1 M345 PA16 Assessed Coursework \#1

Exercise 1.1 Compute the Euler-Lagrange equations from Hamilton's principle for the following two simple mechanical systems: $L(q, \dot{q})=T(\dot{q})-V(q)=K E-P E$.

1. Charged particle in a magnetic field, $(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{2}$:

$$
L=\frac{m}{2}|\dot{\mathbf{x}}|^{2}+\frac{e}{c} \dot{\mathbf{x}} \cdot \mathbf{A}(\mathbf{x}) \quad \Longrightarrow \quad \ddot{\mathbf{x}}=\frac{e}{m c} \dot{\mathbf{x}} \times \mathbf{B} \quad \text { with } \quad \mathbf{B}=\operatorname{curl} \mathbf{A}
$$

2. Spherical pendulum: $L(\mathbf{x}, \dot{\mathbf{x}})=\frac{1}{2}|\dot{\mathbf{x}}|^{2}-g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}$ with $(\mathrm{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{3}$, constrained to $T S^{2}=\{\mathbf{x}, \dot{\mathbf{x}} \in$ $T \mathbb{R}^{3}\left|1-|\mathbf{x}|^{2}=0 \& \mathbf{x} \cdot \dot{\mathbf{x}}=0\right\}$.
One may transform motion in $(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{3}$ to motion on $T S^{2}$, by noticing that rotations in $S O(3)$ leave the sphere invariant. Thus, motion on the unit sphere may be expressed as motion on $S O(3)$ starting from an initial point \mathbf{x}_{0} with $\left|\mathbf{x}_{0}\right|^{2}=1$. Namely,

$$
\mathbf{x}(t)=O(t) \mathbf{x}_{0}, \quad \dot{\mathbf{x}}(t)=\dot{O}(t) \mathbf{x}_{0} \quad \text { for } \quad(O, \dot{O}) \in T S O(3),
$$

where $\mathbf{x}_{0}=\mathbf{x}(0)$ is the initial position of the pendulum bob and $O^{T}=O^{-1}$.
(a) Notice that the Lagrangian for the spherical pendulum is not invariant under the full $S O(3)$. This is because the presence of gravity breaks the symmetry of the Lagrangian from $S O(3)$ to the $S O(2)$ subgroup of rotations around the vertical direction, $\hat{\mathbf{e}}_{3}$. What to do? We will need to keep track of the evolution of $\boldsymbol{\Gamma}(t):=O^{-1}(t) \hat{\mathbf{e}}_{3}$, which is the vertical direction, as seen from the direction of the pendulum bob.
Compute the equation of motion for $\boldsymbol{\Gamma}(t)$.
(b) Transform the Lagrangian for the spherical pendulum from $T \mathbb{R}^{3}$ to $T_{e} S O(3) \simeq \mathfrak{s o}(3)$.

$$
\begin{align*}
L(\mathbf{x}, \dot{\mathbf{x}}) & =\frac{1}{2}|\dot{\mathbf{x}}|^{2}-g \hat{\mathbf{e}}_{3} \cdot \mathbf{x}=\frac{1}{2}\left|\dot{O}(t) \mathbf{x}_{0}\right|^{2}-g O^{T}(t) \hat{\mathbf{e}}_{3} \cdot \mathbf{x}_{0}=: L\left(O(t), \dot{O}(t) ; \hat{\mathbf{e}}_{3}\right) \\
& =\frac{1}{2}\left|O^{-1} \dot{O}(t) \mathbf{x}_{0}\right|^{2}-g\left(O^{-1}(t) \hat{\mathbf{e}}_{3}\right) \cdot \mathbf{x}_{0}=: L\left(O^{-1} \dot{O}(t) ; O^{-1} \hat{\mathbf{e}}_{3}\right) \tag{1}
\end{align*}
$$

Setting $\mathbf{x}(t)=O(t) \mathbf{x}_{0}$ avoids the need for the constraint $|\mathbf{x}|^{2}=1$, since rotations preserve length. However, the presence of gravity requires an equation for $\boldsymbol{\Gamma}(t)=O^{-1} \hat{\mathbf{e}}_{3}$.
(c) For $O^{-1} \dot{O}(t):=\widehat{\Omega}(t)=\boldsymbol{\Omega}(t) \times$ (by the hat map $\widehat{\Omega}_{i j}=-\epsilon_{i j k} \Omega_{k}$) and defining $\boldsymbol{\Gamma}(t):=$ $\left.O^{-1}(t) \hat{\mathbf{e}}_{3}\right)$, show that

$$
\begin{align*}
L\left(I d, O^{-1} \dot{O}(t) ; O^{-1} \mathbf{x}_{0}\right) & =\frac{1}{2}\left|\widehat{\Omega}(t) \mathbf{x}_{0}\right|^{2}-g\left(O^{-1}(t) \hat{\mathbf{e}}_{3}\right) \cdot \mathbf{x}_{0} \tag{2}\\
& =\frac{1}{2}\left|\boldsymbol{\Omega}(t) \times \mathbf{x}_{0}\right|^{2}-g \boldsymbol{\Gamma}(t) \cdot \mathbf{x}_{0}=: \ell(\boldsymbol{\Omega}(t), \boldsymbol{\Gamma}(t)) .
\end{align*}
$$

(d) From its definition $\boldsymbol{\Gamma}:=O^{-1}(t) \hat{\mathbf{e}}_{3}$ show that $\boldsymbol{\Gamma}$ satisfies

$$
\dot{\boldsymbol{\Gamma}}:=-\widehat{\Omega} \boldsymbol{\Gamma}=-\boldsymbol{\Omega} \times \boldsymbol{\Gamma} \quad \text { and } \quad \delta \boldsymbol{\Gamma}=-\widehat{\Xi} \boldsymbol{\Gamma}=-\boldsymbol{\Xi} \times \boldsymbol{\Gamma},
$$

with $\widehat{\Xi}=O^{-1} \delta O=\boldsymbol{\Xi} \times$.
(e) From their definitions $\widehat{\Omega}:=O^{-1} \dot{O}=\boldsymbol{\Omega} \times$ and $\widehat{\Xi}=O^{-1} \delta O=\boldsymbol{\Xi} \times$ show that $\widehat{\Omega}$ and $\widehat{\Xi}$ satisfy

$$
\delta \widehat{\Omega}=\frac{d \widehat{\Xi}}{d t}+[\widehat{\Omega}, \widehat{\Xi}], \quad \delta \boldsymbol{\Omega}=\frac{d \boldsymbol{\Xi}}{d t}+\boldsymbol{\Omega} \times \boldsymbol{\Xi}
$$

(f) Define

$$
\boldsymbol{\Pi}(t):=\frac{\partial \ell}{\partial \boldsymbol{\Omega}}=\mathbf{x}_{0} \times\left(\boldsymbol{\Omega}(t) \times \mathbf{x}_{0}\right) .
$$

and use Hamilton's principle with the reduced Lagrangian $0=\delta S_{r e d}=\delta \int_{a}^{b} \ell(\boldsymbol{\Omega}(t), \boldsymbol{\Gamma}(t)) d t$ to derive the following motion equation for the spherical pendulum

$$
\dot{\boldsymbol{\Pi}}+\boldsymbol{\Omega} \times \boldsymbol{\Pi}=g \boldsymbol{\Gamma} \times \mathbf{x}_{0}, \quad \text { with auxiliary equation } \quad \dot{\boldsymbol{\Gamma}}=-\boldsymbol{\Omega} \times \boldsymbol{\Gamma} .
$$

Note that these equations can be written in matrix operator form as

$$
\frac{d}{d t}\left[\begin{array}{c}
\boldsymbol{\Pi} \\
\boldsymbol{\Gamma}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\Pi} \times & \boldsymbol{\Gamma} \times \\
\boldsymbol{\Gamma} \times & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\Omega} \\
g \mathbf{x}_{0}
\end{array}\right] .
$$

We will see this pattern again when we write these equations in Hamiltonian form as

$$
\frac{d}{d t}\left[\begin{array}{c}
\boldsymbol{\Pi} \\
\boldsymbol{\Gamma}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{\Pi} \times & \boldsymbol{\Gamma} \times \\
\boldsymbol{\Gamma} \times & 0
\end{array}\right]\left[\begin{array}{c}
\partial h / \partial \boldsymbol{\Pi} \\
\partial h / \partial \boldsymbol{\Gamma}
\end{array}\right] .
$$

Exercise 1.2

(a) Compute the Legendre transforms

$$
\begin{array}{r}
p:=\frac{\partial L}{\partial \dot{q}}, \quad H(q, p)=\langle p, \dot{q}\rangle-L(q, \dot{q}) \\
\boldsymbol{\Pi}:=\frac{\partial \ell}{\partial \boldsymbol{\Omega}}, \quad h(\boldsymbol{\Pi}, \boldsymbol{\Gamma})=\langle\boldsymbol{\Pi}, \boldsymbol{\Omega}\rangle-\ell(\boldsymbol{\Omega}, \boldsymbol{\Xi})
\end{array}
$$

for the two simple mechanical systems in Exercise 1.1.
(b) Compute the Hamiltonian equations for each system and show equivalence with their corresponding Euler-Lagrange equations.

1. Charged particle in a magnetic field, $(\mathbf{x}, \mathbf{p}) \in T^{*} \mathbb{R}^{2}: \quad H=\frac{1}{2 m}\left|\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x})\right|^{2} \quad \mathbf{p}:=\partial L / \partial \dot{\mathbf{x}}=$ $m \dot{\mathbf{x}}+\frac{e}{c} \mathbf{A}(\mathbf{x}) \in T^{*} M$
2. Spherical pendulum, $(O, \dot{O}) \in T S O(3), \widehat{\Omega}=O^{-1} \dot{O} \in T(S O(3) \simeq \mathfrak{s o}(3), \boldsymbol{\Pi}=\partial \ell / \partial \boldsymbol{\Omega} \in$ $T^{*}\left(S O(3) \simeq \mathfrak{s o}(3)^{*} \simeq \mathbb{R}^{3}, \quad H=\frac{1}{2} \boldsymbol{\Pi} \cdot I^{-1} \boldsymbol{\Pi}+g \boldsymbol{\Gamma} \cdot \mathbf{x}_{0} \quad\right.$ with $\quad \boldsymbol{\Pi}:=\frac{\partial \ell}{\partial \boldsymbol{\Omega}}=I \boldsymbol{\Omega}$ and $\boldsymbol{\Gamma}(t)=O^{-1} \hat{\mathbf{e}}_{3}$. This is done most easily from the symmetry reduced Hamilton's principle with Frobenius pairing of matrices $\langle A, B\rangle=\frac{1}{2} \operatorname{tr}\left(A^{T} B\right)$,

$$
0=\delta S_{\text {red }}=\delta \int_{a}^{b}\left\langle\widehat{\Pi}, O^{-1} \dot{O}\right\rangle-h\left(\widehat{\Pi}, O^{-1}(t) \hat{\mathbf{e}}_{3}\right) d t
$$

One first shows that

$$
\delta\left(O^{-1} \dot{O}\right)=\frac{d}{d t} \widehat{\Xi}+[\widehat{\Omega}, \widehat{\Xi}] \quad \text { and } \quad \delta\left(O^{-1}(t) \hat{\mathbf{e}}_{3}\right)_{i}=-\widehat{\Xi}_{i j} \Gamma^{j}=-(\boldsymbol{\Xi} \times \boldsymbol{\Gamma})_{i}
$$

Then, after using the hat map to prove $\langle\widehat{\Pi},[\widehat{\Omega}, \widehat{\widehat{\Xi}}]\rangle=\boldsymbol{\Pi} \cdot(\boldsymbol{\Omega} \times \boldsymbol{\Xi})$, one finds

$$
\begin{gathered}
\delta \boldsymbol{\Omega}=\frac{d \boldsymbol{\Xi}}{d t}+\boldsymbol{\Omega} \times \boldsymbol{\Xi} \\
0=\delta S_{r e d}=\int_{a}^{b}\left(\delta \boldsymbol{\Pi} \cdot\left(\boldsymbol{\Omega}-\frac{\partial h}{\partial \boldsymbol{\Pi}}\right)+\boldsymbol{\Pi} \cdot\left(\frac{d \boldsymbol{\Xi}}{d t}+\boldsymbol{\Omega} \times \boldsymbol{\Xi}\right)+\frac{\partial h}{\partial \boldsymbol{\Gamma}} \cdot(\boldsymbol{\Xi} \times \boldsymbol{\Gamma})\right) d t
\end{gathered}
$$

Show by integrating by parts and rearranging to factor out $\boldsymbol{\Xi}$ that this version of Hamilton's principle recovers the last matrix equation appearing in the previous exercise.
Compute the corresponding Lie-Poisson bracket by contracting that matrix equation with the covector of derivatives $(\partial f / \partial \boldsymbol{\Pi}, \partial h / \partial \boldsymbol{\Gamma})$ to compute $d f(\boldsymbol{\Pi}, \boldsymbol{\Gamma}) / d t=\{f, h\}(\boldsymbol{\Pi}, \boldsymbol{\Gamma})$.

