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1 M3-4-5A16 Assessed Homework Set # 1 Autumn Term 2018

Exercise 1.1 Compute the Euler-Lagrange equations from Hamilton’s principle for any two of the
first five and any three of the second five of the following simple mechanical systems:

L(q, q̇) = T (q̇)− V (q) = KE − PE.

1. Planar isotropic oscillator, (x, ẋ) ∈ TR2:
L = m

2 |ẋ|
2 − k

2 |x|
2 =⇒ ẍ = −ω2x with ω2 = k/m

2. Planar anisotropic oscillator, (x, ẋ) ∈ TR2:
L = m

2 |ẋ|
2 − k1

2 x
2
1 − k2

2 x
2
2 =⇒ ẍi = −ω2

i xi with ω2
i = ki/m i = 1, 2

3. Planar pendulum, (x, ẋ) ∈ TR2, constrained to TS1 = {x, ẋ ∈ TR2| 1 − |x|2 = 0 & x · ẋ = 0}:
L = m

2 |ẋ|
2 −mg ê2 · x − µ

2 (1 − |x|2) =⇒ mẍ = −mgê2(Id − x ⊗ x) − m|ẋ|2x, (gravity &
centripetal force)

4. Planar pendulum motion lifted to a curve in SO(2): x(t) = O(θ(t))x0 ∈ R2 , O(θ(t)) ∈
SO(2) , |x0|2 = R2, where x(0) = x0. ẋ(t) = ȮO−1(t)x = θ̇(t) ê3 × x for (θ, θ̇) ∈ TSO(2) ,
L = m

2 R
2θ̇2 −mgR(1− cos θ) =⇒ θ̈ = −ω2 sin θ with ω2 = g/R

5. Charged particle in a magnetic field, (x, ẋ) ∈ TR2:
L = m

2 |ẋ|
2 + e

c ẋ ·A(x) =⇒ ẍ = e
mc ẋ×B with B = curl A

6. Kepler problem in Cartesian coordinates, (r, ṙ) ∈ TR3:
L(r, ṙ) = 1

2 |ṙ|
2 − V (r) with V (r) = −µ/r and r := |r| =

√
r · r. =⇒ r̈ + µr

r3
= 0.

7. Kepler problem in polar coordinates, (r, ṙ, θ, θ̇) ∈ TR+ × TS1: |ṙ|2 = ṙ2 + r2θ̇2

L = 1
2

(
ṙ2 + r2θ̇2

)
+ µ

r =⇒ r̈ = − µ
r2

+ J2

r3
with J = r2θ̇ = const

8. Spherical pendulum (a), (x, ẋ) ∈ TR3, on TS2 = {(x, ẋ) ∈ TR3 : |x| = 1 & x · ẋ = 0}:
L = m

2 |ẋ|
2 −mg ê3 · x + 1

2µ(1− |x|2)

9. Spherical pendulum (b), set x(t) = O(t)x0 , ẋ(t) = Ȯ(t)x0 for (O, Ȯ) ∈ TSO(3) , where
x0 = x(0) is the initial position of the particle and OT = O−1

L(x, ẋ) =
m

2
|ẋ|2 −mg ê3 · x =

m

2
|Ȯ(t)x0|2 −mgOT (t)ê3 · x0 .

Setting x(t) = O(t)x0 avoids the need for the constraint |x|2 = 1, since rotations preserve length.
=⇒

Π̇ + Ω×Π = − gΓ× x0 with Π := x0 × (Ω× x0) = Ω|x0|2 − x0(x0 ·Ω) .

Set g = 0 to get free motion on the sphere. Finally, from its definition, Γ := O−1(t)ê3 satisfies

Γ̇ := − Ω̂Γ = −Ω× Γ .

10. Rotating rigid body, Ω̂ = O−1Ȯ ∈ T (SO(3) ' so(3):
`(Ω) = 1

2Ω · IΩ with Ω× = Ω̂ , that is, − εijkΩk = Ω̂ij . =⇒ IΩ̇ + Ω× IΩ = 0 .
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Exercise 1.2 For the Lagrangians in the previous exercise, compute the Legendre transforms

H(q, p) = 〈p, q̇〉 − L(q, q̇) = T (p) + V (q) = KE + PE

and the canonical Hamiltonian equations for any five of the following simple mechanical systems.

1. Planar isotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m |p|

2 + k
2 |x|

2

2. Planar anisotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m |p|

2 + k1
2 x

2
1 + k2

2 x
2
2

3. Planar pendulum in polar coordinates, (θ, pθ) ∈ T ∗S1: H = 1
2mR2 p

2
θ +mgR(1− cos θ)

4. Planar pendulum, (x,p) ∈ T ∗R2, constrained to S1 = {x ∈ R2 : 1− |x|2 = 0}:
H = 1

2m |p|
2 +mg ê3 · x + 1

2µ(1− |x|2)

5. Charged particle in a magnetic field, (x,p) ∈ T ∗R2: H = 1
2m |p −

e
cA(x)|2 p := ∂L/∂q̇ =

mẋ + e
cA(x) ∈ T ∗M

6. Kepler problem, (r, pr, θ, pθ) ∈ T ∗R+×T ∗S1: H = p2r
2m+

p2θ
2mr2
−GMm

r with pθ = r2θ̇ = const

7. Free motion on a sphere, (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1− |x|2 = 0}:
H = 1

2m |p|
2 − µ(1− |x|2)

8. Spherical pendulum (a), (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1− |x|2 = 0}:
H = 1

2m |p|
2 +mg ê3 · x− µ(1− |x|2)

9. Spherical pendulum (b), (O, Ȯ) ∈ TSO(3), ξ̂ = O−1Ȯ ∈ T (SO(3) ' so(3), Π = ∂`/∂Ω ∈
T ∗(SO(3) ' so(3)∗ ' R3 H = 1

2Π · I−1Π + gΓ · x0 with Π = ∂`
∂Ω = IΩ. Set g = 0 to get

freely rotating rigid body motion.

10. Rotating rigid body, Π ∈ T ∗(SO(3) ' so(3)∗ ' R3 H = 1
2Π · I−1Π with Π = ∂`

∂Ω = IΩ.

Exercise 1.3 (Two important examples of Noether’s theorem)

(a) What conservation law does Noether’s theorem imply for symmetries of the action principle given
by δS = 0 with

S =

∫ b

a
L(q̇(t),q(t), t) dt , for q ∈ R3 and L : TR3 → R ,

when the Lagrangian L(q̇(t),q(t), t) is invariant under infinitesimal azimuthal rotations about ẑ
given by

q(t, ε) = q(t) + ε ẑ× q(t) +O(ε2) so that δq =
dq

dε

∣∣∣∣
ε=0

= ẑ× q(t)

(b) What additional conservation law is implied by Noether’s theorem when the Lagrangian in the
form L(q̇(t),q(t)) is translation invariant in time, t, so that ∂tL = 0?
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Exercise 1.4 (The free particle in H2)

Figure 1: Geodesics on the Lobachevsky half-plane, H2.

In Appendix I of Arnold’s book, Mathematical Methods of Classical Mechanics, page 303, we read.

EXAMPLE. We consider the upper half-plane y > 0 of the plane of complex numbers
z = x+ iy with the metric

ds2 =
dx2 + dy2

y2
.

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are
circles and straight lines perpendicular to the x-axis. Linear fractional transformations
with real coefficients

z → az + b

cz + d
(1)

are isometric transformations of our manifold (H2), which is called the Lobachevsky plane.1

Consider a free particle of mass m moving on the Lobachevsky half-plane H2. Its Lagrangian is
the kinetic energy corresponding to the Lobachevsky metric. Namely,

L =
m

2

(
ẋ2 + ẏ2

y2

)
. (2)

(A) (1) Write the fibre derivatives (i.e., the momenta ∂L
∂ẋ and ∂L

∂ẏ ) of the Lagrangian (2) and

(2) compute its Euler-Lagrange equations.

These equations represent geodesic motion on H2.

(3) Evaluate the Christoffel symbols.

Hint: Geodesic equations look like q̈ c+Γcbe(q)q̇
bq̇e = 0, where Γcbe(q) are the Christoffel symbols.

(B) (1) Show that the quantities

u =
ẋ

y
and v =

ẏ

y
(3)

are invariant under the quantities (3) are invariant under a subgroup the translations and scalings.

Tτ : (x, y) 7→ (x+ τ, y) Flow of XT = ∂x, (δx, δy) = (1, 0), [XT , XS ] = XT .

Sσ : (x, y) 7→ (eσx, eσy) Flow of XS = x∂x + y∂y, (δx, δy) = (x, y).

These transformations are translations T along the x axis and scalings S centered at (x, y) = (0, 0).

1These isometric transformations of H2 have deep significance in physics. They correspond to the most general Lorentz
transformation of space-time.
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(C) (1) Use the invariant quantities (u, v) in (3) as new variables in Hamilton’s principle.

Hint: the transformed Lagrangian is

`(u, v) =
m

2
(u2 + v2) .

(2) Find the corresponding conserved Noether quantities.

(D) Transform the Euler-Lagrange equations from x and y to the variables u and v that are invariant
under the symmetries of the Lagrangian.

Then:

(1) Show that the resulting system conserves the kinetic energy expressed in these variables.

(2) Discuss its integral curves and critical points in the uv plane.

(3) Show that the u and v equations can be integrated explicitly in terms of sech and tanh.

Hint: In the u, v variables, the Euler-Lagrange equations for the Lagrangian (2) are expressed
as

d

dt

u

y
= 0 and

d

dt

v

y
+
u2 + v2

y
= 0 .

Expanding these equations using u = ẋ/y and v = ẏ/y yields

u̇ = uv , v̇ = −u2 (4)

(E) (1) Legendre transform the Lagrangian (2) to the Hamiltonian side, obtain the canonical equations
and

(2) derive the Poisson brackets for the variables u and v. Hint: {ypx, ypy} = ypx.
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Exercise 1.5 (Poisson brackets for the Hopf map)

Figure 2: The Hopf map.

In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is obtained by transforming to the
four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

(A) Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.

(B) Is the transformation (q, p)→ (a, a∗) canonical? Explain why or why not.

Hint: a map (q, p)→ (Q,P ) whose Poisson bracket is {Q,P} = c{q, p} with a constant factor
c is still regarded as being canonical.

(C) Compute the Poisson brackets among Qjk, with j, k = 1, 2.

(D) Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

and compute the Poisson brackets among (X0, X1, X2, X3).

(E) Express the Poisson bracket {F (X), H(X)} in vector form among functions F and H of X =
(X1, X2, X3).

(F) Show that the quadratic invariants (X0, X1, X2, X3) themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?


