2 M345 PA16 Assessed Coursework \#2

Spring Term 2020

Exercise 2.1 (Classical) Let $y(t)=f(x(t))$ for $x, y \in \mathbb{R}^{n}$ and f a fixed invertible and differentiable coordinate transformation. Define the transformed Lagrangian in Hamilton's principle as

$$
\widetilde{L}(y(t), \dot{y}(t))=L\left(f(x(t)), \frac{d}{d t} f(x(t))\right)
$$

(a) Use Hamilton's principle to derive the Euler-Lagrange equation for $\widetilde{L}(y(t), \dot{y}(t))$.
(b) Use Hamilton's principle to derive the Euler-Lagrange equation for $L\left(f(x(t)), \frac{d}{d t} f(x(t))\right)$.
(c) Show that the Euler-Lagrange equation for $\widetilde{L}(y(t), \dot{y}(t))$ implies the Euler-Lagrange equation for $L\left(f(x(t)), \frac{d}{d t} f(x(t))\right)$. For instance, you could show that δy being arbitrary implies the same for δx, by using the chain rule property of the variational derivative.
(d) Rewrite Hamilton's principle for $\widetilde{L}(y(t), \dot{y}(t))$ by Legendre transforming the Lagrangian $\widetilde{L}(y(t), \dot{y}(t))$ to its corresponding phase-space Lagrangian. Then take variations and derive the symplectic Poisson bracket for the canonical Hamiltonian formulation.
Exercise 2.2 (Geometric) Define the transformed Lagrangian as $\widetilde{L}(y(t), \dot{y}(t))=L\left(g_{t} y_{0}, \dot{g}_{t} y_{0}\right)$, where g_{t} is a time-dependent curve in the $n \times n$ matrix Lie group G, with $g_{0}=I d$.

Assume that the Lagrangian L is invariant under linear transformations defined by the left action of the matrix Lie group G on \mathbb{R}^{n}. This means that

$$
L\left(g_{t} y_{0}, \dot{g}_{t} y_{0}\right)=L\left(y_{0}, g_{t}^{-1} \dot{g}_{t} y_{0}\right)=: \ell\left(g_{t}^{-1} \dot{g}_{t}\right)
$$

for every initial y_{0}. Define $\xi:=g_{t}^{-1} \dot{g}_{t}$ with $\delta \xi=\delta\left(g_{t}^{-1} \dot{g}_{t}\right)$ where $\xi \in \mathfrak{g}$ is an element of the left matrix Lie algebra of the matrix Lie group G.
(a) Derive the Euler-Poincaré equation resulting from Hamilton's principle with action integral

$$
S=\int_{t_{1}}^{t_{2}} \ell(\xi)+\left\langle\mu, g_{t}^{-1} \dot{g}_{t}-\xi\right\rangle d t
$$

where the brackets $\langle\rangle:, \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}$, e.g., $\langle\mu, \xi\rangle:=\frac{1}{2} \operatorname{tr}\left(\mu^{T} \xi\right)$ denote the Frobenius pairing of $n \times n$ matrices $\mu \in \mathfrak{g}^{*}$ and $\xi \in \mathfrak{g}$ and in this pairing μ^{T} is the transpose matrix. In particular,

$$
\delta \ell(\xi)=\left\langle\frac{\delta \ell}{\delta \xi}, \delta \xi\right\rangle=\frac{1}{2} \operatorname{tr}\left({\frac{\delta \ell^{T}}{\delta \xi}}^{\delta \xi}\right) .
$$

Hint: To compute the variation of $\xi=g_{t}^{-1} \dot{g}_{t}$, begin by defining $\nu:=g_{t}^{-1} \delta g_{t}$ and proving that

$$
\delta \xi=\frac{d}{d t} \nu+\xi \nu-\nu \xi=: \frac{d}{d t} \nu+[\xi, \nu]=: \frac{d}{d t} \nu+\operatorname{ad}_{\xi} \nu
$$

where matrix multiplication is denoted by concatenation.
(b) Derive the Euler-Poincaré equation resulting from Hamilton's principle with the phase-space Lagrangian in the action integral

$$
S=\int_{t_{1}}^{t_{2}}\left\langle\mu, g_{t}^{-1} \dot{g}_{t}\right\rangle-h(\mu) d t
$$

(c) From the result of Hamilton's principle with the phase-space Lagrangian, derive the Lie-Poisson bracket for the Hamiltonian formulation on $n \times n$ matrices $\mu \in \mathfrak{g}^{*}$ as a linear functional of the matrix Lie algebra commutator.
(d) Explain why the Lie-Poisson bracket derived in the previous part satisfies the Jacobi condition. Hint: Commutation $[\xi, \nu]:=\xi \nu-\nu \xi$ in the matrix Lie algebra \mathfrak{g} does satisfy the Jacobi condition.

Exercise 2.3 Show that the following operations on vector fields and differential forms are natural under pull-back. Namely,
(a) wedge product: Prove $\phi^{*}(\alpha \wedge \beta)=\alpha \wedge \phi^{*} \beta$ for $\alpha \in \Lambda^{k}(M)$ and $\alpha \in \Lambda^{l}(M), k+l \leq \operatorname{dim} M$.
(b) vector field commutator: Prove $c_{t}^{*}[Q, R]=\left[c_{t}^{*} Q, c_{t}^{*} R\right]$ in which the transformation between the vector fields is $R=c^{*} Q$.
For this proof, it may be useful to review the meaning of the notation $(Q h) \circ c=R(h \circ c)$ by redoing the calculus manipulation done in class, which was as a direct change of variables

$$
Q=f^{i}(q) \frac{\partial}{\partial q^{i}} \quad \mapsto \quad R=g^{j}(r) \frac{\partial}{\partial r^{j}} \quad \text { with } \quad g^{j}(r) \frac{\partial c^{i}}{\partial r^{j}}=f^{i}(c(r)) \quad \text { or } \quad g=c_{r}^{-1} f \circ c,
$$

obtained by substituting $q=c(r)$ into the operation of the vector field Q on a function h, as

$$
(Q h) \circ c=c^{*}(Q h)=\frac{\partial h(c(r))}{\partial r^{j}}\left(\left[\frac{\partial c}{\partial r}\right]^{-1}\right)_{i}^{j} f^{i}(c(r))=g_{j}(r) \frac{\partial h((c(r))}{\partial r^{j}}=R(h \circ c) .
$$

(c) differential: Prove $\phi^{*}(d \alpha)=d\left(\phi^{*} \alpha\right)$ for $\alpha \in \Lambda(M)$ and $k<\operatorname{dim} M$. What happens if $k=\operatorname{dim} M$?
(d) contraction of a vector field with a differential form:

With $\phi^{*} X(m)=X(\phi(m))$ for a point $m \in M$, as in the calculation above for transforming coordinates in vector fields, prove that

$$
\left.\left.\phi^{*} X\right\lrcorner \phi^{*} \alpha\left(X_{1}, X_{2}, \ldots .\right)=\phi^{*}(X\lrcorner \alpha\right)\left(X_{2}, X_{3}, \ldots\right) .
$$

(e) Lie derivative: Prove that, given the geometric definition of the Lie derivative,

$$
\begin{aligned}
\frac{d}{d t}\left(\phi_{t}^{*} \alpha\right)=\phi_{t}^{*}\left(\mathcal{L}_{X} \alpha\right) & \left.\left.=\phi_{t}^{*}(X\lrcorner d \alpha+d(X\lrcorner \alpha\right)\right) \\
& \left.\left.\left.\left.=\phi_{t}^{*} X\right\lrcorner d \alpha+X\right\lrcorner d\left(\phi_{t}^{*} \alpha\right)+d\left(\phi_{t}^{*} X\right\lrcorner \alpha+X\right\lrcorner \phi_{t}^{*} \alpha\right)
\end{aligned}
$$

where the vector field X is tangent to the flow of ϕ_{t} at the identity $t=0$.

Exercise 2.4

1. The Lie derivative of one vector field by another is called the Jacobi-Lie bracket, defined as

$$
£_{X} Y:=[X, Y]:=(X \cdot \nabla) Y-(Y \cdot \nabla) X=-£_{Y} X
$$

Verify the Jacobi identity for the Jacobi-Lie bracket using streamlined notation

$$
[X, Y]=X(Y)-Y(X),
$$

and invoking bilinearity of the bracket.
2. Verify the following Lie derivative identities by choosing a convenient definition of Lie derivative:
(i) $\left.£_{f X} \alpha=f £_{X} \alpha+d f \wedge(X\lrcorner \alpha\right)$
(ii) $£_{X} d \alpha=d\left(£_{X} \alpha\right)$
(iii) $\left.\left.£_{X}(X\lrcorner \alpha\right)=X\right\lrcorner £_{X} \alpha$
(iv) $\left.\left.\left.£_{X}(Y\lrcorner \alpha\right)=\left(£_{X} Y\right)\right\lrcorner \alpha+Y\right\lrcorner\left(£_{X} \alpha\right)$
(v) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge £_{X} \beta$
3. Verify $\left.\left.[X, Y]\lrcorner \alpha=£_{X}(Y\lrcorner \alpha\right)-Y\right\lrcorner\left(£_{X} \alpha\right)$ and use part 2(iv) to prove the Jacobi identity.
4. From the pull-back formula in part (e) of exercise (2.3), prove that

$$
\begin{aligned}
\mathcal{L}_{X}\left(\mathcal{L}_{Y} \alpha\right) & \left.\left.\left.\left.:=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*}\left(\mathcal{L}_{Y} \alpha\right)\right)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} Y\right\lrcorner d \alpha+Y\right\lrcorner d\left(\phi_{t}^{*} \alpha\right)+d\left(\phi_{t}^{*} Y\right\lrcorner \alpha+Y\right\lrcorner \phi_{t}^{*} \alpha\right)\right) \\
& \left.\left.\left.\left.=\left(\mathcal{L}_{X} Y\right)\right\lrcorner d \alpha+Y\right\lrcorner d\left(\mathcal{L}_{X} \alpha\right)+d\left(\left(\mathcal{L}_{X} Y\right)\right\lrcorner \alpha+Y\right\lrcorner\left(\mathcal{L}_{X} \alpha\right)\right)
\end{aligned}
$$

You can use this identity to challenge your friends to derive calculus identities. Try evaluating with a scalar function, $\alpha=f$ and also a density in $\mathbb{R}^{3}, \alpha=\rho d^{3} x$. If you are brave, try letting α be a 1 -form or a 2 -form in \mathbb{R}^{3}, which will involve all four terms. Check your work with other some of the other students.

