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1. The Fish: A quadratically nonlinear oscillator

Consider the Hamiltonian dynamics on the symplectic manifold of a system with two degrees

of freedom. In real phase space variables (x, y, θ, z), the symplectic form is

ω = dx ∧ dy + dθ ∧ dz

and Hamiltonian is

H = 1
2
y2 + x

(
1
3
x2 − z

)
− 2

3
z3/2

(a) Write the canonical Poisson bracket for this system.

(b) Write Hamilton’s canonical equations for this system. Explain how to keep z ≥ 0, so

that H and θ remain real.

(c) At what values of x, y and H does the system have stationary points in the (x, y)

plane?

(d) Propose a strategy for solving these equations. In what order should they be solved?

(e) Identify the constants of motion of this system and explain why they are conserved.

(f) Compute the associated Hamiltonian vector field XH and show that it satisfies

XH ω = dH

(g) Write the Poisson bracket that expresses the Hamiltonian vector field XH as a

divergencefree vector field in R3 with coordinates x = (x, y, z) ∈ R3. Explain why

this Poisson bracket satisfies the Jacobi identity.

(h) Identify the Casimir function for this R3 bracket. Show explicitly that it satisfies the

definition of a Casimir function.

(i) Sketch a graph of the intersections of the level surfaces in R3 of the Hamiltonian and

Casimir function. Show the directions of flow along these intersections. Identify the

locations and types of any relative equilibria at the tangent points of these surfaces.

(j) Linearise around the relative equilibria on a level set of the Casimir (z), compute the

eigenvalues to verify the locations and types of relative equilibria proposed in Part (i).
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2. R3 bracket for the spherical pendulum.

g

Figure 1: Spherical pendulum in x = (x, y, z) ∈ R3. The mass of the pendulum bob is unity (m = 1).

(a) Derive the motion equation ẍ = −gê3 + µx for the spherical pendulum from

Hamilton’s principle for the Lagrangian L(x, ẋ) : TR3 → R given by

L(x, ẋ;µ) = 1
2
|ẋ|2 − gê3 · x− 1

2
µ(1− |x|2),

in which g is the acceleration of gravity, ê3 is the vertical unit vector and the Lagrange

multiplier µ constrains the motion to remain on the sphere S2.

(b) Determine the Lagrange multiplier µ by requiring that these equations preserve the

defining conditions for TS2,

TS2 : {(x, ẋ) ∈ TR3
∣∣ ‖x‖2 = 1 and x · ẋ = 0} ,

so that TS2 is an invariant manifold of the equations for a spherical pendulum in R3.

(c) Show via Noether’s theorem that S1 symmetry of this Lagrangian under rotations

about the vertical axis implies conservation of the vertical component of angular

momentum. Identify this quantity explicitly.

(d) Legendre transform the Lagrangian defined on TR3 to find its constrained Hamiltonian

(Routhian) with variables (x,y) ∈ T ∗R3 whose dynamics preserves TS2.

(e) A basis of six linear and quadratic forms for S1-invariant polynomials in T ∗R3/S1 is

σ1 = x3 σ3 = y21 + y22 + y23 σ5 = x1y1 + x2y2
σ2 = y3 σ4 = x21 + x22 σ6 = x1y2 − x2y1

These S1-invariant variables are not independent. They satisfy a cubic algebraic

relation. Find this relation and write the TS2 constraints in terms of the S1 invariants.

(f) Write closed Poisson brackets among the six independent linear and quadratic S1-

invariant variables

σk ∈ T ∗R3/S1, k = 1, 2, . . . , 6.
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(g) Show that the two quantities

σ3(1− σ2
1)− σ2

2 − σ2
6 = 0 and σ6

are Casimirs for the Poisson brackets on T ∗R3/S1 found in Part (f).

(h) Use the orbit map TR3 → R6

π : (x,y)→ {σj(x,y), j = 1, . . . , 6}

to transform the energy Hamiltonian to S1-invariant variables.

(i) Write the equations of motion in terms of the variables σk ∈ T ∗R3/S1, k = 1, 2, 3.

(j) Reduce the dynamics to single particle motion in a phase plane on level sets of the

Hamiltonian in T ∗R3/S1.
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3. Poisson brackets for 1:1 invariants

(a) Use the canonical Poisson brackets {qi, pj} = δij to compute the Poisson brackets

{Y1, Y2}, etc. among the three S1-invariant quadratic phase space functions for a 1:1

resonance

Y1 + iY2 = 2a∗1a2 and Y3 = |a1|2 − |a2|2 , (1)

with ak := qk + ipk ∈ C1 for k = 1, 2.

(b) Show that these Poisson brackets may be expressed as a closed system

{Yi, Yj} = ckijYk, i, j, k = 1, 2, 3, (2)

in terms of these invariants, by computing the coefficients ckij.

(c) Write the Poisson brackets {Yi, Yj} among these invariants as a 3×3 skew-symmetric

table.

(d) Write the Poisson brackets for functions of these three invariants (Y1, Y2, Y3) as a

vector cross product of gradients of functions of Y ∈ R3.

(e) Take the Poisson brackets of the three invariants (Y1, Y2, Y3) with the function,

R = |a1|2 + |a2|2 . (3)

Explain your answers geometrically in terms of vectors in R3.

(f) Write the results of applying the Poisson brackets in the form

{ a , Yk} = cka k = 1, 2, 3 ,

for a = (a1, a2)
T ∈ C2 and 2 × 2 matrices ck, with k = 1, 2, 3. Identify the type of

matrix that results (symmetric, skew symmetric, etc.) Write a 3× 3 skew-symmetric

table of their matrix commutation relations [ci, cj], etc. Compare it with the table of

Poisson brackets {Yi, Yj} in Part (c).

(g) Show that the flows

φk : z(t) = ecktz(0) =
∞∑
n=0

1

n!
(ckt)

nz(0)

of the Hamiltonian vector fields { · , Yk} arising from the three S1 phase invariant

quadratic phase space functions in (1) acting on the phase space vector a =

(a1, a2)
T ∈ C2 may be written as SU(2) matrix transformations a(t) = U(t)a(0),

with U †U = Id.
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4. Lie derivative relations.

Recall that the pull-back φ∗t of a smooth flow φt generated by a smooth vector field X

defined on a smooth manifold M commutes with exterior derivative, wedge product and

contraction. That is, for k-forms α, β ∈ Λk(M), and m ∈M , the pull-back φ∗t satisfies

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X(m) α) = X(φt(m)) φ∗tα .

Recall that the Lie derivative £Xα of a k-form α ∈ Λk(M) by the vector field X tangent

to the flow φt on M is defined as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α) .

Verify the following Lie derivative relations:

(a) £fXα = f£Xα + df ∧ (X α)

(b) £Xdα = d
(
£Xα

)
(c) £X(X α) = X £Xα

(d) £X(Y α) = (£XY ) α + Y (£Xα)

(e) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ

(f) [X , Y ] α = £X(Y α)− Y (£Xα)

(g) Use Part (f) to verify £[X ,Y ]α = £X£Y α−£Y£Xα

(h) Use Part (g) to verify the Jacobi identity for the Lie derivative.
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