_{2}+\mu_{3} \xi_{3} & 0 & -\mu_{2} \xi_{1} \\
0 & \mu_{2} \xi_{2}+\mu_{3} \xi_{3} & -\mu_{3} \xi_{1} \\
0 & 0 & 0
\end{array}\right)
$$

This formula is the ingredient needed for writing the Euler-Poincaré equation

$$
\dot{\mu}=\operatorname{ad}_{\xi}^{*} \mu \quad \text { with } \quad \mu=\frac{\partial l}{\partial \xi}
$$

in which $\xi:=g_{t}^{-1} \dot{g}_{t}$ for a Lagrangian $l(\xi)$ that is invariant under $S(S)(T \times T)$. In components, the Euler-Poincaré equation is

$$
\begin{aligned}
& \dot{\mu}_{1}=\mu_{2} \xi_{2}+\mu_{3} \xi_{3} \\
& \dot{\mu}_{2}=-\mu_{2} \xi_{1} \\
& \dot{\mu}_{3}=-\mu_{3} \xi_{1}
\end{aligned}
$$

(E) After Legendre transforming to the corresponding Hamiltonian, $h(\mu)$, with $\xi_{k}=\partial h / \partial \mu_{k}$ and rearrangement into a matrix product form, this set of formulas becomes

$$
\left(\begin{array}{l}
\dot{\mu}_{1} \\
\dot{\mu}_{2} \\
\dot{\mu}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \mu_{2} & \mu_{3} \\
-\mu_{2} & 0 & 0 \\
-\mu_{3} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\partial h / \partial \mu_{1} \\
\partial h / \partial \mu_{2} \\
\partial h / \partial \mu_{3}
\end{array}\right)
$$

Upon identifying $\mu=(x, y, z)$, this becomes

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\left(\begin{array}{ccc}
0 & y & z \\
-y & 0 & 0 \\
-z & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\partial h / \partial x \\
\partial h / \partial y \\
\partial h / \partial z
\end{array}\right)=\left(\begin{array}{c}
y \partial h / \partial y+z \partial h / \partial z \\
-y \partial h / \partial x \\
-z \partial h / \partial x
\end{array}\right)=\left(\begin{array}{c}
y \partial_{y}+z \partial_{z} \\
-y \partial_{x} \\
-z \partial_{x}
\end{array}\right) h
$$

These are the infinitesimal transformations of $S \subseteq(T \times T)$, represented as a vector field. This make sense, because it means that given a Hamiltonian Lie-Poisson structure one may convert it to an Euler-Poincaré formulation, by identifying the infinitesimal transformations associated with the Lie-Poisson structure.
In our case, the scaling transformation in our case leaves invariant the ratio y / z for any Hamiltonian; so $C=y / z$ will be the Casimir in the Hamiltonian formulation.
(F) Our Poisson bracket expresses the dynamics in \mathbb{R}^{3} as

$$
\dot{\mathbf{x}}=\{\mathbf{x}, h\}=z^{2} \nabla \frac{y}{z} \times \nabla h
$$

so $C=y / z$ is its Casimir.
(G) On the plane $z=0$, the dynamics reduces to

$$
\dot{x}=y \partial h / \partial y, \quad \dot{y}=-y \partial h / \partial x, \quad \dot{z}=0,
$$

so the plane $z=0$ is an invariant plane, but not a plane of fixed points.
The x-axis $z=0=y$ is a line of fixed points.
When $\nabla h=\mathrm{x}$ the dynamics becomes

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\left(\begin{array}{c}
y^{2}+z^{2} \\
-x y \\
-x z
\end{array}\right)
$$

The x-axis $y=0=z$ is a line of fixed points. We have $y / z=$ const by construction, and the motion off the x-axis moves in planes whose $y z$-orientation remains constant. Cylindrical polar coordinates in one of these planes are given by

$$
r=\sqrt{y^{2}+z^{2}}, \quad \tan \theta=y / z
$$

Then we have

$$
\dot{x}=r^{2}, \quad \dot{r}=-x r, \quad \dot{\theta}=0
$$

So the line of fixed points along the x-axis is attracting for $x>0$ and repelling for $x<0$. The motion is in the positive x direction and eventually approaches the x-axis in a plane that stays oriented at a constant angle θ.

Exercise 3.4 (Canonical variables for the rigid body on $S U(n)$).
(A) Compute the Euler-Poincaré equation for the inverse AD-action, $Q_{t}=A D_{U_{t}^{-1}} Q_{0}=U_{t}^{-1} Q_{0} U_{t}$, of the matrix Lie group $S U(n)$ on itself.
(B) Specialise to $n=2$ and write the equations explicitly as 2×2 matrices.
(C) Transform to the Lie-Poisson Hamiltonian formulation for the case of $S U(n)$.

Answer.

(A) The tangent lift of the AD -action is found by taking the time derivative of the AD -action, from which (suppressing subscript t 's)

$$
\dot{Q}=-[\Omega, Q] \quad \text { with } \quad \Omega:=U^{-1} \dot{U} \in \operatorname{su}(n),
$$

in which the left-invariant $\Omega:=U^{-1} \dot{U} \in s u(n)$ is skew-Hermitian,

$$
\Omega^{\dagger}+\Omega=0
$$

This skew-Hermitian property may be seen by expanding the unitary condition near the identity of the $S U(n)$ matrices,

$$
I d=U^{\dagger} U=\left(I d+s \Omega^{\dagger}\right)(I d+s \Omega)=I d+s\left(\Omega^{\dagger}+\Omega\right)+O\left(s^{2}\right)
$$

From Hamilton's principle $\delta S=0$ with action integral

$$
\begin{aligned}
S(\Omega, Q, P) & =\int_{a}^{b} l(\Omega)+\langle P, \dot{Q}+[\Omega, Q]\rangle \\
& =\int_{a}^{b} l(\Omega)+\operatorname{tr}(P(\dot{Q}+[\Omega, Q])) d t
\end{aligned}
$$

constrained by the tangent lift relation $\dot{Q}+[\Omega, Q]=0$, we have

$$
\begin{aligned}
\delta S=\int_{a}^{b}\{ & \left\langle\frac{\delta l}{\delta \Omega}-[P, Q], \delta \Omega\right\rangle \\
& +\langle\delta P, \dot{Q}+[\Omega, Q]\rangle+\langle\delta Q, \dot{P}+[\Omega, P]\rangle\} d t
\end{aligned}
$$

for which $\delta l / \delta \Omega=[P, Q]$ and $Q, P \in S U(n)$ satisfy the following equations,

$$
\begin{equation*}
\dot{Q}=-[\Omega, Q] \quad \text { and } \quad \dot{P}=-[\Omega, P] \tag{3.2}
\end{equation*}
$$

as a result of the constraints.
This expands to the Euler-Poincaré equation

$$
\begin{equation*}
\dot{M}=\operatorname{ad}_{\Omega}^{*} M=-[\Omega, M] \tag{3.3}
\end{equation*}
$$

with $M=\delta l / \delta \Omega=[P, Q]$.

Momentum map: The vector field

$$
(\dot{Q}, \dot{P})=(-[\Omega, Q],-[\Omega, P])=\left(\frac{\partial J^{\Omega}}{\partial P},-\frac{\partial J^{\Omega}}{\partial Q}\right)
$$

is the Hamiltonian vector field

$$
(\dot{Q}, \dot{P})=\left(\frac{\partial J^{\Omega}}{\partial P},-\frac{\partial J^{\Omega}}{\partial Q}\right)
$$

with Hamiltonian J^{Ω} given for fixed Ω by

$$
J^{\Omega}=\langle[P, Q], \Omega\rangle=:\langle J, \Omega\rangle
$$

with variations at fixed Ω given by

$$
\delta J^{\Omega}=\langle[\delta P, Q], \Omega\rangle+\langle[P, \delta Q], \Omega\rangle=\langle-[\Omega, Q], \delta P\rangle+\langle[\Omega, P], \delta Q\rangle
$$

obtained, for example, from the $n \times n$ matrix trace pairing,

$$
\langle[\delta P, Q], \Omega\rangle=\operatorname{tr}((\delta P) Q \Omega-Q \delta P \Omega)=\langle\delta P,[Q, \Omega]\rangle
$$

The corresponding momentum map $J: T^{*} S O(n) \rightarrow s u^{*}(n)$ is given by J above, namely,

$$
J=[P, Q]
$$

(B) Pauli matrices:

For the case of 2×2 matrices in $s u(2)$, the commutator $[\Omega, M]$ can be written as a vector cross product, by using the property of the (skew-Hermitian) Pauli matrices,

$$
\sigma_{1}=\left[\begin{array}{cc}
0 & i \tag{3.4}\\
i & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

that their matrix commutator $\left[\sigma_{a}, \sigma_{b}\right]:=\sigma_{a} \sigma_{b}-\sigma_{b} \sigma_{a}$ obeys

$$
\left[\sigma_{a}, \sigma_{b}\right]=-2 \epsilon_{a b c} \sigma_{c}, \quad a, b, c \in\{1,2,3\}
$$

This is the basis for identifying $s u(2)$ and $s u(2)^{*}$ with \mathbb{R}^{3}. By writing the vector of Pauli matrices $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, so that

$$
\Omega=\boldsymbol{\Omega} \cdot \boldsymbol{\sigma} \quad \text { and } \quad M=\boldsymbol{M} \cdot \boldsymbol{\sigma}
$$

one finds $[\Omega, M]=\boldsymbol{\Omega} \times \boldsymbol{M} \cdot \boldsymbol{\sigma}$, so that

$$
0=\dot{M}+[\Omega, M]=(\dot{\boldsymbol{M}}+\boldsymbol{\Omega} \times \boldsymbol{M}) \cdot \boldsymbol{\sigma}
$$

Geodesic motion:

For geodesic motion on $S U(2)$ the Lagrangian is $l=\frac{1}{2}\langle\Omega, \mathbb{I} \Omega\rangle$, where $\Omega \in s u(2)$ with $\Omega^{\dagger}=-\Omega$ and $M=\mathbb{I} \Omega \in s u(2)^{*}$ with $\mathbb{I}^{T}=\mathbb{I}$ a real symmetric matrix. Consequently, the Lie-algebra isomorphism $s u(2) \simeq \mathbb{R}^{3}$ implies that geodesic motion on $S U(2)$ satisfies the \mathbb{R}^{3} vector equation

$$
\dot{\boldsymbol{M}}+\boldsymbol{\Omega} \times \boldsymbol{M}=0 \quad \text { with } \quad \boldsymbol{M}=\mathbb{I} \boldsymbol{\Omega}
$$

in the same form as Euler's rigid body equations.
(C) The Hamiltonian form is found by taking the time derivative of a smooth function F of M,

$$
\begin{aligned}
\frac{d}{d t} F(M) & =\left\langle\frac{\partial F}{\partial M}, \dot{M}\right\rangle \\
& =\left\langle\frac{\partial F}{\partial M}, \operatorname{ad}_{\partial H / \partial M}^{*} M\right\rangle \\
& =-\left\langle M,\left[\frac{\partial F}{\partial M}, \frac{\partial H}{\partial M}\right]\right\rangle
\end{aligned}
$$

Hence, the Poisson bracket is given by the Lie-Poisson form,

$$
\{F, H\}=-\left\langle M,\left[\frac{\partial F}{\partial M}, \frac{\partial H}{\partial M}\right]\right\rangle
$$

[^0]: ${ }^{1}$ The dual Lie algebra $\mathfrak{h}^{*}(\mathbb{R})$ may be represented equally well as symmetric matrices, with arbitrary entries on the diagonal,

 $$
 \mu=\left[\begin{array}{lll}
 k_{1} & \mu_{1} & \mu_{3} \\
 \mu_{1} & k_{2} & \mu_{2} \\
 \mu_{3} & \mu_{2} & k_{3}
 \end{array}\right] \in \mathfrak{h}^{*}(\mathbb{R})
 $$

