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1 M3-4-5A16 Assessed Homework Set # 1 Autumn Term 2018

Exercise 1.1 Compute the Euler-Lagrange equations from Hamilton’s principle for any two of the
first five and any three of the second five of the following simple mechanical systems:

10.

L(¢,q) =T(¢) —V(q) = KE - PE.

. Planar isotropic oscillator, (x,%) € TR?:

L="%2-kx? = %=-w’x with w?=k/m

Planar anisotropic oscillator, (x,%) € TR?:

L:%|5c|2—%1x%—k2—2:c% =  i;=—wly; with w?=k/m i=12

Planar pendulum, (x,%) € TR?, constrained to T'S! = {x,%x € TR?|1 - |x]? =0 & x- % = 0}:
L=2%2-mgé& x—45(1-[x*) = mx=—-mgé(ld—-x®x)— mlx|’x, (gravity &
centripetal force)

Planar pendulum motion lifted to a curve in SO(2): x(t) = O(0(t))xo € ]RQ., O(6(t)) €
SO(2), |xol* = R?, where x(0) = x¢. %(t) = OO~ (t)x = 0(t) &3 x x for (,0) € TSO(2),
L="R%?—-mgR(1—cos) = 0=-w?sinf with w?=g/R

0
t)

Charged particle in a magnetic field, (x,%) € TR?:
L="2%24% Ax) = %= 2%xB with B=cwlA

Kepler problem in Cartesian coordinates, (r,#) € TR?:
L(r,i) = 3|[#> = V(r) with V(r) = —p/r and r := [r| = /T 1. = F+ b =o.

Kepler problem in polar coordinates, (r,7,6, 6?) € TRy x TS |#]2 =72 + 262
L:%<f2+r292)+% = i"':—ﬁ—i—% with J = 720 = const

)

Spherical pendulum (a), (x,%) € TR? on TS? = {(x,%) € TR? : |x| = 1 & x-% = 0}:
L= %P —mgés-x+ bu(l— [xP)

Spherical pendulum (b), set x(t) = O(t)xg, %(t) = O(t)xo for (O, O) € TSO(3), where
xo = x(0) is the initial position of the particle and OT = O~!
. m. . ~ m, - A
L(x.%) = M5~ mges - x = 2Ol ~ mg OT (e -xo.

Setting x(t) = O(t)xo avoids the need for the constraint |x|? = 1, since rotations preserve length.
—

MM+ QxII=—gTxxy with IT:=xyx (2 xx0) = Qx0|? — x0(x0 - Q).
Set g = 0 to get free motion on the sphere. Finally, from its definition, I' := O~!(¢)é3 satisfies

IN=—Or=—Qxr.

Rotating rigid body, ) = 0*10.A6 T(SO(3) ~ s0(3): R )
Q) =10 10 with Qx =0, thatis, —epQ=0;. = IQ+QxIQ=0.
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Exercise 1.2 For the Lagrangians in the previous exercise, compute the Legendre transforms

H(q,p) = (p, 4) — L(¢,¢) =T(p) +V(¢g) = KE + PE

and the canonical Hamiltonian equations for any five of the following simple mechanical systems.

1.

10.

Planar isotropic oscillator, (x,p) € T*R%  H = ;L |p|2 + &|x|?

Planar anisotropic oscillator, (x,p) € T*R?: H = ﬁ]pp ’“21 x? + k22 x5

Planar pendulum in polar coordinates, (6,pp) € T*S': H = ﬁpz + mgR(1 — cos @)

. Planar pendulum, (x,p) € T*R?, constrained to S! = {x € R? : 1 — |x|? = 0}

H = 5 |pl? + mgés - x + 1u(1 — [x2)

Charged particle in a magnetic field, (x,p) € T*R* H = ;-|p — SA(x)]*> p:=0L/0g =
mx + ¢A(x) € T*M

Kepler problem, (r,p,,0,pg) € T*R, xT*S*:  H = pr =t —GMm  with  py = r20 = const

2mr2 r

Free motion on a sphere, (x,p) € T*R3, constrained to S? = {x ¢ R?: 1 — |x|> = 0}:
H = g |pl* — p(1 - |x*)

Spherical pendulum (a), (x,p) € T*R3, constrained to S? = {x € R3: 1 — |x|?> = 0}:
H=3|p+mgés-x—p(l—|x|?)

Spherical pendulum (b), (0, O) € TSO(3), £ = 010 € T(S0(3 ) s0(3), I = 9L/99 €
T*(SO(3) ~s0(3)* ~R® H =1L .T7'II+gT -xo with II= 55 =19 Setg=0 to get
freely rotating rigid body motion.

Rotating rigid body, IT € T*(SO(3) ~ s0(3)* ~R? H = iI1-I'II with II= 885 =IQ.

Exercise 1.3 (Two important examples of Noether’s theorem)

(a) What conservation law does Noether’s theorem imply for symmetries of the action principle given

by 4S = 0 with

b
S:/L(Q(t),q(t),t)dt, for qeR® and L:TR®> =R,

when the Lagrangian L(q(t),q(t),t) is invariant under infinitesimal azimuthal rotations about Z
given by

a(t,e) = q(t) + €z x q(t) + O(e*) so that dq = Z—q =2z x q(t)
€le=0

(b) What additional conservation law is implied by Noether’s theorem when the Lagrangian in the

form L(q(t),q(t)) is translation invariant in time, ¢, so that 0;L = 07
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Exercise 1.4 (The free particle in H?)

f: il -‘.'. L '.Iu.'-'.- T ..'.'.ul' ¥ 'I-".- +' = |" ¥ ik, Y .-."-I' r '.l.| L ‘l_

Figure 1: Geodesics on the Lobachevsky half-plane, H2.
In Appendix I of Arnold’s book, Mathematical Methods of Classical Mechanics, page 303, we read.

EXAMPLE. We consider the upper half-plane y > 0 of the plane of complex numbers
z = x + iy with the metric
9 dz? + dy?

y o
It is easy to compute that the geodesics of this two-dimensional riemannian manifold are
circles and straight lines perpendicular to the x-axis. Linear fractional transformations
with real coefficients

ds

az+b
1
cz+d (1)

are isometric transformations of our manifold (H?), which is called the Lobachevsky plane.!

Consider a free particle of mass m moving on the Lobachevsky half-plane H2. Its Lagrangian is
the kinetic energy corresponding to the Lobachevsky metric. Namely,

L:?(¢2;92>. (2)

(A) (1) Write the fibre derivatives (i.e., the momenta %% and %) of the Lagrangian (2) and
(2) compute its Euler-Lagrange equations.
These equations represent geodesic motion on H?Z.
(3) Evaluate the Christoffel symbols.
Geodesic equations look like G ¢+T§_(q)¢’¢¢ = 0, where I'¢_(q) are the Christoffel symbols.

(B) (1) Show that the quantities

u=" and v="2 (3)
Y Y

are invariant under the quantities (3) are invariant under a subgroup the translations and scalings.

T;: (z,y) = (x +1,9) Flow of Xp = 0., (dz,0y) = (1,0), [Xr,Xs]= Xr.
So i (x,y) — (e7x,€e%y) Flow of Xg = 20, +y0y, (0z,dy) = (x,y).

These transformations are translations 7" along the z axis and scalings S centered at (z,y) = (0,0).

! These isometric transformations of H? have deep significance in physics. They correspond to the most general Lorentz

transformation of space-time.
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(©)

(1) Use the invariant quantities (u,v) in (3) as new variables in Hamilton’s principle.

the transformed Lagrangian is

l(u,v) = %(u2 +0?).

(2) Find the corresponding conserved Noether quantities.

Transform the Euler-Lagrange equations from x and y to the variables v and v that are invariant
under the symmetries of the Lagrangian.

Then:
(1) Show that the resulting system conserves the kinetic energy expressed in these variables.
(2) Discuss its integral curves and critical points in the uv plane.

(3) Show that the u and v equations can be integrated explicitly in terms of sech and tanh.

In the u, v variables, the Euler-Lagrange equations for the Lagrangian (2) are expressed
as

d d 2 2
au_ 0 and eV, utv =0.
dty dty Y
Expanding these equations using u = &/y and v = y/y yields
U =uv, b= —u? (4)

(1) Legendre transform the Lagrangian (2) to the Hamiltonian side, obtain the canonical equations
and

(2) derive the Poisson brackets for the variables v and v. {ypz, ypy} = ype.
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Exercise 1.5 (Poisson brackets for the Hopf map)

Figure 2: The Hopf map.

In coordinates (a1,as) € C%, the Hopf map C%/S* — S3 — S? is obtained by transforming to the
four quadratic S*-invariant quantities

(a1,a2) = Qjk = ajay,, with j k=1,2.
Let the C? coordinates be expressed as
aj = qj +1p;
in terms of canonically conjugate variables satisfying the fundamental Poisson brackets
{qk, Pm} = Opm with k,m =1,2.
(A) Compute the Poisson brackets {a;,ay} for j,k=1,2.

(B) Is the transformation (q,p) — (a,a*) canonical? Explain why or why not.

a map (q,p) — (Q, P) whose Poisson bracket is {Q, P} = ¢{q,p} with a constant factor

c 1s still regarded as being canonical.
(C) Compute the Poisson brackets among Qji, with j, k =1,2.
(D) Make the linear change of variables,

Xo=Qu1 +Q2n, Xi+iXo=2Q12, X3=Q11— Qa,
and compute the Poisson brackets among (Xo, X1, X2, X3).

(E) Express the Poisson bracket {F(X), H(X)} in vector form among functions F and H of X =
(X17X27X3)‘

(F) Show that the quadratic invariants (Xo, X1, Xo, X3) themselves satisfy a quadratic relation.
How is this relevant to the Hopf map?



