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1 M345 PA16 Assessed Coursework #1 Spring Term 2020

Exercise 1.1 Compute the Euler-Lagrange equations from Hamilton’s principle for the following
two simple mechanical systems: L(q, q̇) = T (q̇)− V (q) = KE − PE.

1. Charged particle in a magnetic field, (x, ẋ) ∈ TR2:
L = m

2 |ẋ|
2 + e

c ẋ ·A(x) =⇒ ẍ = e
mc ẋ×B with B = curl A

2. Spherical pendulum: L(x, ẋ) = 1
2 |ẋ|

2 − g ê3 · x with (x, ẋ) ∈ TR3, constrained to TS2 = {x, ẋ ∈
TR3| 1− |x|2 = 0 & x · ẋ = 0}.
One may transform motion in (x, ẋ) ∈ TR3 to motion on TS2, by noticing that rotations in
SO(3) leave the sphere invariant. Thus, motion on the unit sphere may be expressed as motion
on SO(3) starting from an initial point x0 with |x0|2 = 1. Namely,

x(t) = O(t)x0 , ẋ(t) = Ȯ(t)x0 for (O, Ȯ) ∈ TSO(3) ,

where x0 = x(0) is the initial position of the pendulum bob and OT = O−1.

(a) Notice that the Lagrangian for the spherical pendulum is not invariant under the full SO(3).
This is because the presence of gravity breaks the symmetry of the Lagrangian from SO(3)
to the SO(2) subgroup of rotations around the vertical direction, ê3. What to do? We will
need to keep track of the evolution of Γ(t) := O−1(t)ê3, which is the vertical direction, as
seen from the direction of the pendulum bob.

Compute the equation of motion for Γ(t).

(b) Transform the Lagrangian for the spherical pendulum from TR3 to TeSO(3) ' so(3).

L(x, ẋ) =
1

2
|ẋ|2 − g ê3 · x =

1

2
|Ȯ(t)x0|2 − g OT (t)ê3 · x0 =: L(O(t), Ȯ(t); ê3)

=
1

2
|O−1Ȯ(t)x0|2 − g (O−1(t)ê3) · x0 =: L(O−1Ȯ(t);O−1ê3)

(1)

Setting x(t) = O(t)x0 avoids the need for the constraint |x|2 = 1, since rotations preserve
length. However, the presence of gravity requires an equation for Γ(t) = O−1ê3.

(c) For O−1Ȯ(t) := Ω̂(t) = Ω(t)× (by the hat map Ω̂ij = −εijkΩk) and defining Γ(t) :=
O−1(t)ê3), show that

L(Id,O−1Ȯ(t);O−1x0) =
1

2
|Ω̂(t)x0|2 − g (O−1(t)ê3) · x0

=
1

2
|Ω(t)× x0|2 − gΓ(t) · x0 =: `(Ω(t),Γ(t)) .

(2)

(d) From its definition Γ := O−1(t)ê3 show that Γ satisfies

Γ̇ := − Ω̂Γ = −Ω× Γ and δΓ = − Ξ̂ Γ = −Ξ× Γ ,

with Ξ̂ = O−1δO = Ξ×.

(e) From their definitions Ω̂ := O−1Ȯ = Ω× and Ξ̂ = O−1δO = Ξ× show that Ω̂ and Ξ̂ satisfy

δΩ̂ =
dΞ̂

dt
+
[
Ω̂ , Ξ̂

]
, δΩ =

dΞ

dt
+ Ω×Ξ

(f) Define

Π(t) :=
∂`

∂Ω
= x0 ×

(
Ω(t)× x0

)
.
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and use Hamilton’s principle with the reduced Lagrangian 0 = δSred = δ
∫ b
a `(Ω(t),Γ(t)) dt

to derive the following motion equation for the spherical pendulum

Π̇ + Ω×Π = gΓ× x0 , with auxiliary equation Γ̇ = −Ω× Γ .

Note that these equations can be written in matrix operator form as

d

dt

[
Π
Γ

]
=

[
Π× Γ×
Γ× 0

] [
Ω
gx0

]
.

We will see this pattern again when we write these equations in Hamiltonian form as

d

dt

[
Π
Γ

]
=

[
Π× Γ×
Γ× 0

] [
∂h/∂Π
∂h/∂Γ

]
.

Exercise 1.2
(a) Compute the Legendre transforms

p :=
∂L

∂q̇
, H(q, p) = 〈p, q̇〉 − L(q, q̇)

Π :=
∂`

∂Ω
, h(Π, Γ) = 〈Π, Ω〉 − `(Ω,Ξ)

for the two simple mechanical systems in Exercise 1.1.
(b) Compute the Hamiltonian equations for each system and show equivalence with their corre-

sponding Euler-Lagrange equations.

1. Charged particle in a magnetic field, (x,p) ∈ T ∗R2: H = 1
2m |p −

e
cA(x)|2 p := ∂L/∂ẋ =

mẋ + e
cA(x) ∈ T ∗M

2. Spherical pendulum, (O, Ȯ) ∈ TSO(3), Ω̂ = O−1Ȯ ∈ T (SO(3) ' so(3), Π = ∂`/∂Ω ∈
T ∗(SO(3) ' so(3)∗ ' R3 , H = 1

2Π·I−1Π+gΓ·x0 with Π := ∂`
∂Ω = IΩ and Γ(t) = O−1ê3.

This is done most easily from the symmetry reduced Hamilton’s principle with Frobenius pairing
of matrices

〈
A , B

〉
= 1

2tr(ATB),

0 = δSred = δ

∫ b

a

〈
Π̂ , O−1Ȯ

〉
− h(Π̂, O−1(t)ê3) dt .

One first shows that

δ(O−1Ȯ) =
d

dt
Ξ̂ + [Ω̂, Ξ̂] and δ(O−1(t)ê3)i = − Ξ̂ijΓ

j = − (Ξ× Γ)i

Then, after using the hat map to prove
〈
Π̂ , [Ω̂, Ξ̂]

〉
= Π · (Ω×Ξ), one finds

δΩ =
dΞ

dt
+ Ω×Ξ

0 = δSred =

∫ b

a

(
δΠ ·

(
Ω− ∂h

∂Π

)
+ Π ·

(dΞ
dt

+ Ω×Ξ
)

+
∂h

∂Γ
· (Ξ× Γ)

)
dt .

Show by integrating by parts and rearranging to factor out Ξ that this version of Hamilton’s
principle recovers the last matrix equation appearing in the previous exercise.

Compute the corresponding Lie–Poisson bracket by contracting that matrix equation with the
covector of derivatives (∂f/∂Π , ∂h/∂Γ) to compute df(Π, Γ)/dt = {f, h}(Π, Γ).
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