## 1 M3-4-5A16 Assessed Homework Set \# 1 Autumn Term 2018

Exercise 1.1 Compute the Euler-Lagrange equations from Hamilton's principle for any two of the first five and any three of the second five of the following simple mechanical systems:

$$
L(q, \dot{q})=T(\dot{q})-V(q)=K E-P E .
$$

1. Planar isotropic oscillator, $(\mathbf{x}, \dot{\mathrm{x}}) \in T \mathbb{R}^{2}$ : $L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}-\frac{k}{2}|\mathbf{x}|^{2} \quad \Longrightarrow \quad \ddot{\mathbf{x}}=-\omega^{2} \mathbf{x} \quad$ with $\quad \omega^{2}=k / m$
2. Planar anisotropic oscillator, $(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{2}$ :
$L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}-\frac{k_{1}}{2} x_{1}^{2}-\frac{k_{2}}{2} x_{2}^{2} \quad \Longrightarrow \quad \ddot{x}_{i}=-\omega_{i}^{2} x_{i} \quad$ with $\quad \omega_{i}^{2}=k_{i} / m \quad i=1,2$
3. Planar pendulum, $(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{2}$, constrained to $T S^{1}=\left\{\mathbf{x}, \dot{\mathbf{x}} \in T \mathbb{R}^{2}\left|1-|\mathbf{x}|^{2}=0 \& \mathbf{x} \cdot \dot{\mathbf{x}}=0\right\}\right.$ : $L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}-m g \hat{\mathbf{e}}_{2} \cdot \mathbf{x}-\frac{\mu}{2}\left(1-|\mathbf{x}|^{2}\right) \Longrightarrow m \ddot{\mathbf{x}}=-m g \hat{\mathbf{e}}_{2}(\operatorname{Id}-\mathbf{x} \otimes \mathbf{x})-m|\dot{\mathbf{x}}|^{2} \mathbf{x}$, (gravity \& centripetal force)
4. Planar pendulum motion lifted to a curve in $S O(2)$ : $\mathbf{x}(t)=O(\theta(t)) \mathbf{x}_{0} \in \mathbb{R}^{2}, \quad O(\theta(t)) \in$ $S O(2), \quad\left|\mathbf{x}_{\mathbf{0}}\right|^{2}=R^{2}$, where $\mathbf{x}(0)=\mathbf{x}_{0} . \dot{\mathbf{x}}(t)=\dot{O} O^{-1}(t) \mathbf{x}=\dot{\theta}(t) \hat{\mathbf{e}}_{3} \times \mathbf{x}$ for $(\theta, \dot{\theta}) \in T S O(2)$, $L=\frac{m}{2} R^{2} \dot{\theta}^{2}-m g R(1-\cos \theta) \quad \Longrightarrow \quad \ddot{\theta}=-\omega^{2} \sin \theta \quad$ with $\quad \omega^{2}=g / R$
5. Charged particle in a magnetic field, $(\mathbf{x}, \dot{\mathrm{x}}) \in T \mathbb{R}^{2}$ : $L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}+\frac{e}{c} \dot{\mathbf{x}} \cdot \mathbf{A}(\mathbf{x}) \quad \Longrightarrow \quad \ddot{\mathbf{x}}=\frac{e}{m c} \dot{\mathbf{x}} \times \mathbf{B} \quad$ with $\quad \mathbf{B}=\operatorname{curl} \mathbf{A}$
6. Kepler problem in Cartesian coordinates, $(\mathbf{r}, \dot{\mathbf{r}}) \in T \mathbb{R}^{3}$ :
$L(\mathbf{r}, \dot{\mathbf{r}})=\frac{1}{2}|\dot{\mathbf{r}}|^{2}-V(r)$ with $V(r)=-\mu / r$ and $r:=|\mathbf{r}|=\sqrt{\mathbf{r} \cdot \mathbf{r}} . \quad \Longrightarrow \quad \ddot{\mathbf{r}}+\frac{\mu \mathbf{r}}{r^{3}}=0$.
7. Kepler problem in polar coordinates, $(r, \dot{r}, \theta, \dot{\theta}) \in T \mathbb{R}_{+} \times T S^{1}:|\dot{\mathbf{r}}|^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$
$L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{\mu}{r} \quad \Longrightarrow \quad \ddot{r}=-\frac{\mu}{r^{2}}+\frac{J^{2}}{r^{3}} \quad$ with $\quad J=r^{2} \dot{\theta}=$ const
8. Spherical pendulum (a), $(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{3}$, on $T S^{2}=\left\{(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{3}:|\mathbf{x}|=1 \& \mathbf{x} \cdot \dot{\mathbf{x}}=0\right\}$ : $L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}-m g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}+\frac{1}{2} \mu\left(1-|\mathbf{x}|^{2}\right)$
9. Spherical pendulum (b), set $\mathbf{x}(t)=O(t) \mathbf{x}_{0}, \quad \dot{\mathbf{x}}(t)=\dot{O}(t) \mathbf{x}_{0} \quad$ for $\quad(O, \dot{O}) \in T S O(3)$, where $\mathbf{x}_{0}=\mathbf{x}(0)$ is the initial position of the particle and $O^{T}=O^{-1}$

$$
L(\mathbf{x}, \dot{\mathbf{x}})=\frac{m}{2}|\dot{\mathbf{x}}|^{2}-m g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}=\frac{m}{2}\left|\dot{O}(t) \mathbf{x}_{0}\right|^{2}-m g O^{T}(t) \hat{\mathbf{e}}_{3} \cdot \mathbf{x}_{0} .
$$

Setting $\mathbf{x}(t)=O(t) \mathbf{x}_{0}$ avoids the need for the constraint $|\mathbf{x}|^{2}=1$, since rotations preserve length. $\Longrightarrow$

$$
\dot{\boldsymbol{\Pi}}+\boldsymbol{\Omega} \times \boldsymbol{\Pi}=-g \boldsymbol{\Gamma} \times \mathbf{x}_{0} \quad \text { with } \quad \boldsymbol{\Pi}:=\mathbf{x}_{0} \times\left(\boldsymbol{\Omega} \times \mathbf{x}_{0}\right)=\boldsymbol{\Omega}\left|\mathbf{x}_{0}\right|^{2}-\mathbf{x}_{0}\left(\mathbf{x}_{0} \cdot \boldsymbol{\Omega}\right) .
$$

Set $g=0$ to get free motion on the sphere. Finally, from its definition, $\boldsymbol{\Gamma}:=O^{-1}(t) \hat{\mathbf{e}}_{3}$ satisfies

$$
\dot{\Gamma}:=-\widehat{\Omega} \boldsymbol{\Gamma}=-\Omega \times \Gamma \text {. }
$$

10. Rotating rigid body, $\widehat{\Omega}=O^{-1} \dot{O} \in T(S O(3) \simeq \mathfrak{s o}(3)$ :
$\ell(\boldsymbol{\Omega})=\frac{1}{2} \boldsymbol{\Omega} \cdot I \boldsymbol{\Omega} \quad$ with $\boldsymbol{\Omega} \times \widehat{\Omega}, \quad$ that is, $\quad-\epsilon_{i j k} \Omega_{k}=\widehat{\Omega}_{i j} . \quad \Longrightarrow \quad I \dot{\boldsymbol{\Omega}}+\boldsymbol{\Omega} \times I \boldsymbol{\Omega}=0$.

Exercise 1.2 For the Lagrangians in the previous exercise, compute the Legendre transforms

$$
H(q, p)=\langle p, \dot{q}\rangle-L(q, \dot{q})=T(p)+V(q)=K E+P E
$$

and the canonical Hamiltonian equations for any five of the following simple mechanical systems.

1. Planar isotropic oscillator, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{2}: \quad H=\frac{1}{2 m}|\mathbf{p}|^{2}+\frac{k}{2}|\mathbf{x}|^{2}$
2. Planar anisotropic oscillator, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{2}: \quad H=\frac{1}{2 m}|\mathbf{p}|^{2}+\frac{k_{1}}{2} x_{1}^{2}+\frac{k_{2}}{2} x_{2}^{2}$
3. Planar pendulum in polar coordinates, $\left(\theta, p_{\theta}\right) \in T^{*} S^{1}: \quad H=\frac{1}{2 m R^{2}} p_{\theta}^{2}+m g R(1-\cos \theta)$
4. Planar pendulum, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{2}$, constrained to $S^{1}=\left\{\mathbf{x} \in \mathbb{R}^{2}: 1-|\mathbf{x}|^{2}=0\right\}$ : $H=\frac{1}{2 m}|\mathbf{p}|^{2}+m g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}+\frac{1}{2} \mu\left(1-|\mathbf{x}|^{2}\right)$
5. Charged particle in a magnetic field, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{2}: \quad H=\frac{1}{2 m}\left|\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x})\right|^{2} \quad \mathbf{p}:=\partial L / \partial \dot{\mathbf{q}}=$ $m \dot{\mathbf{x}}+\frac{e}{c} \mathbf{A}(\mathbf{x}) \in T^{*} M$
6. Kepler problem, $\left(r, p_{r}, \theta, p_{\theta}\right) \in T^{*} \mathbb{R}_{+} \times T^{*} S^{1}: \quad H=\frac{p_{r}^{2}}{2 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}-\frac{G M m}{r} \quad$ with $\quad p_{\theta}=r^{2} \dot{\theta}=$ const
7. Free motion on a sphere, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{3}$, constrained to $S^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3}: 1-|\mathbf{x}|^{2}=0\right\}$ : $H=\frac{1}{2 m}|\mathbf{p}|^{2}-\mu\left(1-|\mathbf{x}|^{2}\right)$
8. Spherical pendulum (a), $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{3}$, constrained to $S^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3}: 1-|\mathbf{x}|^{2}=0\right\}$ :
$H=\frac{1}{2 m}|\mathbf{p}|^{2}+m g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}-\mu\left(1-|\mathbf{x}|^{2}\right)$
9. Spherical pendulum (b), $(O, \dot{O}) \in T S O(3), \widehat{\xi}=O^{-1} \dot{O} \in T(S O(3) \simeq \mathfrak{s o}(3), \boldsymbol{\Pi}=\partial \ell / \partial \boldsymbol{\Omega} \in$ $T^{*}\left(S O(3) \simeq \mathfrak{s o}(3)^{*} \simeq \mathbb{R}^{3} \quad H=\frac{1}{2} \boldsymbol{\Pi} \cdot I^{-1} \boldsymbol{\Pi}+g \boldsymbol{\Gamma} \cdot \mathbf{x}_{0} \quad\right.$ with $\quad \boldsymbol{\Pi}=\frac{\partial \ell}{\partial \boldsymbol{\Omega}}=I \boldsymbol{\Omega}$. Set $g=0$ to get freely rotating rigid body motion.
10. Rotating rigid body, $\boldsymbol{\Pi} \in T^{*}\left(S O(3) \simeq \mathfrak{s o}(3)^{*} \simeq \mathbb{R}^{3} \quad H=\frac{1}{2} \boldsymbol{\Pi} \cdot I^{-1} \boldsymbol{\Pi} \quad\right.$ with $\quad \boldsymbol{\Pi}=\frac{\partial \ell}{\partial \Omega}=I \boldsymbol{\Omega}$.

## Exercise 1.3 (Two important examples of Noether's theorem)

(a) What conservation law does Noether's theorem imply for symmetries of the action principle given by $\delta S=0$ with

$$
\mathbf{S}=\int_{a}^{b} L(\dot{\mathbf{q}}(t), \mathbf{q}(t), t) d t, \quad \text { for } \quad \mathbf{q} \in \mathbb{R}^{3} \quad \text { and } \quad L: T \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

when the Lagrangian $L(\dot{\mathbf{q}}(t), \mathbf{q}(t), t)$ is invariant under infinitesimal azimuthal rotations about $\hat{\mathbf{z}}$ given by

$$
\mathbf{q}(t, \epsilon)=\mathbf{q}(t)+\epsilon \hat{\mathbf{z}} \times \mathbf{q}(t)+O\left(\epsilon^{2}\right) \quad \text { so that } \quad \delta \mathbf{q}=\left.\frac{d \mathbf{q}}{d \epsilon}\right|_{\epsilon=0}=\hat{\mathbf{z}} \times \mathbf{q}(t)
$$

(b) What additional conservation law is implied by Noether's theorem when the Lagrangian in the form $L(\dot{\mathbf{q}}(t), \mathbf{q}(t))$ is translation invariant in time, $t$, so that $\partial_{t} L=0$ ?

## Exercise 1.4 (The free particle in $\mathbb{H}^{2}$ )



Figure 1: Geodesics on the Lobachevsky half-plane, $\mathbb{H}^{2}$.
In Appendix I of Arnold's book, Mathematical Methods of Classical Mechanics, page 303, we read.
EXAMPLE. We consider the upper half-plane $y>0$ of the plane of complex numbers $z=x+i y$ with the metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are circles and straight lines perpendicular to the $x$-axis. Linear fractional transformations with real coefficients

$$
\begin{equation*}
z \rightarrow \frac{a z+b}{c z+d} \tag{1}
\end{equation*}
$$

are isometric transformations of our manifold $\left(\mathbb{H}^{2}\right)$, which is called the Lobachevsky plane. ${ }^{1}$
Consider a free particle of mass $m$ moving on the Lobachevsky half-plane $\mathbb{H}^{2}$. Its Lagrangian is the kinetic energy corresponding to the Lobachevsky metric. Namely,

$$
\begin{equation*}
L=\frac{m}{2}\left(\frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}}\right) \tag{2}
\end{equation*}
$$

(A) (1) Write the fibre derivatives (i.e., the momenta $\frac{\partial L}{\partial \check{x}}$ and $\frac{\partial L}{\partial \dot{y}}$ ) of the Lagrangian (2) and
(2) compute its Euler-Lagrange equations.

These equations represent geodesic motion on $\mathbb{H}^{2}$.
(3) Evaluate the Christoffel symbols.

Hint: Geodesic equations look like $\ddot{q}^{c}+\Gamma_{b e}^{c}(q) \dot{q}^{b} \dot{q}^{e}=0$, where $\Gamma_{b e}^{c}(q)$ are the Christoffel symbols.
(B) (1) Show that the quantities

$$
\begin{equation*}
u=\frac{\dot{x}}{y} \quad \text { and } \quad v=\frac{\dot{y}}{y} \tag{3}
\end{equation*}
$$

are invariant under the quantities (3) are invariant under a subgroup the translations and scalings.

$$
\begin{aligned}
T_{\tau}:(x, y) \mapsto(x+\tau, y) & \text { Flow of } X_{T}=\partial_{x}, \quad(\delta x, \delta y)=(1,0), \quad\left[X_{T}, X_{S}\right]=X_{T} \\
S_{\sigma}:(x, y) \mapsto\left(e^{\sigma} x, e^{\sigma} y\right) & \text { Flow of } X_{S}=x \partial_{x}+y \partial_{y}, \quad(\delta x, \delta y)=(x, y)
\end{aligned}
$$

These transformations are translations $T$ along the $x$ axis and scalings $S$ centered at $(x, y)=(0,0)$.

[^0](C) (1) Use the invariant quantities $(u, v)$ in (3) as new variables in Hamilton's principle.

Hint: the transformed Lagrangian is

$$
\ell(u, v)=\frac{m}{2}\left(u^{2}+v^{2}\right) .
$$

(2) Find the corresponding conserved Noether quantities.
(D) Transform the Euler-Lagrange equations from $x$ and $y$ to the variables $u$ and $v$ that are invariant under the symmetries of the Lagrangian.
Then:
(1) Show that the resulting system conserves the kinetic energy expressed in these variables.
(2) Discuss its integral curves and critical points in the $u v$ plane.
(3) Show that the $u$ and $v$ equations can be integrated explicitly in terms of sech and tanh.

Hint: In the $u, v$ variables, the Euler-Lagrange equations for the Lagrangian (2) are expressed as

$$
\frac{d}{d t} \frac{u}{y}=0 \quad \text { and } \quad \frac{d}{d t} \frac{v}{y}+\frac{u^{2}+v^{2}}{y}=0
$$

Expanding these equations using $u=\dot{x} / y$ and $v=\dot{y} / y$ yields

$$
\begin{equation*}
\dot{u}=u v, \quad \dot{v}=-u^{2} \tag{4}
\end{equation*}
$$

(E) (1) Legendre transform the Lagrangian (2) to the Hamiltonian side, obtain the canonical equations and
(2) derive the Poisson brackets for the variables $u$ and $v$. Hint: $\left\{y p_{x}, y p_{y}\right\}=y p_{x}$.

## Exercise 1.5 (Poisson brackets for the Hopf map)



Figure 2: The Hopf map.
In coordinates $\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2}$, the Hopf map $\mathbb{C}^{2} / S^{1} \rightarrow S^{3} \rightarrow S^{2}$ is obtained by transforming to the four quadratic $S^{1}$-invariant quantities

$$
\left(a_{1}, a_{2}\right) \rightarrow Q_{j k}=a_{j} a_{k}^{*}, \quad \text { with } \quad j, k=1,2 .
$$

Let the $\mathbb{C}^{2}$ coordinates be expressed as

$$
a_{j}=q_{j}+i p_{j}
$$

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

$$
\left\{q_{k}, p_{m}\right\}=\delta_{k m} \quad \text { with } \quad k, m=1,2
$$

(A) Compute the Poisson brackets $\left\{a_{j}, a_{k}^{*}\right\}$ for $j, k=1,2$.
(B) Is the transformation $(q, p) \rightarrow\left(a, a^{*}\right)$ canonical? Explain why or why not.

Hint: a map $(q, p) \rightarrow(Q, P)$ whose Poisson bracket is $\{Q, P\}=c\{q, p\}$ with a constant factor $c$ is still regarded as being canonical.
(C) Compute the Poisson brackets among $Q_{j k}$, with $j, k=1,2$.
(D) Make the linear change of variables,

$$
X_{0}=Q_{11}+Q_{22}, \quad X_{1}+i X_{2}=2 Q_{12}, \quad X_{3}=Q_{11}-Q_{22}
$$

and compute the Poisson brackets among $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$.
(E) Express the Poisson bracket $\{F(\mathbf{X}), H(\mathbf{X})\}$ in vector form among functions $F$ and $H$ of $\mathbf{X}=$ $\left(X_{1}, X_{2}, X_{3}\right)$.
(F) Show that the quadratic invariants $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?


[^0]:    ${ }^{1}$ These isometric transformations of $\mathbb{H}^{2}$ have deep significance in physics. They correspond to the most general Lorentz transformation of space-time.

