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1. Consider the Poisson bracket defined for smooth real functions F, H of x ∈ R3 by

{F, H}K := −x · K
(
∇F×∇H

)
=: −

〈
x ,

[
∇F , ∇H

]
K

〉
.

Here, KT = K is a symmetric 3× 3 matrix, ∇ = ∂/∂x, the bracket [ · , · ]K denotes[
y, z

]
K

:= K(y × z) for all y, z ∈ R3 ,

and × is the vector cross product on R3.

(a) Determine the family of Casimirs for this Poisson bracket.

(b) Explain how to show that the Poisson bracket {F, H}K satisfies the Jacobi identity.

Hint: Do not verify it directly!

(c) Show that the Hamiltonian vector field XH = { · , H}K for this Poisson bracket is a

divergenceless vector field on R3.

(d) Recall that the commutator of the divergenceless vector fields XF and XH is written

symbolically as

[XF , XH ] = XF XH −XHXF = G(H)−H(G) .

Use this symbolic notation to verify that the commutator of the divergenceless vector

fields satisfies the Jacobi identity.

(e) Put the Poisson bracket {F, H}K into one-to-one correspondence with the

commutator of the corresponding Hamiltonian vector fields XF and XH by proving

the equality

X{F , H} = − [XF , XH ] .

Hint: You may wish to invoke the Jacobi identity.

(f) Use the Poisson bracket {F, H}K to write the equation of motion for x when the

Hamiltonian is H = |x|2/2.

(g) Describe the solutions geometrically in R3.

(h) Explain how these solutions are related to rigid-body motion.
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2. A steady Euler fluid flow in a rotating frame satisfies

£u(v · dx) = − d(p + 1
2
|u|2 − u · v) ,

where £u is Lie derivative with respect to the divergenceless vector field u = u · ∇, with

∇ · u = 0, and v = u + R, with Coriolis parameter curlR = 2Ω.

(a) Write out this Lie-derivative relation in Cartesian coordinates.

(b) By taking the exterior derivative, show that this relation implies that the exact two-

form

curlv d 3x = curlv · ∇ d 3x = curlv · dS = d(v · dx) =: dΞ ∧ dΠ

is invariant under the flow of the divergenceless vector field u.

(c) Show that Cartan’s formula for the Lie derivative in the steady Euler flow condition

implies that

u
(
curlv d 3x

)
= dH(Ξ, Π)

and identify the function H.

(d) Use the result of (2c) to write £uΞ = u · ∇Ξ and £uΠ = u · ∇Ξ in terms of the

partial derivatives of H.

(e) What do the results of (2d) mean geometrically? Hint: Is a symplectic form involved?
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3. (a) Compute the Poisson bracket table among the axisymmetric optical variables

X1 = |q|2 ≥ 0 , X2 = |p|2 ≥ 0 , X3 = p · q ,

with (q,p) ∈ T ∗R2.

(b) Derive the Poisson bracket for smooth functions on R3 by changing variables (q,p) ∈
T ∗R2 → (X1, X2, X3) ∈ R3 by using the chain rule. Show that the result may be

expressed as

dF

dt
= {F, H} = ∇F · ∇S2 ×∇H =

∂F

∂Xk

εklm
∂S2

∂Xl

∂H

∂Xm

. (1)

with

S2 = X1X2 −X2
3 ≥ 0 , (2)

Explain why S2 ≥ 0.

(c) Explain why the Poisson bracket (1) with definition (2) satisfies the Jacobi identity.

(d) Consider the Hamiltonian

H = aY1 + bY2 + cY3 (3)

with the linear combinations

Y1 =
1

2
(X1 + X2) , Y2 =

1

2
(X2 −X1) , Y3 = X3 ,

and constant values of (a, b, c). Compute the motion generated by Hamiltonian (3)

by the Poisson bracket (1) on the space of variables Y ∈ R3. In particular, what is

the motion for (a, b, c) = (1, 0, 0)?
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4. A three dimensional spatial rotation is described by multiplication of a spatial vector by a

3× 3 special orthogonal matrix, denoted O ∈ SO(3),

OT IO = I , so that O−1 = OT and det O = 1 ,

where I is the 3 × 3 identity matrix. Geodesic motion on the space of rotations in three

dimensions may be represented as a curve O(t) ∈ SO(3) depending on time t. Its angular

velocity is defined as the 3× 3 matrix Ω̂,

Ω̂(t) = O−1(t)
dO(t)

dt
=: O−1(t)Ȯ(t) .

(a) Show that Ω̂(t) is skew symmetric. How would this change if I = IT were only a

constant symmetric 3× 3 matrix?

(b) Show that the variational derivative δΩ̂ of the angular velocity Ω̂ = O−1Ȯ satisfies

δΩ̂ =
dΞ̂

dt
+ Ω̂Ξ̂− Ξ̂Ω̂ ,

in which Ξ̂ = O−1δO.

(c) Compute the Euler-Lagrange equations for Hamilton’s principle

δS = 0 with S =

∫
L(Ω̂) dt ,

using the quadratic Lagrangian L : TSO(3) → R,

L(Ω̂) = −1

2
tr(Ω̂AΩ̂) ,

in which A is a symmetric, positive-definite 3× 3 matrix.
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5. The real-valued Maxwell-Bloch system on R3 is given by

ẋ1 = x2 , ẋ2 = x1x3 , ẋ3 = −x1x2 .

(a) Write this system in three-dimensional vector R3-bracket notation as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are two conserved functions. Show that the level sets of one of

these (let it be H2) are parabolic cylinders oriented along the x2-direction.

(b) Restrict the equations and their R3 Poisson bracket to a level set of H2. Show that

the Poisson bracket on the parabolic cylinder H2 = const is symplectic.

(c) Derive the equation of motion on a level set of H2 and express them in the form of

Newton’s Law. Do they reduce to something familiar?

(d) Identify steady solutions and determine which are unstable (saddle points) and which

are stable (centers).
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