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3 M3-4-5A16 Assessed Problems # 3:
Do all four problems

Exercise 3.1 (Momentum map for the Heisenberg group).

The Heisenberg group is a subgroup of SL(3,R) given by the upper triangular matricesH =

1 ξ1 ξ3

0 1 ξ2

0 0 1

 ξ1, ξ2, ξ3 ∈ R


Its matrix action on elements of R2 is computed as1 ξ1 ξ3

0 1 ξ2

0 0 1

xy
1

 =

x+ ξ1y + ξ3

y + ξ2

1


This defines the action of H on R2: (x, y)T −→ (x + ξ1y + ξ3, y + ξ2)T , with infinitesimal action
Φξ(x, y) = (ξ1y + ξ3, ξ2).

(A) (i) Linearise around the identity of the matrix Lie group H to find the matrix representation
of its Lie algebra, h.

(ii) Write the isomorphism between the matrix representation of h and vectors in R3.

(iii) Compute the ad-operation adηξ, ad : h× h→ h on the matrix Lie algebra for η, ξ ∈ h.

(iv) Use the isomorphism h←→ R3 to write the ad-operation in h as a vector operation in R3.

(B) Compute the dual operation ad∗ηµ, where ad∗ : h∗ × h → h∗ for η ∈ h and µ ∈ h∗ by using the
trace pairing for matrices.

(C) Compute the cotangent lift of the infinitesimal action Φξ(x, y) = (ξ1y + ξ3, ξ2).

(D) Compute the cotangent-lift momentum map for the action of the Heisenberg Lie group on phase
space T ∗R2 with coordinates (x, y, px, py).

(E) Compute the Poisson brackets among the components of the cotangent-lift momentum map.

(F) Write the dynamics for the components of the cotangent-lift momentum map in R3 vector form
and give a geometric interpretation of the motion in R3.

Answer.

(A) (i) Elements of the 3× 3 matrix Lie algebra h take the matrix form,

ξ =

0 ξ1 ξ3

0 0 ξ2

0 0 0


(ii) The isomorphism between h and R3 is given by

ξ =

0 ξ1 ξ3

0 0 ξ2

0 0 0

←→ ξ =

ξ1

ξ2

ξ3


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(iii) The matrix form of the ad-operation in h is given by

adηξ =

0 0 η1ξ2 − η2ξ1

0 0 0
0 0 0


(iv) The ad-operation in h as a vector operation in R3

adηξ =

0 0 η1ξ2 − η2ξ1

0 0 0
0 0 0

←→
 0

0
η1ξ2 − η2ξ1

 = (ẑ · η × ξ)ẑ

(B) The inner product on the Heisenberg Lie algebra h×h→ R is defined by the matrix trace pairing

〈η, ξ〉 = Tr(ηT ξ) = η · ξ .

Thus, elements of the dual Lie algebra h∗(R) may be represented as lower triangular matrices,1

µ =

 0 0 0
µ1 0 0
µ3 µ2 0

 ∈ h∗(R) .

Likewise, the ad∗ operation of the Heisenberg Lie algebra h on its dual h∗ is defined in terms of
the matrix pairing by

〈ad∗ηµ, ξ〉 := 〈µ, adηξ〉

〈µ, adηξ〉 = Tr

 0 0 0
µ1 0 0
µ3 µ2 0

0 0 η1ξ2 − ξ1η2

0 0 0
0 0 0



= Tr

 0 0 0
−η2µ3 0 0

0 η1µ3 0

0 ξ1 ξ3

0 0 ξ2

0 0 0


= 〈ad∗ηµ, ξ〉. (3.1)

Thus, we have the formula for ad∗ηµ:

µ̇ = ad∗ηµ =

 0 0 0
−η2µ3 0 0

0 η1µ3 0

 =⇒

µ̇1

µ̇2

µ̇3

 =

 0 µ3 0
−µ3 0 0

0 0 0

η1

η2

η3

 .
This defines a Lie-Poisson bracket whose Casimir is µ3. On restricting it to a level set of µ3, it
becomes canonical, as expected from the Marsden-Weinstein theorem.

(C) The cotangent lift of the infinitesimal action Φξ(x, y) = (ξ1y + ξ3, ξ2) is computed from the
Hamiltonian vector field for Jξ = px(ξ1y + ξ3) + pyξ2 = pxyξ1 + pyξ2 + pxξ3, namely

{ · , Jξ} = (ξ1y + ξ3)
∂

∂x
+ ξ2

∂

∂y
− pxξ1

∂

∂py

Note that the flow of this Hamiltonian vector field leaves px invariant.

1The dual Lie algebra h∗(R) may be represented equally well as symmetric matrices, with arbitrary entries on the
diagonal,

µ =

k1 µ1 µ3

µ1 k2 µ2

µ3 µ2 k3

 ∈ h∗(R) .

but here we choose the equivalent representation by lower triangular matrices.
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(D) The cotangent-lift momentum map J for the action of the Heisenberg Lie group on phase space
T ∗R2 is obtained from the formula

Jξ = 〈J, ξ〉 = J · ξ = J1ξ1 + J2ξ2 + J3ξ3 = pxyξ1 + pyξ2 + pxξ3 = tr

[J1, J2, J3]

ξ1

ξ2

ξ3


Thus the momentum map is given by

J = (J1, J2, J3) = (pxy, py, px)

(E) The Poisson brackets among the components of the cotangent-lift momentum map are given by

{J1, J2} = {pxy, py} = px = J3 , {J2, J3} = {py, px} = 0 , {J3, J1} = {px, pxy} = 0

In tabular form, these Poisson brackets are

{Ji, Jk} =

{ · , · } J1 J2 J3

J1

J2

J3

0 J3 0
−J3 0 0
0 0 0

.

This Lie-Poisson bracket for (J1, J2, J3) is the same as the one we had above for (µ1, µ2, µ3), and
J3 is its Casimir.

The corresponding Lie-Poisson Hamiltonian equation is

df

dt
=
∂f

∂Ji
{Ji, Jk}

∂h

∂Jk
= J3

(
∂f

∂J1

∂h

∂J2
− ∂h

∂J1

∂f

∂J2

)
︸ ︷︷ ︸

Canonical

=
1

2

∂J2
3

∂J
· ∂f
∂J
× ∂h

∂J

(F) Geometric interpretation. Upon expressing the Lie-Poisson bracket in vector form, the motion
of J ∈ R3 may be written as a cross product. Namely,

dJ

dt
= −1

2

∂J2
3

∂J
× ∂h

∂J
= −J3 ẑ× ∂h

∂J
= − ad∗∂h/∂J (ẑJ3)

so the motion takes place in R3 along intersections of level sets of J2
3 and the Hamiltonian h(J).

In components, this isJ̇1

J̇2

J̇3

 =

 0 J3 0
−J3 0 0

0 0 0

∂h/∂J1

∂h/∂J2

∂h/∂J3

 =

−J3∂h/∂J2

J3 ∂h/∂J1

0

 .
In the equivalent matrix form, this is

J̇ =

 0 0 0

J̇1 0 0

J̇3 J̇2 0

 =

 0 0 0

J3
∂h
∂J2

0 0

0 −J3
∂h
∂J1

0

 = − ad∗∂h/∂JJ3.

N
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Exercise 3.2 (Quadratic Poisson brackets).

(A) Prove that the quadratic Poisson bracket on RN given by

{xi, xj} = xixj (δi,j+1 − δi+1,j) 1 ≤ i, j ≤ N with x0 = 0 = xN

satisfies the Jacobi identity.

(B) Write out the quadratic Poisson structure for N = 5 as a 5× 5 matrix.

(C) Does the quadratic Poisson bracket on RN have a Casimir? If so, what is it?

(D) Prove the Jacobi identity for the quadratic Poisson structure on R3, by writing it as a Nambu
bracket. Discuss the resulting motion as intersections of level sets of constants of motion for the
case that the Hamiltonian is given by h(x) = 1

2 |x|
2 = 1

2

(
x2

1 + x2
2 + x2

3

)
.

(E) Introduce the symmetric matrix

L3 =


0 x1 0 0
x1 0 x2 0
0 x2 0 x3

0 0 x3 0


and express the dynamical equation for the Hamiltonian in part (D) as a Lax pair in the form,

dL3

dt
= [L3, J̃3] .

In particular, find the 4 × 4 skew symmetric matrix J̃3 by deforming the 3 × 3 skew symmetric
matrix J3. Hint: this matrix calculation is easy because the deformation of the matrix J3 only
involves inserting zeros.

Answer.

(A) The Jacobi identity is verified by a direct calculation, or maybe there is a smarter way . . .

(B) The quadratic Poisson structure on R5 is a banded matrix

J5 =


0 x1x2 0 0 0

−x1x2 0 x2x3 0 0
0 −x2x3 0 x3x4 0
0 0 −x3x4 0 x4x5

0 0 0 −x4x5 0


whose bands are revealed clearly for N = 5.

(C) There seems to be no Casimir for the quadratic Poisson structure on RN for N > 3.

(D) The quadratic Poisson structure on R3

J3 =

 0 x1x2 0
−x1x2 0 x2x3

0 −x2x3 0

 = x2

 0 x1 0
−x1 0 x3

0 −x3 0

 = x2∇(x1x3)×

Thus, because x2 factors out, the case N = 3 simplifies to a Nambu bracket and we may write
the dynamical equations for the quadratic Poisson bracket in R3 as

ẋ = J3
∂h

∂x
= {x, h} = x2∇(x1x3)×∇h
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For the case N = 3, the Casimir is C3 = x1x3.

When the Hamiltonian is

h(x) =
1

2
|x|2 =

1

2

(
x2

1 + x2
2 + x2

3

)
then the motion for N = 3 takes place in R3 along intersections of level sets of x1x3 (hyperbolic
cylinders aligned with x2) and h (coincident spheres with center at the origin). The level set
x2 = 0 is a plane of fixed points and the motion consists of heteroclinic orbits that connect points
on the equator of the sphere to each other along the intersections with a family of hyperbolic
cylinders, x1x3 = const.

(E) For N = 3 the Hamiltonian form of the equations for h = 1
2

(
x2

1 + x2
2 + x2

3

)
may be written asẋ1

ẋ2

ẋ3

 = J3(x)
∂h

∂x
=

 0 x1x2 0
−x1x2 0 x2x3

0 −x2x3 0

x1

x2

x3

 =

 x1x
2
2

x2(x2
3 − x2

1)
−x3x

2
2


Remarkably, the matrix of quadratic quantities in the Hamiltonian matrix representation of these
cubic dynamical equations plays a role in recognising their Lax pair, or commutator form.

We introduce the symmetric matrix

L3 =


0 x1 0 0
x1 0 x2 0
0 x2 0 x3

0 0 x3 0


and express its dynamical equation as a Lax pair in the form,

dL3

dt
= [L3, J̃3]

with

J̃3(x) =


0 0 x1x2 0
0 0 0 x2x3

−x1x2 0 0 0
0 −x2x3 0 0


The 4 × 4 matrix J̃3(x) is a deformation of the 3 × 3 Hamiltonian matrix J3(x) obtained by
replacing the zeros on the diagonal of J by the tridiagonal zeros of the matrix J̃ .

N

Exercise 3.3 (Lie-Poisson brackets for the group Ss(T × T )).

Consider a semidirect-product Lie group Ss(T × T ) comprising a radial scaling transformation S
in the xy-plane and two affines translations (shears) T × T of z depending linearly on x and y. The
matrix representation of its action on R3 is given byxy

z

 =

eε1 0 0
0 eε1 0
ε2 ε3 1

x0

y0

z0


This defines the Lie group of lower-triangular 3× 3 matriceseε1 0 0

0 eε1 0
ε2 ε3 1

 ∈ GB
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(A) Compute the group product and inverse element for the matrix Lie group GB.

(B) Find the matrix representation of its Lie algebra gB and explicitly compute the adjoint operation.
Write the formula for adξη in matrix form for ξ, η ∈ gB.

(C) Compute the coadjoint action of its Lie algebra on its dual Lie algebra. Write the formula for
ad∗ξµ in matrix form for ξ ∈ gB and µ ∈ g∗B.

(D) Write the Euler-Poincaré equation

µ̇ = ad∗ξµ with µ =
∂l

∂ξ
,

in which ξ := g−1
t ġt for a Lagrangian l(ξ) that is invariant under Ss(T × T ).

(E) Legendre transform this equation to the (Lie-Poisson) Hamiltonian side. What infinitesimal
transformations are generated, when the Lie-Poisson structure is regarded as a matrix operator
acting on ∇h ∈ R3? Hint: think of the Lie-Poisson form as a Hamiltonian vector field.

(F) Does the final Poisson bracket have a Casimir? If so, express it as a function on R3.

(G) Describe the solution when the Hamiltonian is given by h = 1
2 |x|

2. Does the dynamics have a
plane of fixed points?

Answer.

(A) The group product is

g1g2 =

eε1 0 0
0 eε1 0
ε2 ε3 1

eβ1 0 0
0 eβ1 0
β2 β3 1

 =

 eε1+β1 0 0
0 eε1+β1 0

ε2e
β1 + β2 ε3e

β1 + β3 1


The inverse is

g−1
1 =

 e−ε1 0 0
0 e−ε1 0

−ε2e−ε1 −ε3e−ε1 1


(B) The matrix representation of its Lie algebra gB is given by

gt =

eε1 0 0
0 eε1 0
ε2 ε3 1

 and ξ := g−1
t ġt =

ξ1 0 0
0 ξ1 0
ξ2 ξ3 0


(C) The adjoint and coadjoint actions of the group Ss(T ×T ). The Lie algebra commutator is given

for two Lie algebra elements ξ and η in gB by

adξη = [ξ, η] =

 0 0 0
0 0 0

ξ2η1 − η2ξ1 ξ3η1 − η3ξ1 0


(D) An element of the dual Lie algebra is represented by the transpose matrix

µ =

µ1 0 µ2

0 µ1 µ3

0 0 0


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The coadjoint action of its Lie algebra on its dual Lie algebra is computed, as follows.

〈µ, adξη〉 =
1

2
trace(µ adξη)

= µ2(ξ2η1 − η2ξ1) + µ3(ξ3η1 − η3ξ1)

= (µ2ξ2 + µ3ξ3, −µ2ξ1, −µ3ξ1)·(η1, η2, η3)T

=
1

2
trace (ad∗ξµ η)

= 〈ad∗ξµ, η〉

In matrix form, the formula for ad∗ξµ is

ad∗ξµ =

µ2ξ2 + µ3ξ3 0 −µ2ξ1

0 µ2ξ2 + µ3ξ3 −µ3ξ1

0 0 0


This formula is the ingredient needed for writing the Euler-Poincaré equation

µ̇ = ad∗ξµ with µ =
∂l

∂ξ
,

in which ξ := g−1
t ġt for a Lagrangian l(ξ) that is invariant under Ss(T ×T ). In components, the

Euler-Poincaré equation is

µ̇1 = µ2ξ2 + µ3ξ3

µ̇2 = −µ2ξ1

µ̇3 = −µ3ξ1

(E) After Legendre transforming to the corresponding Hamiltonian, h(µ), with ξk = ∂h/∂µk and
rearrangement into a matrix product form, this set of formulas becomesµ̇1

µ̇2

µ̇3

 =

 0 µ2 µ3

−µ2 0 0
−µ3 0 0

∂h/∂µ1

∂h/∂µ2

∂h/∂µ3


Upon identifying µ = (x, y, z), this becomesẋẏ

ż

 =

 0 y z
−y 0 0
−z 0 0

∂h/∂x∂h/∂y
∂h/∂z

 =

y∂h/∂y + z∂h/∂z
−y∂h/∂x
−z∂h/∂x

 =

y∂y + z∂z
−y∂x
−z∂x

h

These are the infinitesimal transformations of Ss(T × T ), represented as a vector field. This
make sense, because it means that given a Hamiltonian Lie-Poisson structure one may convert
it to an Euler-Poincaré formulation, by identifying the infinitesimal transformations associated
with the Lie-Poisson structure.

In our case, the scaling transformation in our case leaves invariant the ratio y/z for any Hamil-
tonian; so C = y/z will be the Casimir in the Hamiltonian formulation.

(F) Our Poisson bracket expresses the dynamics in R3 as

ẋ = {x, h} = z2∇y
z
×∇h

so C = y/z is its Casimir.
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(G) On the plane z = 0, the dynamics reduces to

ẋ = y∂h/∂y , ẏ = −y∂h/∂x , ż = 0 ,

so the plane z = 0 is an invariant plane, but not a plane of fixed points.

The x-axis z = 0 = y is a line of fixed points.

When ∇h = x the dynamics becomes ẋẏ
ż

 =

y2 + z2

−xy
−xz


The x-axis y = 0 = z is a line of fixed points. We have y/z = const by construction, and the
motion off the x-axis moves in planes whose yz-orientation remains constant. Cylindrical polar
coordinates in one of these planes are given by

r =
√
y2 + z2 , tan θ = y/z

Then we have
ẋ = r2 , ṙ = −xr , θ̇ = 0

So the line of fixed points along the x-axis is attracting for x > 0 and repelling for x < 0. The
motion is in the positive x direction and eventually approaches the x-axis in a plane that stays
oriented at a constant angle θ.

N

Exercise 3.4 (Canonical variables for the rigid body on SU(n)).

(A) Compute the Euler-Poincaré equation for the inverse AD-action, Qt = ADU−1
t
Q0 = U−1

t Q0Ut , of

the matrix Lie group SU(n) on itself.

(B) Specialise to n = 2 and write the equations explicitly as 2× 2 matrices.

(C) Transform to the Lie-Poisson Hamiltonian formulation for the case of SU(n).

Answer.

(A) The tangent lift of the AD-action is found by taking the time derivative of the AD-action, from
which (suppressing subscript t’s)

Q̇ = − [Ω, Q] with Ω := U−1U̇ ∈ su(n) ,

in which the left-invariant Ω := U−1U̇ ∈ su(n) is skew-Hermitian,

Ω† + Ω = 0 .

This skew-Hermitian property may be seen by expanding the unitary condition near the identity
of the SU(n) matrices,

Id = U †U = (Id+ sΩ†)(Id+ sΩ) = Id+ s(Ω† + Ω) +O(s2).

From Hamilton’s principle δS = 0 with action integral

S(Ω, Q, P ) =

∫ b

a
l(Ω) +

〈
P, Q̇+ [Ω, Q]

〉
=

∫ b

a
l(Ω) + tr

(
P
(
Q̇+ [Ω, Q]

))
dt ,
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constrained by the tangent lift relation Q̇+ [Ω, Q] = 0, we have

δS =

∫ b

a

{〈 δl

δΩ
− [P, Q] , δΩ

〉
+
〈
δP , Q̇+ [Ω, Q]

〉
+
〈
δQ , Ṗ + [Ω, P ]

〉}
dt ,

for which δl/δΩ = [P, Q] and Q,P ∈ SU(n) satisfy the following equations,

Q̇ = − [Ω, Q] and Ṗ = − [Ω, P ] , (3.2)

as a result of the constraints.

This expands to the Euler-Poincaré equation

Ṁ = ad∗ΩM = − [Ω, M ] , (3.3)

with M = δl/δΩ = [P, Q].

Momentum map: The vector field

(Q̇, Ṗ ) = (− [Ω, Q], − [Ω, P ]) =

(
∂JΩ

∂P
, − ∂J

Ω

∂Q

)
is the Hamiltonian vector field

(Q̇, Ṗ ) =

(
∂JΩ

∂P
, − ∂J

Ω

∂Q

)
with Hamiltonian JΩ given for fixed Ω by

JΩ =
〈

[P, Q] , Ω
〉

=:
〈
J , Ω

〉
with variations at fixed Ω given by

δJΩ =
〈

[δP, Q], Ω
〉

+
〈

[P, δQ] , Ω
〉

=
〈
− [Ω, Q], δP

〉
+
〈

[Ω, P ], δQ
〉

obtained, for example, from the n× n matrix trace pairing,〈
[δP, Q], Ω

〉
= tr

(
(δP )QΩ−QδPΩ

)
=
〈
δP, [Q, Ω]

〉
.

The corresponding momentum map J : T ∗SO(n)→ su∗(n) is given by J above, namely,

J = [P, Q] .

(B) Pauli matrices:
For the case of 2× 2 matrices in su(2), the commutator [Ω, M ] can be written as a vector cross
product, by using the property of the (skew-Hermitian) Pauli matrices,

σ1 =

[
0 i
i 0

]
, σ2 =

[
0 1
−1 0

]
, σ3 =

[
i 0
0 −i

]
. (3.4)

that their matrix commutator [σa, σb] := σaσb − σbσa obeys

[σa, σb] = −2εabcσc, a, b, c ∈ {1, 2, 3}.

This is the basis for identifying su(2) and su(2)∗ with R3. By writing the vector of Pauli matrices
σ = (σ1, σ2, σ3), so that

Ω = Ω · σ and M = M · σ
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one finds [Ω, M ] = Ω ×M · σ, so that

0 = Ṁ + [Ω, M ] = (Ṁ + Ω ×M) · σ.

Geodesic motion:
For geodesic motion on SU(2) the Lagrangian is l = 1

2〈Ω, IΩ〉, where Ω ∈ su(2) with Ω† = −Ω
and M = IΩ ∈ su(2)∗ with IT = I a real symmetric matrix. Consequently, the Lie-algebra
isomorphism su(2) ' R3 implies that geodesic motion on SU(2) satisfies the R3 vector equation

Ṁ + Ω ×M = 0 with M = IΩ,

in the same form as Euler’s rigid body equations.

(C) The Hamiltonian form is found by taking the time derivative of a smooth function F of M ,

d

dt
F (M) =

〈 ∂F

∂M
, Ṁ

〉
=

〈 ∂F

∂M
, ad∗∂H/∂MM

〉
= −

〈
M ,

[ ∂F
∂M

,
∂H

∂M

]〉
Hence, the Poisson bracket is given by the Lie-Poisson form,

{F, H} = −
〈
M ,

[ ∂F
∂M

,
∂H

∂M

]〉
N


