Imperial College London

UNIVERSITY OF LONDON

Course:	M3/4A16	
Setter:	Holm	
Checker:	Gibbons	
Editor:	Turaev	
External:		
Date:	14 Feb 2011	

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2011

M3/4A16

Geometric Mechanics I

Setter's signature	Checker's signature	Editor's signature

Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2011

This paper is also taken for the relevant examination for the Associateship.

M3/4A16

Geometric Mechanics I

Date: Time:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. The Fish: A quadratically nonlinear oscillator

Consider the Hamiltonian dynamics on the symplectic manifold of a system with two degrees of freedom. In real phase space variables (x, y, θ, z) , the symplectic form is

$$\omega = dx \wedge dy + d\theta \wedge dz$$

and Hamiltonian is

$$H = \frac{1}{2}y^2 + x\left(\frac{1}{3}x^2 - z\right) - \frac{2}{3}z^{3/2}$$

- (a) Write the canonical Poisson bracket for this system.
- (b) Write Hamilton's canonical equations for this system. Explain how to keep $z \ge 0$, so that H and θ remain real.
- (c) At what values of x, y and H does the system have stationary points in the (x, y) plane?
- (d) Propose a strategy for solving these equations. In what order should they be solved?
- (e) Identify the constants of motion of this system and explain why they are conserved.
- (f) Compute the associated Hamiltonian vector field X_H and show that it satisfies

$$X_H \, \sqcup \, \omega = dH$$

- (g) Write the Poisson bracket that expresses the Hamiltonian vector field X_H as a divergencefree vector field in \mathbb{R}^3 with coordinates $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$. Explain why this Poisson bracket satisfies the Jacobi identity.
- (h) Identify the Casimir function for this \mathbb{R}^3 bracket. Show explicitly that it satisfies the definition of a Casimir function.
- (i) Sketch a graph of the intersections of the level surfaces in \mathbb{R}^3 of the Hamiltonian and Casimir function. Show the directions of flow along these intersections. Identify the locations and types of any relative equilibria at the tangent points of these surfaces.
- (j) Linearise around the relative equilibria on a level set of the Casimir (z), compute the eigenvalues to verify the locations and types of relative equilibria proposed in Part (i).

2. \mathbb{R}^3 bracket for the spherical pendulum.

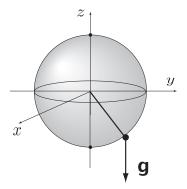


Figure 1: Spherical pendulum in $\mathbf{x} = (x, y, z) \in \mathbb{R}^3$. The mass of the pendulum bob is unity (m = 1).

(a) Derive the motion equation $\ddot{\mathbf{x}} = -g\hat{\mathbf{e}}_3 + \mu\mathbf{x}$ for the spherical pendulum from Hamilton's principle for the Lagrangian $L(\mathbf{x}, \dot{\mathbf{x}}) : T\mathbb{R}^3 \to \mathbb{R}$ given by

$$L(\mathbf{x}, \dot{\mathbf{x}}; \mu) = \frac{1}{2} |\dot{\mathbf{x}}|^2 - g \hat{\mathbf{e}}_3 \cdot \mathbf{x} - \frac{1}{2} \mu (1 - |\mathbf{x}|^2),$$

in which g is the acceleration of gravity, $\hat{\mathbf{e}}_3$ is the vertical unit vector and the Lagrange multiplier μ constrains the motion to remain on the sphere S^2 .

(b) Determine the Lagrange multiplier μ by requiring that these equations preserve the defining conditions for $T\mathbb{S}^2$,

$$T\mathbb{S}^2: \{ (\mathbf{x}, \dot{\mathbf{x}}) \in T\mathbb{R}^3 \mid \|\mathbf{x}\|^2 = 1 \text{ and } \mathbf{x} \cdot \dot{\mathbf{x}} = 0 \} \,,$$

so that $T\mathbb{S}^2$ is an invariant manifold of the equations for a spherical pendulum in \mathbb{R}^3 .

- (c) Show via Noether's theorem that S^1 symmetry of this Lagrangian under rotations about the vertical axis implies conservation of the vertical component of angular momentum. Identify this quantity explicitly.
- (d) Legendre transform the Lagrangian defined on $T\mathbb{R}^3$ to find its constrained Hamiltonian (Routhian) with variables $(\mathbf{x}, \mathbf{y}) \in T^*\mathbb{R}^3$ whose dynamics preserves $T\mathbb{S}^2$.
- (e) A basis of six linear and quadratic forms for S^1 -invariant polynomials in $T^*\mathbb{R}^3/S^1$ is

$$\begin{array}{rcl} \sigma_1 &= x_3 & \sigma_3 &= y_1^2 + y_2^2 + y_3^2 & \sigma_5 &= x_1 y_1 + x_2 y_2 \\ \sigma_2 &= y_3 & \sigma_4 &= x_1^2 + x_2^2 & \sigma_6 &= x_1 y_2 - x_2 y_1 \end{array}$$

These S^1 -invariant variables are not independent. They satisfy a cubic algebraic relation. Find this relation and write the TS^2 constraints in terms of the S^1 invariants.

(f) Write closed Poisson brackets among the six independent linear and quadratic S^{1} -invariant variables

$$\sigma_k \in T^* \mathbb{R}^3 / S^1, \quad k = 1, 2, \dots, 6.$$

M3/4A16 Geometric Mechanics I (2011)

(g) Show that the two quantities

$$\sigma_3(1-\sigma_1^2) - \sigma_2^2 - \sigma_6^2 = 0$$
 and σ_6

are Casimirs for the Poisson brackets on $T^*\mathbb{R}^3/S^1$ found in Part (f).

(h) Use the orbit map $T\mathbb{R}^3 \to \mathbb{R}^6$

$$\pi: (\mathbf{x}, \mathbf{y}) \to \{\sigma_j(\mathbf{x}, \mathbf{y}), j = 1, \dots, 6\}$$

to transform the energy Hamiltonian to $S^1\mbox{-}{\rm invariant}$ variables.

- (i) Write the equations of motion in terms of the variables $\sigma_k \in T^* \mathbb{R}^3 / S^1$, k = 1, 2, 3.
- (j) Reduce the dynamics to single particle motion in a phase plane on level sets of the Hamiltonian in $T^*\mathbb{R}^3/S^1$.

- 3. Poisson brackets for 1:1 invariants
 - (a) Use the canonical Poisson brackets $\{q_i, p_j\} = \delta_{ij}$ to compute the Poisson brackets $\{Y_1, Y_2\}$, etc. among the three S^1 -invariant quadratic phase space functions for a 1:1 resonance

$$Y_1 + iY_2 = 2a_1^*a_2$$
 and $Y_3 = |a_1|^2 - |a_2|^2$, (1)

with $a_k := q_k + ip_k \in \mathbb{C}^1$ for k = 1, 2.

(b) Show that these Poisson brackets may be expressed as a closed system

$$\{Y_i, Y_j\} = c_{ij}^k Y_k, \qquad i, j, k = 1, 2, 3, \tag{2}$$

in terms of these invariants, by computing the coefficients c_{ij}^k .

- (c) Write the Poisson brackets $\{Y_i, Y_j\}$ among these invariants as a 3×3 skew-symmetric table.
- (d) Write the Poisson brackets for functions of these three invariants (Y_1, Y_2, Y_3) as a vector cross product of gradients of functions of $\mathbf{Y} \in \mathbb{R}^3$.
- (e) Take the Poisson brackets of the three invariants (Y_1, Y_2, Y_3) with the function,

$$R = |a_1|^2 + |a_2|^2 \,. \tag{3}$$

Explain your answers geometrically in terms of vectors in \mathbb{R}^3 .

(f) Write the results of applying the Poisson brackets in the form

$$\{\mathbf{a}, Y_k\} = c_k \mathbf{a} \quad k = 1, 2, 3,$$

for $\mathbf{a} = (a_1, a_2)^T \in \mathbb{C}^2$ and 2×2 matrices c_k , with k = 1, 2, 3. Identify the type of matrix that results (symmetric, skew symmetric, etc.) Write a 3×3 skew-symmetric table of their matrix commutation relations $[c_i, c_j]$, etc. Compare it with the table of Poisson brackets $\{Y_i, Y_j\}$ in Part (c).

(g) Show that the flows

$$\phi_k : \mathbf{z}(t) = e^{c_k t} \mathbf{z}(0) = \sum_{n=0}^{\infty} \frac{1}{n!} (c_k t)^n \mathbf{z}(0)$$

of the Hamiltonian vector fields $\{\cdot, Y_k\}$ arising from the three S^1 phase invariant quadratic phase space functions in (1) acting on the phase space vector $\mathbf{a} = (a_1, a_2)^T \in \mathbb{C}^2$ may be written as SU(2) matrix transformations $\mathbf{a}(t) = U(t)\mathbf{a}(0)$, with $U^{\dagger}U = \mathrm{Id}$.

4. Lie derivative relations.

Recall that the pull-back ϕ_t^* of a smooth flow ϕ_t generated by a smooth vector field X defined on a smooth manifold M commutes with exterior derivative, wedge product and contraction. That is, for k-forms $\alpha, \beta \in \Lambda^k(M)$, and $m \in M$, the pull-back ϕ_t^* satisfies

$$\begin{split} d(\phi_t^*\alpha) &= \phi_t^* d\alpha \,, \\ \phi_t^*(\alpha \wedge \beta) &= \phi_t^* \alpha \wedge \phi_t^* \beta \,, \\ \phi_t^*(X(m) \, \lrcorner \, \alpha) &= X(\phi_t(m)) \, \lrcorner \, \phi_t^* \alpha \,. \end{split}$$

Recall that the Lie derivative $\pounds_X \alpha$ of a k-form $\alpha \in \Lambda^k(M)$ by the vector field X tangent to the flow ϕ_t on M is defined as

$$\pounds_X \alpha = \frac{d}{dt} \bigg|_{t=0} (\phi_t^* \alpha) = X \, \sqcup \, d\alpha + d(X \, \sqcup \, \alpha) \, .$$

Verify the following Lie derivative relations:

- (a) $\pounds_{fX} \alpha = f \pounds_X \alpha + df \wedge (X \sqcup \alpha)$
- (b) $\pounds_X d\alpha = d(\pounds_X \alpha)$
- (c) $\pounds_X(X \sqcup \alpha) = X \sqcup \pounds_X \alpha$
- (d) $\pounds_X(Y \sqcup \alpha) = (\pounds_X Y) \sqcup \alpha + Y \sqcup (\pounds_X \alpha)$
- (e) $\pounds_X(\alpha \wedge \beta) = (\pounds_X \alpha) \wedge \beta + \alpha \wedge \pounds_X \beta$
- (f) $[X, Y] \perp \alpha = \pounds_X(Y \perp \alpha) Y \perp (\pounds_X \alpha)$
- (g) Use Part (f) to verify $\pounds_{[X,Y]}\alpha = \pounds_X \pounds_Y \alpha \pounds_Y \pounds_X \alpha$
- (h) Use Part (g) to verify the Jacobi identity for the Lie derivative.