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Figure 1: Geometric Mechanics has involved many great mathematicians!
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1 Space, Time, Motion, . . . , Symmetry and Dynamics!

Background reading: Chapter 2, [Ho2011GM1].

2 Newton

Isaac Newton

Briefly stated, Newton’s three laws of motion in an inertial frame are:

1. Law of Inertia An object in uniform motion (constant velocity) will
remain in uniform motion unless acted upon by a force.

2. Law of Acceleration Mass times acceleration equals force.

3. Law of Reciprocal Action To every action there is an equal and
opposite reaction.

Newton’s Law of Inertia may be regarded as the definition of an inertial
frame. Newton also introduced the following definitions of space, time and
motion. These definitions are needed to formulate and interpret Newton’s
three laws governing particle motion in an inertial frame.

Definition

2.1 (Space, time, motion).

• Space is three-dimensional. Position in space is located at vector coordinate r ∈ R3, with length |r| = 〈r , r 〉1/2 defined by
the metric pairing denoted 〈 · , · 〉 : R3 × R3 → R.

• Time is one-dimensional. A moment in time occurs at t ∈ R.

• Motion of a single particle in space (R3, fixed orientation) is continuously parameterised by time t ∈ R as a trajectory

M : R3 × R→ R3 , ( r0, t)→ r(t) ,

which maps initial points r0 = r(0) in R3 into curves r(t) ∈ R3 parameterised by time t ∈ R.
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• Velocity is the tangent vector at time t to the particle trajectory, r(t), dr/dt := ṙ ∈ TR3 ' R3 × R3 with coordinates (r, ṙ).

• Acceleration measures how the velocity (tangent vector to trajectory) may also change with time, a := v̇ = r̈ ∈ TTR3 '
R3 × R3 × R3 with coordinates (r, ṙ, r̈).

z

x y

Figure 2: Position r(t) ∈ R3 × R, velocity ṙ(t) ∈ TR3 × R and acceleration r̈(t) ∈ TTR3 × R along a trajectory of motion governed by Newton’s Second
Law, mr̈ = F(r, ṙ).

• Motion of N particles is defined by the one-parameter map,

MN : R3N × R→ R3N .

2.1 Inertial frames and Galilean transformations

Definition

2.2 (Galilean transformations).
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Linear transformations of reference location (r0), origin of time t0, orientation O or state of uniform translation at constant velocity
(v0t) are called Galilean group transformations. They have a matrix representation given byO v0 r0

0 1 t0
0 0 1

r
t
1

 =

Or + v0t+ r0

t+ t0
1

 (2.1)

Definition

2.3 (Group). A group G is a set of elements that possesses a binary product (multiplication), G × G → G, such that the following
properties hold:

• The product gh of g and h is associative, that is, (gh)k = g(hk).

• A unique identity element exists, e : eg = g and ge = g, for all g ∈ G.

• The inverse operation exists, G→ G, so that gg−1 = g−1g = e.

Definition

2.4 (Lie group). A Lie group is a group that depends smoothly on a set of n parameters. That is, a Lie group is both a group
and a smooth manifold (a smooth space that is everywhere locally isomorphic to Rn), for which the group operation is given by
composition of smooth invertible functions.

Proposition

2.5 (Lie group property). Galilean transformations form a Lie group, modulo reflections (which are discrete operations).

Remark

2.6 (Parameters of Galilean transformations). The Galiliean group in three dimensions G(3) has ten parameters

(O ∈ SO(3) , r0 ∈ R3 , v0 ∈ R3 , t0 ∈ R ) .
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Remark

2.7 (Matrix representation of G(3)). The formula for group composition G(3)×G(3)→ G(3) may be represented by matrix multipli-
cation from the left as  Õ ṽ0 r̃0

0 1 t̃0
0 0 1

 O v0 r0

0 1 t0
0 0 1

 =

 ÕO Õv0 + ṽ0 Õr0 + ṽ0t0 + r̃0

0 1 t̃0 + t0
0 0 1

 .

Definition

2.8 (Subgroup). A subgroup is a subset of a group whose elements also satisfy the defining properties of a group.

Exercise. List the subgroups of the Galilean group that do not involve time. F

Answer. The subgroups of the Galilean group that are independent of time consist of

• Spatial translations g1(r0) acting on r as g1(r0)r = r + r0.

• Proper rotations g2(O) with g2(O)r = Or where OT = O−1 and det O = +1. This subgroup is called SO(3), the special orthogonal
group in three dimensions.

• Rotations and reflections g2(O) with OT = O−1 and det O = ±1. This subgroup is called O(3), the orthogonal group in three
dimensions.

• Spatial translations g1(r0) with r0 ∈ R3 compose with proper rotations g2(O) ∈ SO(3) acting on a vector r ∈ R3 as

E(O, r0)r = g1(r0)g2(O)r = Or + r0 ,

where OT = O−1 and det O = +1. This subgroup is called SE(3), the special Euclidean group in three dimensions. Its action on
R3 is written abstractly as SE(3)× R3 → R3.

• Spatial translations g1(r0) compose with proper rotations and reflections g2(O), as g1(r0)g2(O) acting on r. This subgroup is called
E(3), the Euclidean group in three dimensions. N
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Remark

2.9. Spatial translations and rotations do not commute in general. That is, g1g2 6= g2g1, unless the direction of translation and
axis of rotation are collinear.

Remark

2.10 (Group structure of Galilean transformations). The Galilean group is a semidirect-product Lie group, which may be written
as

G(3) = SE(3)sR4 =
(
SO(3)sR3

)
sR4 .

That is, the subgroup of Euclidean motions consisting of rotations and Galilean velocity boosts (O,v0) ∈ SE(3) acts homogeneously
on the subgroups of space and time translations (r0, t0) ∈ R4 which commute with each other.

2.2 Matrix representation of SE(3)

The special Euclidean group in three dimensions SE(3) acts on a position vector r ∈ R3 by

E(O, r0)r = Or + r0 .

A 4× 4 matrix representation of this action may be found by noticing that its right-hand side arises in multiplying the matrix times the
extended vector (r, 1)T as (

O r0

0 1

)(
r
1

)
=

(
Or + r0

1

)
.

Therefore we may identify a group element of SE(3) with a 4× 4 matrix,

E(O, r0) =

(
O r0

0 1

)
.

The group SE(3) has six parameters. These are the angles of rotation about each of the three spatial axes by the orthogonal matrix
O ∈ SO(3) with OT = O−1 and the three components of the vector of translations r0 ∈ R3.

The group composition law for SE(3) is expressed as

E(Õ, r̃0)E(O, r0)r = E(Õ, r̃0)(Or + r0)

= Õ(Or + r0) + r̃0 ,
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with (O , Õ) ∈ SO(3) and (r , r̃0) ∈ R3. This formula for group composition may be represented by matrix multiplication from the left as

E(Õ, r̃0)E(O, r0) =

(
Õ r̃0

0 1

)(
O r0

0 1

)
=

(
ÕO Õr0 + r̃0

0 1

)
,

which may also be expressed by simply writing the top row,

(Õ , r̃0)(O , r0) = (ÕO , Õr0 + r̃0) .

The identity element (e) of SE(3) is represented by

e = E(I,0) =

(
I 0
0 1

)
,

or simply e = (I,0). The inverse element is represented by the matrix inverse

E(O, r0)−1 =

(
O−1 −O−1r0

0 1

)
.

In this matrix representation of SE(3), one checks directly that

E(O, r0)−1E(O, r0) =

(
O−1 −O−1r0

0 1

)(
O r0

0 1

)
=

(
I 0
0 1

)
= (I,0) = e .

In the shorter notation, the inverse may be written as

(O , r0)−1 = (O−1 , −O−1r0)

and O−1 = OT since the 3× 3 matrix O ∈ SO(3) is orthogonal.

Exercise. Compute the matrix representation of the inverse Galilean group transformations. F
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Definition

2.11 (Uniform rectilinear motion).
Coordinate systems related by Galilean transformations are said to be in uniform rectilinear motion relative to each other.

Proposition

2.12 (Existence of inertial frames).
Following Newton, we assume the existence of a preferred reference frame, which Newton called Absolute Space and with respect to
which he formulated his laws. Coordinate systems in uniform rectilinear motion relative to Absolute Space are called inertial frames.

Proposition

2.13 (Principle of Galilean relativity).
The laws of motion are independent of reference location, time, orientation, or state of uniform translation at constant velocity. Hence,
these laws are invariant under Galilean transformations. That is, the laws of motion must have the same form in any inertial frame.

2.3 Newton’s Laws

The definitions of space, time, motion, uniform rectilinear motion and inertial frames provide the terms in which Newton wrote his three
laws of motion. The first two of these may now be written more precisely as [KnHj2001]:

(#1) Law of Inertia An object in uniform rectilinear motion relative to a given inertial frame remains so, unless acted upon by an external
force.

(#2) Law of Acceleration When acted upon by a prescribed external force, F, an object of mass m accelerates according to mr̈ =
F(r, ṙ) relative to a given inertial frame.

Remark

2.14. For several particles, Newton’s Law #2 determines the motion resulting from the prescribed forces Fj as

mj r̈j = Fj(rk − rl, ṙk − ṙl) , with j, k, l = 1, 2, . . . , N, (no sum) .
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This force law is independent of reference location, time or state of uniform translation at constant velocity. It will also be independent
of reference orientation and thus it will be Galilean invariant, provided the forces Fj transform under rotations and parity reflections
as

mjOr̈j = OFj = Fj

(
O(rk − rl), O(ṙk − ṙl)

)
,

for any orthogonal transformation O. (The inverse of an orthogonal transformation is its transpose, O−1 = OT . Such transformations
include rotations and reflections. They preserve both lengths and relative orientations of vectors.)

Exercise. Prove that orthogonal transformations preserve both lengths and relative orientations of vectors.

F

Newton’s Law #3 applies to closed systems.

Definition

2.15 (Closed system).
A system of N material points with masses mj at positions rj, j = 1, 2, . . . , N , acted on by forces Fj is said to be closed if

Fj =
∑
k 6=j

Fjk where Fjk = −Fkj . (2.2)

Remark

2.16. Newton’s law of gravitational force applies to closed systems, since

Fjk =
γ mjmk

|rjk|3
rjk , where rjk = rj − rk , (2.3)

with gravitational constant γ.
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Exercise. Prove that Newton’s law of motion

mj r̈j =
∑
k 6=j

Fjk , (2.4)

with gravitational forces Fjk in (2.3) is Galilean invariant. F

(#3) Law of Reciprocal Actions For closed mechanical systems, action equals reaction. That is,

Fjk = −Fkj . (2.5)

Corollary

2.17 (Action, reaction, momentum conservation). For two particles, action equals reaction implies ṗ1 + ṗ2 = 0, for pj = mjvj
(no sum on j).

Proof. For two particles, ṗ1 + ṗ2 = m1v̇1 +m2v̇2 = F12 + F21 = 0 .

2.4 Dynamical quantities

Definition

2.18 (Dynamical quantities).
The following dynamical quantities are often useful in characterising particle systems:

• Kinetic energy, K = 1
2
m|v|2 ;

• Momentum, p = ∂K/∂v = mv ;

• Moment of inertia, I = m|r|2 = m
〈
r , r

〉
;
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• Centre of mass of a particle system, RCM =
∑

jmjrj/
∑

kmk ;

• Angular momentum, J = r× p .

Proposition

2.19 (Total momentum of a closed system).
Let P =

∑
j pj and F =

∑
j Fj, so that ṗj = Fj. Then Ṗ = F = 0 for a closed system. Thus, a closed system conserves its total

momentum P.

Proof. As for the case of two particles, sum the motion equations and use the definition of a closed system to verify conservation of
its total momentum.

Corollary

2.20 (Uniform motion of centre of mass).
The centre of mass for a closed system is defined as

RCM =
∑
j

mjrj/
∑
k

mk .

Thus, the centre of mass velocity is

VCM = ṘCM =
∑
j

mjvj/M = P/M ,

where M =
∑

kmk is the total mass of the N particles.
For a closed system,

Ṗ = 0 = MR̈CM ,

so the centre of mass for a closed system is in uniform motion. Thus, it defines an inertial frame called the centre-of-mass frame.

Proposition

2.21 (Work rate of a closed system).
Let

K =
1

2

∑
j

mj|vj|2
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be the total kinetic energy of a closed system. Its time derivative is

dK

dt
=
∑
j

〈mjv̇j , vj〉 =
∑
j

〈Fj , vj〉 .

This expression defines the rate at which the forces within the closed system perform work.

Definition

2.22 (Conservative forces).
The forces Fj(r1, . . . rN) for a closed system of N particles are conservative, if∑

j

〈
Fj , drj

〉
= − dV (r1, . . . , rN)

:=
∑
j

〈
− ∂V

∂rj
, drj

〉
, (2.6)

where dV is the differential of a smooth function V : RN → R which called the potential, or potential energy.

Remark

2.23. For conservative forces the potential is independent of the particle velocities. That is, ∂V/∂ṙj = 0 for all j = 1, . . . , N .

Proposition

2.24 (Energy conservation).
If the forces are conservative, then the total energy

E = K + V

is a constant of motion for a closed system.

Proof. This result follows from the definition of work rate of a closed system, so that

dK

dt
=
∑
j

〈
Fj ,

drj
dt

〉
= − dV

dt
, (2.7)

for conservative forces.
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Proposition

2.25 (A class of conservative forces).
Forces that depend only on relative distances between pairs of particles are conservative.

Proof. Suppose Fjk = fjk(|rjk|)ejk with ejk = rjk/|rjk| = ∂|rjk|/∂rjk (no sum). In this case,

〈Fjk , drjk〉 = 〈fjk(|rjk|)ejk , drjk〉
= fjk(|rjk|) d|rjk|

= − dVjk where Vjk = −
∫
fjk(|rjk|)d|rjk| .

Example

2.26 (Conservative force).
The gravitational, or Coulomb force between particles j and k satisfies

Fjk =
γ mjmk

|rjk|3
rjk = − ∂Vjk

∂rjk
,

where

Vjk =
γ mjmk

|rjk|
and rjk = rj − rk ,

so it is a conservative force.

Proposition

2.27 (Total angular momentum).
A closed system of interacting particles conserves its total angular momentum J =

∑
i Ji =

∑
i ri × pi.

Proof. As for the case of two particles, one computes the time derivative for the sum,

J̇ =
∑
i

J̇ i =
∑
i

ṙi × pi +
∑
i

ri × ṗi =
∑
i,j

ri × Fij ,
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since ṗi =
∑

j Fij in the absence of external forces and ṙi × pi vanishes. Rewriting this as a sum over pairs i < j yields

J̇ =
∑
i,j

ri × Fij =
∑
i<j

(ri − rj)× Fij = T .

That is, the total angular momentum is conserved, provided the total torque T vanishes in this equation. When T vanishes, the
total angular momentum J is conserved.

Corollary

2.28 (Conserving total angular momentum).
In particular, Proposition 2.27 implies that total angular momentum J is constant for a closed system of particles interacting via
central forces, for which force Fij is parallel to the inter-particle displacement (ri − rj).

2.5 Newtonian form of free rigid rotation

Definition

2.29. In free rigid rotation, a set of points undergoes rotation about its centre of mass and the pairwise distances between the
points all remain fixed.

A system of coordinates in free rigid motion is stationary in a rotating orthonormal basis. This rotating orthonormal basis is given by

ea(t) = O(t)ea(0) , a = 1, 2, 3, (2.8)

in which O(t) is an orthogonal 3× 3 matrix, so that O−1 = OT . The three unit vectors ea(0) with a = 1, 2, 3, denote an orthonormal basis
for fixed reference coordinates. This basis may be taken as being aligned with any choice of fixed spatial coordinates at the initial time,
t = 0. For example one may choose an initial alignment so that O(0) = Id.

Each point r(t) in rigid motion may be represented in either coordinate basis as

r(t) = rA(t)eA(0) , in the fixed (spatial) basis, (2.9)

= raea(t) , in the rotating (body) basis, (2.10)

and the fixed components ra relative to the rotating basis satisfy ra = δaAr
A(0) for the choice that the two bases are initially aligned.

(Otherwise, δaA is replaced by an orthogonal 3× 3 matrix describing the initial rotational misalignment.) The fixed basis ea(0) is called the
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spatial frame and the rotating basis ea(t) is called the body frame. The components of vectors in the spatial frame are related to those
in the body frame by the mutual rotation of their axes in (2.8) at any time. In particular,

ea(0) = O−1(t)ea(t) , a = 1, 2, 3. (2.11)

Lemma

2.30. The velocity ṙ(t) of a point r(t) in free rigid rotation depends linearly on its position relative to the centre of mass.

Proof. In particular, r(t) = raO(t)ea(0) implies

ṙ(t) = raėa(t) = raȮ(t)ea(0) =: raȮO−1(t)ea(t) =: ω̂(t)r , (2.12)

which is linear in r(t).

Being orthogonal, the matrix O(t) satisfies OOT = Id and one may compute that

0 = (OOT ) ˙ = ȮOT +OȮT

= ȮOT + (ȮOT )T

= ȮO−1 + (ȮO−1)T

= ω̂ + ω̂T .

This computation implies the following.

Lemma

2.31 (Skew symmetry).
The matrix ω̂(t) = ȮO−1(t) in (2.12) is skew symmetric. That is,

ω̂T = − ω̂ .

Definition

2.32 (Hat map for the angular velocity vector).
The skew symmetry of ω̂ allows one to introduce the corresponding angular velocity vector ω(t) ∈ R3 whose components ωc(t),
with c = 1, 2, 3, are given by

(ȮO−1)ab(t) = ω̂ab(t) = − εabc ωc(t) . (2.13)

Equation (2.13) defines the hat map, which is an isomorphism between 3× 3 skew-symmetric matrices and vectors in R3.
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According to this definition, one may write the matrix components of ω̂ in terms of the vector components of ω as

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.14)

and the velocity in space of a point at r undergoing rigid body motion is found by the matrix multiplication ω̂(t)r as

ṙ(t) =: ω̂(t)r =: ω(t)× r . (2.15)

Hence, the velocity of free rigid motion of a point displaced by r from the centre of mass is a rotation in space of r about the time-dependent
angular velocity vector ω(t).

Exercise. Compute the kinetic energy of free rigid motion about the centre of mass of a system of N points of mass mj, with
j = 1, 2, . . . , N , located at distances rj from the centre of mass, as

K =
1

2

∑
j

mj|ṙj|2 =
1

2

∑
j

mj|ω × rj|2 =
1

2
ω · Iω .

Use this expression to define the moment of inertia I of the system of N particles in terms of their masses and distances from
the centre of mass. F

Definition

2.33 (Angular momentum of rigid rotation).
The angular momentum is defined as the derivative of the kinetic energy with respect to angular velocity. In the present case, this
definition produces the linear relation,

J =
∂K

∂ω
= −

N∑
j=1

mjrj ×
(
rj × ω

)
=

N∑
j=1

mj

(
|rj|2Id− rj ⊗ rj

))
ω

=: Iω , (2.16)
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where I is the moment of inertia tensor defined by the kinetic energy of free rotation.

Exercise. Show that the definition of angular momentum J = ∂K/∂ω in (2.16) recovers the previous one J = r × p for a
single rotating particle. F

3 Lagrange

Lagrange

In 1756, at the age of 19, Lagrange sent a letter to Euler in which he
proposed the solution to an outstanding problem dating from antiquity.
The isoperimetric problem solved in Lagrange’s letter may be stated as
follows: Among all closed curves of a given fixed perimeter in the plane,
which curve maximises the area that it encloses? The circle does this.
However, Lagrange’s method of solution was more important than the
answer. Lagrange’s solution to the isoperimetric problem problem laid
down the principles for the calculus of variations and perfected results
which Euler himself had introduced.
Lagrange used the calculus of variations to re-formulate Newtonian me-
chanics as the Euler-Lagrange equations. These equations are covariant:
they take the same form in any coordinate system. Specifically, the Euler-
Lagrange equations appear in the same form in coordinates on any smooth
manifold, that is, on any space that admits the operations of calculus in
local coordinates. This formulation, called Lagrangian mechanics, is also
the language in which mechanics may be extended from finite to infinite
dimensions.
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3.1 Basic definitions for manifolds

Definition

3.1 (Smooth manifold).
A smooth manifold M is a set of points together with a finite (or perhaps countable) set of subsets Uα ⊂ M and 1-to-1 mappings
φα : Uα → Rn such that

1.
⋃
α Uα = M .

2. For every nonempty intersection Uα ∩ Uβ, the set φα (Uα ∩ Uβ) is an open subset of Rn and the 1-to-1 mapping φβ ◦ φ−1
α (called

the transition function) is a smooth function on φα (Uα ∩ Uβ) .

Remark

3.2. As a practical matter, a smooth manifold of dimension k is a space that is locally isomorphic to Rk and admits calculus operations
in its local coordinates. The most common examples of smooth manifolds are smooth curves on the plane (e.g., the circle x2 + y2 = 1)
or curves and surfaces in three-dimensional Euclidean space R3. Riemann’s treatment of the sphere S2 in R3 is a famous example of
how to show that a set of points defines a manifold.

Example

3.3 (Stereographic projection of S2 → R2).
The unit sphere S2 may be defined as a surface in R3 given by the set of points satisfying

S2 = {(x, y, z) : x2 + y2 + z2 = 1} .
The spherical polar angle θ and azimuthal angle φ are often used as coordinates on S2. However, the angle φ cannot be defined uniquely
at the North and South poles, where θ = 0 and θ = π, respectively. Riemann’s treatment used Ptolemy’s stereographic projection to
define two overlapping subsets that satisfied the defining properties of a smooth manifold.

Let UN = S2\{0, 0, 1} and US = S2\{0, 0,−1} be the subsets obtained by deleting the North and South poles of S2, respectively.
The stereographic projections φN and φS from the North and South poles of the sphere onto the equatorial plane, z = 0, are defined
respectively by

φN : UN → ξN + iηN =
x+ iy

1− z
= eiφ cot(θ/2),

and φS : US → ξS + iηS =
x− iy
1 + z

= e−iφ tan(θ/2).
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The union of these two subsets covers S2. On the overlap of their projections, the coordinates (ξN , ηN) ∈ R2 and (ξS, ηS) ∈ R2 are
related by

(ξN + iηN)(ξS + iηS) = 1 .

According to Definition 3.1 these two properties show that S2 ∈ R3 is a smooth manifold.

Exercise. Prove the formulas above for the complex numbers ξN + iηN and ξS + iηS in the stereographic projection. For this,
it may be useful to start with the stereographic projection for the circle. F

N

S

θ/2

Figure 3: In the stereographic projection of the Riemann sphere onto the complex plane from the North pole, complex numbers lying outside (resp., inside)
the unit circle are projected from points in the upper (resp., lower) hemisphere.
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N

S

θ/2

Figure 4: In the stereographic projection of the Riemann sphere onto the complex plane from the South pole, complex numbers lying outside (resp., inside)
the unit circle are also projected from points in the upper (resp., lower) hemisphere.

Definition

3.4 (Submersion).

A subspace M ⊂ Rn may be defined by the intersections of level sets of k smooth relations fi(x) = 0,

M =
{
x ∈ Rn

∣∣fi(x) = 0, i = 1, . . . , k
}
,

with det(∂fi/∂x
a) 6= 0, a = 1, 2, . . . , n, so that the gradients ∂fi/∂x

a are linearly independent. Such a subspace M defined this
way is called a submersion and has dimension dimM = n− k.
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Remark

3.5. A submersion is a particularly convenient type of smooth manifold. As we have seen,the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1} ,

is a smooth two-dimensional manifold realised as a submersion in R3.

Exercise. Prove that all submersions are submanifolds. (For assistance, see Lee [Le2003].) F

Remark

3.6 (Foliation of a manifold). A foliation looks locally like a decomposition of the manifold as a union of parallel sub-
manifolds of smaller dimension. For example, the manifold R3/{0} may be foliated by spheres S2, which make up the leaves of
the foliation. As another example, the two-dimensional R2 leaves of a book in R3 are enumerated by a (one-dimensional) page
number.

Definition

3.7 (Tangent space to level sets).
Suppose the set

M =
{
x ∈ Rn

∣∣fi(x) = 0, i = 1, . . . , k
}

with linearly independent gradients ∂fi/∂x
a, a = 1, 2, . . . , n, is a smooth manifold in Rn. The tangent space at each x ∈ M, is

defined by

TxM =

{
v ∈ Rn

∣∣∣∣ ∂fi∂xa
(x)va = 0, i = 1, . . . , k

}
.

Note: in this expression we introduce the Einstein summation convention. That is, repeated indices are to be summed over
their range.
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Remark

3.8. The tangent space is a linear vector space.

Example

3.9 (Tangent space to the sphere in R3). The sphere S2 is the set of points (x, y, z) ∈ R3 solving x2 + y2 + z2 = 1. The
tangent space to the sphere at such a point (x, y, z) is the plane containing vectors (u, v, w) satisfying xu+ yv + zw = 0.

Definition

3.10 (Tangent bundle). The tangent bundle of a smooth manifold M , denoted by TM , is the smooth manifold whose
underlying set is the disjoint union of the tangent spaces to M at the points q ∈M ; that is,

TM =
⋃
q∈M

TqM

Thus, a point of TM is a vector v which is tangent to M at some point q ∈M .

Example

3.11 (Tangent bundle TS2 of S2). The tangent bundle TS2 of S2 ∈ R3 is the union of the tangent spaces of S2:

TS2 =
{

(x, y, z;u, v, w) ∈ R6
∣∣ x2 + y2 + z2 = 1, xu+ yv + zw = 0

}
.

Remark

3.12 (Dimension of tangent bundle TS2). Defining TS2 requires two independent conditions in R6; so dimTS2 = 4.

Exercise. Define the sphere Sn−1 in Rn. What is the dimension of its tangent space TSn−1? F
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Example

3.13 (Tangent bundle TS1 of the circle S1).
The tangent bundle of the unit circle parameterised by an angle θ may be imagined in three dimensions as the union of the circle with
a one-dimensional vector space of line vectors (the velocities θ̇) sitting over each point on the circle, shown in Figure 5.

Figure 5: The tangent bundle TS1 of the circle S1 with coordinates (θ, θ̇) is the union of the circle with a one-dimensional vector space of line vectors (the
angular velocities).

Definition

3.14 (Vector fields).
A vector field X on a manifold M is a map X : M → TM that assigns a vector X(q) at every point q ∈ M . The real vector space
of vector fields on a manifold M is denoted by X(M).

Definition

3.15. A time-dependent vector field is a map
X : M × R→ TM
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such that X(q, t) ∈ TqM for each q ∈M and t ∈ R.

Definition

3.16 (Integral curves).
An integral curve of vector field X(q) with initial condition q0 is a differentiable map q : ]t1, t2[→ M such that the open interval
]t1, t2[ contains the initial time t = 0, at which q(0) = q0 and the tangent vector coincides with the vector field

q̇(t) = X(q(t))

for all t ∈ ]t1, t2[.

Remark

3.17. In what follows we shall always assume we are dealing with vector fields that satisfy the conditions required for their inte-
gral curves to exist and be unique.

Definition

3.18 (Vector basis).
As in (3.4) a vector field q̇ is defined by the components of its directional derivatives in the chosen coordinate basis, so that, for
example,

q̇ = q̇a
∂

∂qa
(vector basis). (3.1)

In this vector basis, the vector field q̇ has components q̇a, a = 1, . . . , K.

Definition

3.19 (Fibres of the tangent bundle).
The velocity vectors (q̇1, q̇2, . . . , q̇K) in the tangent spaces TqM to M at the points q ∈ M in the tangent bundle TM are called the
fibres of the bundle.

Definition
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3.20 (Dual vector space).
Any finite dimensional vector space V possesses a dual vector space of the same dimension. The dual space V ∗ consists of all linear
functions V → R. The dual to the tangent space TqM is called the cotangent space T ∗qM to the manifold M at a point q ∈M .

Definition

3.21 (Dual basis).
The differential df ∈ T ∗qM of a smooth real function f : M → R is expressed in terms of the basis dqb, b = 1, . . . , K, that is dual to
∂/∂qa, a = 1, . . . , K, as

df(q) =
∂f

∂qb
dqb (dual basis). (3.2)

That is, the linear function df(q) : TqM → R lives in the space T ∗qM dual to the vector space TqM .

Definition

3.22 (Contraction).
The operation of contraction between elements of a vector basis and its dual basis is defined in terms of a nondegenerate
symmetric pairing

〈 · , · 〉 : TqM × T ∗qM → R,

as the bilinear relation 〈
∂

∂qb
, dqa

〉
:=

∂

∂qb
dqa = δab ,

where δab is the Kronecker delta. That is, δab = 0 for a 6= b and δab = 1 for a = b.

Definition

3.23 (Directional derivative).
The directional derivative of a smooth function f : M → R along the vector q̇ ∈ TqM is defined as

q̇ df = 〈 q̇ , df(q) 〉 =
〈
q̇b

∂

∂qb
,
∂f

∂qa
dqa
〉

=
∂f

∂qa
q̇a =

d

dt
f(q(t)) .
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Definition

3.24 (Cotangent space to a smooth manifold).
The space of differentials df(q) of smooth functions f defined on a manifold M at a point q ∈M forms a dual vector space called the
cotangent space of M at q ∈M which is denoted as T ∗qM .

Definition

3.25 (Cotangent bundle of a manifold).
The disjoint union of cotangent spaces to M at the points q ∈M given by

T ∗M =
⋃
q∈M

T ∗qM (3.3)

is a vector space called the cotangent bundle of M and is denoted as T ∗M .

Remark

3.26 (Covariant versus contravariant vectors).
Historically, the components of vector fields were called contravariant while the components of differential one-forms were called
covariant. The covariant and contravariant components of vectors and tensors are distinguished by their coordinate transformation
properties under changes of vector basis and dual basis for a change of coordinates q → y(q). For example, the components in a new
vector basis are

q̇ =
(
q̇a
∂yb

∂qa

) ∂

∂yb
=: ẏb

∂

∂yb
= ẏ ,

while the components in a new dual basis are

df(q) =
( ∂f
∂qb

∂qb

∂ya

)
dya =:

∂f

∂ya
dya = df(y) .

Thus, as every physicist learns about covariant and contravariant vectors and tensors,
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“By their transformations shall ye know them.”
– A. Sommerfeld (private communication, O. Laporte)

Exercise. Consider the following mixed tensor

T (q) = T abcijk (q)
∂

∂qa
⊗ ∂

∂qb
⊗ ∂

∂qc
⊗ dqi ⊗ dqj ⊗ dqk,

in which ⊗ denotes direct (or, tensor) product. How do the components of the mixed tensor T transform under a change of
coordinates q → y(q)?

That is, write the components of T (y) in the new basis in terms of the Jacobian matrix for the change of coordinates and the
components T abcijk (q) of T (q). F

3.2 Euler-Lagrange equation on a manifold

3.2.1 Motion on a K-dimensional submanifold of R3N

Consider the motion of N particles undergoing conservative motion on a smooth K-dimensional manifold M ⊂ R3N .
Let q = (q1, q2, . . . qK) be coordinates on the manifold M , which is defined as rj = rj(q

1, q2, . . . , qK), with j = 1, 2, . . . , N . Consequently,
a velocity vector q̇(t) tangent to a path q(t) in the manifold M at point q ∈M induces a velocity vector in R3N by

ṙj(t) =
K∑
a=1

∂rj
∂qa

q̇a(t) for j = 1, 2, . . . N . (3.4)

Remark

3.27. The 2K numbers q1, q2, . . . , qK , q̇1, q̇2, . . . , q̇K, provide a local coordinate system for TqM , the tangent space to M at q ∈M .

Remark
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3.28 (Generalised coordinates).
The choice of coordinates q is arbitrary up to a reparametrisation map q → Q ∈ M with det(∂Q/∂q) 6= 0. For this reason, the
{q} are called generalised coordinates.

Theorem

3.29 (Euler-Lagrange equation).
Newton’s law for conservative forces gives

N∑
j=1

〈
(mj r̈j − Fj) , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈[
L
]
qa
, dqa

〉
,

where [
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
,

for particle motion tangent to a manifold M ⊂ R3N with generalised coordinates qa and for conservative forces. Here, the quantity

L(q, q̇) := T (q, q̇)− V (r(q))

is called the Lagrangian and T (q, q̇) is the particle kinetic energy on M , namely,

T (q, q̇) =
1

2

N∑
j=1

mj|vj|2 =
1

2

N∑
j=1

mj|ṙj(q)|2 =
1

2

N∑
j=1

mj

∣∣∣ K∑
a=1

∂rj
∂qa

q̇a
∣∣∣2

The proof of the theorem proceeds by assembling the formulas for constrained acceleration and work rate in the next two lemmas,
obtained by direct computations using Newton’s law for conservative forces.

By the way, we have suspended the summation convention on repeated indices for a moment to avoid confusion between the two different
types of indices for the particle label and for the coordinate components on the manifold TM .

Lemma

3.30 (Constrained acceleration formula).
The induced kinetic energy T (q, q̇) on the manifold M satisfies

N∑
j=1

〈
mj r̈j , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈 d
dt

∂T

∂q̇a
− ∂T

∂qa
, dqa

〉
. (3.5)
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Proof. The constrained acceleration formula follows from differentiating T (q, q̇) to obtain

∂T

∂q̇a
=

N∑
j=1

mj

( K∑
b=1

∂rj
∂qb

q̇b
)
· ∂rj
∂qa

,

and

d

dt

∂T

∂q̇a
=

N∑
j=1

mj r̈j ·
∂rj
∂qa

+
∂T

∂qa
.

Lemma

3.31 (Work rate formula).
Forces Fj(r1, . . . , rN) evaluated on the manifold M satisfy

N∑
j=1

〈
Fj , drj(q)

〉∣∣∣
r(q)

= − dV
(
r(q)

)
= −

K∑
a=1

〈∂V (r(q)
)

∂qa
, dqa

〉
.

Proof. This Lemma follows, because the forces Fj(r1, . . . , rN) are conservative.

The proof of Theorem 3.29 now proceeds by assembling the formulas for constrained acceleration and work rate in the previous two
lemmas, as a direct calculation.

Proof.

N∑
j=1

〈
mj r̈j − Fj , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈 d
dt

∂T (q, q̇)

∂q̇a
−
∂
(
T (q, q̇)− V (r(q))

)
∂qa

, dqa
〉
.
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Corollary

3.32 (Newton ' Lagrange).
Newton’s law for the motion of N particles on a K-dimensional manifold M ⊂ R3N defined as rj = rj(q

1, q2, . . . qK), with j =
1, 2, . . . N , is equivalent to the Euler-Lagrange equations,[

L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (3.6)

for motion tangent to the manifold M and for conservative forces with Lagrangian

L(q, q̇) := T (q, q̇)− V
(
r(q)

)
. (3.7)

Proof. This corollary of Theorem 3.29 follows by independence of the differential basis elements dqa in the final line of its proof.

Theorem

3.33 (Hamilton’s principle of stationary action).
The Euler-Lagrange equation, [

L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (3.8)

follows from stationarity of the action, S, defined as the integral over a time interval t ∈ (t1 , t2)

S =

∫ t2

t1

L(q, q̇) dt . (3.9)

Then Hamilton’s principle of stationary action,

δS = 0 , (3.10)

implies [L ]qa = 0, for variations δqa that are tangent to the manifold M and which vanish at the endpoints in time.
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Proof. Notation in this proof is simplified by suppressing superscripts a in qa and only writing q. The meaning of the variational
derivative in the statement of Hamilton’s principle is the following. Consider a family of C2 curves q(t, s) for |s| < ε satisfying
q(t, 0) = q(t), q(t1, s) = q(t1), and q(t2, s) = q(t2) for all s ∈ (−ε, ε). The variational derivative of the action S is defined as

δS = δ

∫ t2

t1

L(q(t), q̇(t))dt :=
d

ds

∣∣∣∣
s=0

∫ t2

t1

L(q(t, s), q̇(t, s))dt . (3.11)

Differentiating under the integral sign, denoting

δq(t) :=
d

ds

∣∣∣∣
s=0

q(t, s) , (3.12)

and integrating by parts produces

δS =

∫ t2

t1

(∂L
∂q
δq +

∂L

∂q̇
δq̇
)
dt

=

∫ t2

t1

(∂L
∂q
− d

dt

∂L

∂q̇

)
δq dt+

[
∂L

∂q̇
δq

]t2
t1

,

(3.13)

where one exchanges the order of derivatives by using qst = qts so that δq̇ = d
dt
δq. Vanishing of the variations at the endpoints

δq(t1) = 0 = δq(t2) then causes the last term to vanish, which finally yields

δS =

∫ t2

t1

(∂L
∂q
δq +

∂L

∂q̇
δq̇
)
dt =

∫ t2

t1

(∂L
∂q
− d

dt

∂L

∂q̇

)
δq dt .

The action S is stationary δS = 0 for an arbitrary C1 function δq(t) if and only if the Euler-Lagrange equations (3.6) hold, that is,
provided [L ]q = 0.

Corollary

3.34 (Noether’s theorem). Each smooth symmetry of the Lagrangian in Hamilton’s principle implies a conservation law for its
Euler–Lagrange equation [KoSc2001].

Proof. In Hamilton’s principle δS = 0 for S =
∫ t2
t1
L(q, q̇) dt as in (3.9), the Lagrangian L has a symmetry if it is invariant under the

transformations q(t, 0)→ q(t, ε). In this case, stationarity δS = 0 under the infinitesimal variations defined in (3.12) follows because
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of this invariance of the Lagrangian, even if these variations did not vanish at the endpoints in time. The variational calculation
(3.13) in vector notation

0 = δS =

∫ (
∂L

∂q
− d

dt

∂L

∂q̇

)
︸ ︷︷ ︸
Euler–Lagrange

· δq dt+

[
∂L

∂q̇
· δq
]t2
t1︸ ︷︷ ︸

Noether

(3.14)

then shows that along the solution paths of the Euler–Lagrange equation (3.8) any smooth symmetry of the Lagrangian L implies[
∂L

∂q̇
· δq
]t2
t1

= 0 .

Thus, the quantity δq · (∂L/∂q̇) is a constant of the motion (i.e., it is constant along the solution paths of the Euler–Lagrange
equation) whenever δS = 0, because of the symmetry of the Lagrangian L in the action S =

∫
Ldt.

Exercise. What does Noether’s theorem imply for symmetries of the action principle given by δS = 0 for the following action?

S =

∫ t2

t1

L(q̇(t))dt .

F

Answer. In this case, ∂L/∂q = 0. This means the action S is invariant under translations q(t) → q(t) + ε for any constant
vector ε. Setting δq = ε in the Noether theorem associates conservation of any component of p := (∂L/∂q̇) with invariance
of the action under spatial translations in that direction. For this case, the conservation law also follows immediately from the
Euler–Lagrange equation (3.8). N
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3.3 Geodesic motion on Riemannian manifolds

The kinetic energy in Theorem 3.29 may be rewritten as

T (q, q̇) =
1

2

N∑
j=1

mj

K∑
a,b=1

(
∂rj
∂qa
· ∂rj
∂qb

)
q̇aq̇b

=:
1

2

N∑
j=1

mj

K∑
a,b=1

(gj(q))ab q̇
aq̇b,

which defines the quantity (gj(q))ab. For N = 1, this reduces to

T (q, q̇) =
1

2
mgab(q) q̇

aq̇b,

where we now reinstate the summation convention; that is, we again sum repeated indices over their range, which in this case is a, b =
1, 2, . . . , K, where K is the dimension of the manifold M .

3.3.1 Free particle motion in a Riemannian space

The Lagrangian for the motion of a free particle of unit mass is its kinetic energy, which defines a Riemannian metric on the manifolm M
(i.e., a nonsingular positive symmetric matrix depending smoothly on q ∈M) that in turn yields a norm ‖ · ‖ : TM → R+, by

L(q, q̇) =
1

2
q̇bgbc(q)q̇

c =:
1

2
‖q̇‖2 ≥ 0 . (3.15)

The Lagrangian in this case has partial derivatives given by,

∂L

∂q̇a
= gac(q)q̇

c and
∂L

∂qa
=

1

2

∂gbc(q)

∂qa
q̇bq̇c .

Consequently, its Euler-Lagrange equations [L ]qa = 0 are

[
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa

= gae(q)q̈
e +

∂gae(q)

∂qb
q̇bq̇e − 1

2

∂gbe(q)

∂qa
q̇bq̇e = 0 .
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Symmetrising the coefficient of the middle term and contracting with co-metric gca satisfying gcagae = δce yields

q̈ c + Γcbe(q)q̇
bq̇e = 0 , (3.16)

with

Γcbe(q) =
1

2
gca
[
∂gae(q)

∂qb
+
∂gab(q)

∂qe
− ∂gbe(q)

∂qa

]
, (3.17)

in which the Γcbe are the Christoffel symbols for the Riemannian metric gab. These Euler-Lagrange equations are the geodesic equations
of a free particle moving in a Riemannian space.

Exercise. Calculate the induced metric and Christoffel symbols for the sphere x2 + y2 + z2 = 1, written in polar coordinates
(θ.φ) with x+ iy = eiφ sin θ, z = cos θ. F

Exercise. Calculate the Christoffel symbols when the metric in the Lagrangian takes the form in equation (??) for Fermat’s
principle; namely

L(q, q̇) =
1

2
n2(q) q̇bδbcq̇

c , (3.18)

in Euclidean coordinates q ∈ R3 with a prescribed index of refraction n(q). F

3.3.2 Geodesic motion on the 3× 3 special orthogonal matrices

A three-dimensional spatial rotation is described by multiplication of a spatial vector by a 3 × 3 special orthogonal matrix, denoted as
O ∈ SO(3),

OTO = Id , so that O−1 = OT and detO = 1 . (3.19)

Geodesic motion on the space of rotations in three dimensions may be represented as a curve O(t) ∈ SO(3) depending on time t. Its angular

velocity is defined as the 3× 3 matrix Ω̂,
Ω̂(t) = O−1(t)Ȯ(t) , (3.20)

which must be skew-symmetric. That is, Ω̂T = − Ω̂, where superscript ( · )T denotes matrix transpose.
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Exercise. Show that the skew symmetry of Ω̂(t) follows by taking the time derivative of the defining relation for orthogonal
matrices. F

Answer. The time derivative of OT (t)O(t) = Id along the curve O(t) yields (OT (t)O(t)) ˙ = 0, so that

0 = ȮTO +OT Ȯ = (OT Ȯ)T +OT Ȯ ,

and, thus
(O−1Ȯ)T +O−1Ȯ = Ω̂T + Ω̂ = 0 .

That is, Ω̂T = − Ω̂. N
As for the time derivative, the variational derivative of O−1O = Id yields δ(O−1O) = 0, which leads to another skew-symmetric matrix,

Ξ̂, defined by
δO−1 = − (O−1δO)O−1 ,

and
Ξ̂ := O−1δO = −(δO−1)O = −(O−1δO)T = − Ξ̂T .

Lemma

3.35. The variational derivative of the angular velocity Ω̂ = O−1Ȯ satisfies

δΩ̂ = Ξ̂˙ + Ω̂Ξ̂− Ξ̂Ω̂ , (3.21)

in which Ξ̂ = O−1δO.

Proof. The variational formula (3.21) follows by subtracting the time derivative Ξ̂ ˙ = (O−1δO) ˙ from the variational derivative

δΩ̂ = δ(O−1Ȯ) in the relations

δΩ̂ = δ(O−1Ȯ) = − (O−1δO)(O−1Ȯ) + δȮ = − Ξ̂Ω̂ + δȮ ,

Ξ̂ ˙ = (O−1δO) ˙ = − (O−1Ȯ)(O−1δO) + (δO) ˙ = − Ω̂Ξ̂ + (δO) ˙ ,

and using equality of cross derivatives δȮ = (δO) ˙ .
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Theorem

3.36 (Geodesic motion on SO(3)).
The Euler-Lagrange equation for Hamilton’s principle

δS = 0 with S =

∫
L(Ω̂) dt , (3.22)

using the quadratic Lagrangian L : TSO(3)→ R,

L(Ω̂) = −1

2
tr(Ω̂AΩ̂) , (3.23)

in which A is a symmetric, positive-definite 3× 3 matrix, takes the matrix commutator form

dΠ̂

dt
= − [ Ω̂ , Π̂ ] with Π̂ = AΩ̂ + Ω̂A =

δL

δΩ̂
= − Π̂T . (3.24)

Proof. Taking matrix variations in this Hamilton’s principle yields

δS =:

∫ b

a

〈
δL

δΩ̂
, δΩ̂

〉
dt

= −1

2

∫ b

a

tr

(
δΩ̂

δL

δΩ̂

)
dt

= −1

2

∫ b

a

tr
(
δΩ̂ (AΩ̂ + Ω̂A)

)
dt

= −1

2

∫ b

a

tr
(
δΩ̂ Π̂

)
dt

=

∫ b

a

〈
Π̂ , δΩ̂

〉
dt . (3.25)

The first step uses δΩ̂T = −δΩ̂ and expresses the pairing in the variational derivative of S for matrices as the trace pairing, e.g.,〈
M , N

〉
=:

1

2
tr
(
MT N

)
=

1

2
tr
(
NT M

)
. (3.26)



Notes: Geometric Mechanics I DD Holm Fall Term 2013 40

The second step applies the variational derivative. After cyclically permuting the order of matrix multiplication under the trace, the
fourth step substitutes

Π̂ = AΩ̂ + Ω̂A =
δL

δΩ̂
.

Next, substituting formula (3.21) for δΩ̂ into the variation of the action (3.25) leads to

δS = −1

2

∫ b

a

tr
(
δΩ̂Π̂

)
dt

= −1

2

∫ b

a

tr
(
(Ξ̂ ˙ + Ω̂Ξ̂− Ξ̂Ω̂) Π̂

)
dt . (3.27)

Permuting cyclically under the trace again yields
tr(Ω̂ Ξ̂ Π̂) = tr(Ξ̂ Π̂ Ω̂) .

Integrating by parts (dropping endpoint terms) then yields the equation

δS = − 1

2

∫ b

a

tr
(
Ξ̂ (− Π̂ ˙ + Π̂Ω̂− Ω̂Π̂ )

)
dt . (3.28)

Finally, invoking stationarity δS = 0 for an arbitrary variation

Ξ̂ = O−1δO ,

yields geodesic dynamics on SO(3) with respect to the metric A in the commutator form (3.24).

Remark

3.37 (Interpretation of Theorem 3.36).

Equation (3.24) for the matrix Π̂ describes geodesic motion in the space of 3×3 orthogonal matrices with respect to the metric tensor A.

The matrix Π̂ is defined as the fibre derivative of the Lagrangian L(Ω̂) with respect to the angular velocity matrix Ω̂(t) = O−1(t)Ȯ(t).

Thus, Π̂ is the angular momentum matrix dual to the angular velocity matrix Ω̂.

Once the solution for Ω̂(t) is known from the evolution of Π̂(t), the orthogonal matrix orientation O(t) is determined from one last
integration in time, by using the equation

Ȯ(t) = O(t)Ω̂(t) . (3.29)

This is the reconstruction formula, obtained from the definition (3.20) of the angular velocity matrix. In the classical literature,
such an integration is called a quadrature.
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Corollary

3.38. Formula (3.24) for the evolution of Π̂(t) is equivalent to the conservation law

d

dt
π̂(t) = 0 , where π̂(t) := O(t)Π̂(t)O−1(t) . (3.30)

Proof. This may be verified by a direct computation that uses the reconstruction formula in (3.29).

Remark

3.39. The quantities π̂ and Π̂ in the rotation of a rigid body are called its spatial and body angular momentum, respectively.

Exercise. (Noether’s theorem)

What does Noether’s theorem (Corollary 3.34) imply for geodesic motion on the special orthogonal group SO(3)? How does
this generalise to SO(n)? What about Noether’s theorem for geodesic motion on other groups?

Hint: consider the endpoint terms tr(Ξ̂Π̂)|ba arising in the variation δS in (3.28) and invoke left-invariance of the Lagrangian

(3.23) under O → UεO with Uε ∈ SO(3). For this symmetry transformation, δO = Γ̂O with Γ̂ = d
dε
|ε=0Uε, so Ξ̂ = O−1Γ̂O.

F

3.4 Euler’s equations for the motion of a rigid body

Besides describing geodesic motion in the space of 3 × 3 orthogonal matrices with respect to the metric tensor A, the dynamics of Π̂ in
(3.24) turns out to be the matrix version of Euler’s equations for rigid body motion.

3.4.1 Physical interpretation of SO(3) matrix dynamics

To see how Euler’s equation for a rigid body emerges from geodesic motion in SO(3) with respect to the metric A, we shall use the hat
map in equation (2.13) to convert the skew-symmetric matrix dynamics (3.24) into its vector form. Let the principal axes of inertia of
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the body be the orthonormal eigenvectors e1, e2, e3 of A. Then its principal moments of inertia turn out to be linear combinations of the
corresponding (positive) eigenvalues a1, a2, a3. Setting

Ω = Ω1e1 + Ω2e2 + Ω3e3 , (3.31)

identifies vector components Ωk, k = 1, 2, 3, with the components of the skew-symmetric matrix Ω̂ij, i, j = 1, 2, 3, as

Ω̂ij = − εijkΩk , (3.32)

which takes the skew-symmetric matrix form of (2.15)

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (3.33)

This identification yields for Π̂ = AΩ̂ + Ω̂A,

Π̂ =

 0 −I3Ω3 I2Ω2

I3Ω3 0 −I1Ω1

−I2Ω2 I1Ω1 0

 , (3.34)

with
I1 = a2 + a3 , I2 = a1 + a3 , I3 = a1 + a2 . (3.35)

These quantities are all positive, because A is positive definite. Consequently, the skew-symmetric matrix Π̂ has principle-axis vector
components of

Π = Π1e1 + Π2e2 + Π3e3 , (3.36)

and the Lagrangian (3.23) in these vector components is expressed as

L =
1

2

(
I1Ω2

1 + I2Ω2
2 + I3Ω3

1

)
, (3.37)

with body angular momentum components,

Πi =
δL

δΩi

= IiΩi , i = 1, 2, 3, (no sum) . (3.38)

In this vector representation, the matrix Euler-Lagrange equation (3.24) becomes Euler’s equation for rigid body motion.
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In vector form, Euler’s equations are,
Π̇ = −Ω×Π , (3.39)

whose vector components are expressed as
I1Ω̇1 = (I2 − I3)Ω2Ω3 = −(a2 − a3)Ω2Ω3 ,

I2Ω̇2 = (I3 − I1)Ω3Ω1 = −(a3 − a1)Ω3Ω1 ,

I3Ω̇3 = (I1 − I2)Ω1Ω2 = −(a1 − a2)Ω1Ω2 .

(3.40)

Corollary. Equation (3.39) implies as in Corollary 3.38 that

π̇(t) = 0 , for π(t) = O(t)Π(t) , (3.41)

on using the hat map O−1Ȯ(t) = Ω̂(t) = Ω(t)×, as in (3.32).

Remark

3.40 (Two interpretations of Euler’s equations).

1. Euler’s equations describe conservation of spatial angular momentum π(t) = O(t)Π(t) under the free rotation around a fixed
point of a rigid body with principal moments of inertia (I1, I2, I3) in the moving system of coordinates, whose orthonormal basis

(e1, e2, e3)

comprises the principal axes of the body.

2. Euler’s equations also represent geodesic motion on SO(3) with respect to the metric A whose orthonormal eigenvectors form
the basis (e1, e2, e3) and whose (positive) eigenvalues

(a1, a2, a3)

are obtained from linear combinations of the formulas for (I1, I2, I3) in equation (3.35). Thus, a rigid body rotates from one
orientation to another along the shortest path in SO(3), as determined by using its principal moments of inertia in a metric.
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4 Hamilton

Hamilton

Hamilton’s approach to geometric optics led to his formulation of the
canonical equations of particle motion in mechanics.
Geometric optics may be approached either as a theory of systems of rays
constructed by means of the elementary laws of refraction (Ibn Sahl, Snell,
Descartes, Fermat, Newton), or as a theory based upon the consideration
of systems of surfaces whose orthogonal trajectories are the rays (Huygens,
Hamilton).
These two approaches embody the dual pictures of light propagation as
either rays or as envelopes of Huygens wavelets. The ray approach to geo-
metric optics via Fermat’s principle leads to what may be called Lagrangian
optics, in which each ray is characterised by assigning an initial point on
it and its direction there, much like specifying the initial position and ve-
locity of Newtonian or Lagrangian particle motion. The Huygens wavelet
approach leads to Hamiltonian optics, in which a characteristic function
measures the time that light takes to travel from one point to another and
it depends on the co-ordinates of both the initial and final points.

In a tour de force begun in 1823, when he was aged eighteen, Hamilton showed that all significant properties of a geometric optical
system may be expressed in terms of this characteristic function and its partial derivatives. In this way, Hamilton completed the wave picture
of geometric optics first envisioned by Huygens. Hamilton’s work was particularly striking because it encompassed and solved the outstanding
problem at the time in optics. Namely, it determined how the bright surfaces called “caustics” are created when light reflects off a curved
mirror.

Years after his tour de force in optics as a young man, Hamilton realised that the same method applies unchanged to mechanics. One
simply replaces the optical axis by the time axis, the light rays by the trajectories of the system of particles, and the optical phase space
variables by the mechanical phase space variables. Hamilton’s formulation of his canonical equations of particle motion in mechanics was
expressed using partial derivatives of a simplified form of his characteristic function for optics, now called the Hamiltonian.

The connection between the Lagrangian and Hamiltonian approaches to mechanics was made via the Legendre transform. Hamilton’s
methods, as developed by Jacobi, Poincaré and other 19th century scientists became a powerful tool in the analysis and solution of problems
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in mechanics. Hamilton’s analogy between optics and mechanics became a guiding light in the development of the quantum mechanics of
atoms and molecules a century later, and his ideas still apply today in scientific research on the quantum interactions of photons, electrons
and beyond.

4.1 Legendre transform

One passes from Lagrangian to Hamiltonian dynamics through the Legendre transformation.

Definition

4.1 (Legendre transform and fibre derivative).
The Legendre transformation is defined by using the fibre derivative of the Lagrangian,

p =
∂L

∂q̇
. (4.1)

The name fibre derivative refers to Definition 3.19 of the tangent bundle TM of a manifold M in which the velocities q̇ ∈ TqM at
a point q ∈M are called its fibres.

Remark

4.2. Since the velocity is in the tangent bundle TM , the fibre derivative of the Lagrangian will be in the cotangent bundle T ∗M
of manifold M .

Definition

4.3 (Canonical momentum and Hamiltonian).
The quantity p is also called the canonical momentum dual to the configuration variable q. If this relation is invertible for the
velocity q̇(q, p), then one may define the Hamiltonian,

H(p, q) = 〈 p , q̇ 〉 − L(q, q̇) . (4.2)

Remark
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4.4. The Hamiltonian H(p, q) may be obtained from the Legendre transformation H(p, q) = 〈 p , q̇ 〉 − L(q, q̇) as a function of the
variables (q, p), provided one may solve for q̇(q, p), which requires the Lagrangian to be non-degenerate, e.g.,

det
∂2L

∂q̇∂q̇
= det

∂p(q, q̇)

∂q̇
6= 0 (suppressing indices) . (4.3)

Definition

4.5 (Non-degenerate Lagrangian system).
A Lagrangian system (M,L) is said to be non-degenerate if the Hessian matrix

HL(q, q̇) =
∂2L

∂q̇∂q̇
(again suppressing indices) (4.4)

is invertible everywhere on the tangent bundle TM . Such Lagrangians are also said to be hyperregular [MaRa1994].

Exercise. The following is an example of a singular Lagrangian

L(q, q̇) = n(q)
√
δij q̇iq̇j ,

that appears in Fermat’s principle for ray paths. This Lagrangian is homogeneous of degree 1 in the tangent vector to the ray
path. Such a Lagrangian satisfies

∂2L

∂q̇i∂q̇j
q̇j = 0,

so its Hessian matrix with respect to the tangent vectors is singular (has zero determinant). This difficulty is inherent in Finsler
geometry. Show that this case may be regularised by transforming to a related Riemannian description, in which the Lagrangian
is quadratic in the tangent vector. F

4.2 Hamilton’s canonical equations

Theorem
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4.6 (Hamiltonian equations). When the Lagrangian is non-degenerate (hyperregular), the Euler-Lagrange equations

[L ]qa = 0 ,

in (3.8) are equivalent to Hamilton’s canonical equations,

q̇ =
∂H

∂p
, ṗ = − ∂H

∂q
, (4.5)

where ∂H/∂q and ∂H/∂p are the gradients of H(p, q) = 〈 p , q̇ 〉 − L(q, q̇) with respect to q and p, respectively.

Proof. The derivatives of the Hamiltonian follow from the differential of its defining equation (4.2) as

dH =

〈
∂H

∂p
, dp

〉
+

〈
∂H

∂q
, dq

〉
= 〈 q̇ , dp 〉 −

〈
∂L

∂q
, dq

〉
+

〈
p− ∂L

∂q̇
, dq̇

〉
.

Consequently,
∂H

∂p
= q̇ =

dq

dt
,

∂H

∂q
= − ∂L

∂q
and

∂H

∂q̇
= p− ∂L

∂q̇
= 0 .

The Euler-Lagrange equations [L ]qa = 0 then imply

ṗ =
dp

dt
=

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
= − ∂H

∂q
.

This proves the equivalence of the Euler-Lagrange equations and Hamilton’s canonical equations for non-degenerate, or hyper-regular
Lagrangians.

Remark

4.7. The Euler-Lagrange equations are second order and they determine curves in configuration space q ∈M .
In contrast, Hamilton’s equations are first order and they determine curves in phase space (q, p) ∈ T ∗M , a space whose dimension
is twice the dimension of the configuration space M .
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Definition

4.8 (Number of degrees of freedom).
The dimension of the configuration space is called the number of degrees of freedom.

Remark

4.9. Each degree of freedom has its own coordinate and momentum in phase space.

Remark

4.10 (Momentum vs position in phase space).
As discussed in Definition 9.11, the momenta p = (p1, . . . , pn) are coordinates in the cotangent bundle at q = (q1, . . . , qn) corresponding
to the basis dq1, . . . , dqn for T ∗qM . This basis for 1-forms in T ∗qM is dual to the vector basis ∂/∂q1, . . . , ∂/∂qn for the tangent bundle
TqM at q = (q1, . . . , qn).

4.3 Phase space action principle

Hamilton’s principle on the tangent space of a manifold M may be augmented by imposing the relation q̇ = dq/dt as an additional constraint
in terms of generalised coordinates (q, q̇) ∈ TqM . In this case, the constrained action is given by

S =

∫ tb

ta

L(q, q̇) + p
(dq
dt
− q̇
)
dt , (4.6)

where p is a Lagrange multiplier for the constraint. The variations of this action result in

δS =

∫ tb

ta

(
∂L

∂q
− dp

dt

)
δq +

(
∂L

∂q̇
− p
)
δq̇ +

(dq
dt
− q̇
)
δp dt

+
[
p δq

]tb
ta
. (4.7)

The contributions at the endpoints ta and tb in time vanish, because the variations δq are assumed to vanish then.
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Thus, stationarity of this action under these variations imposes the relations

δq :
∂L

∂q
=
dp

dt
,

δq̇ :
∂L

∂q̇
= p ,

δp : q̇ =
dq

dt
.

• Combining the first and second of these relations recovers the Euler-Lagrange equations, [L ]qa = 0.

• The third relation constrains the variable q̇ to be the time derivative of the trajectory q(t) at any time t.

Substituting the Legendre-transform relation (4.2) into the constrained action (4.6) yields the phase space action

S =

∫ tb

ta

(
p
dq

dt
−H(q, p)

)
dt . (4.8)

Varying the phase space action in (4.8) yields

δS =

∫ tb

ta

(
dq

dt
− ∂H

∂p

)
δp−

(
dp

dt
+
∂H

∂q

)
δq dt+

[
p δq

]tb
ta
.

Because the variations δq vanish at the endpoints ta and tb in time, the last term vanishes. Thus, stationary variations of the phase-space
action in (4.8) recover Hamilton’s canonical equations (4.5).

Hamiltonian evolution along a curve (q(t), p(t)) ∈ T ∗M satisfying equations (4.5) induces the evolution of a given function F (q, p) :
T ∗M → R on the phase-space T ∗M of a manifold M , as

dF

dt
=

∂F

∂q

dq

dt
+
∂H

∂q

dp

dt

=
∂F

∂q

∂H

∂p
− ∂H

∂q

∂F

∂p
=: {F , H} (4.9)

=

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
F =: XHF . (4.10)

The second and third lines of this calculation introduce notation for two natural operations that will be investigated further in the next few
sections. These are the Poisson bracket { · , · } and the Hamiltonian vector field XH = { · , H }.
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4.4 Poisson brackets

Definition

4.11 (Canonical Poisson bracket).
Hamilton’s canonical equations are associated to the canonical Poisson bracket for functions on phase space, defined by

ṗ = {p , H} , q̇ = {q , H} . (4.11)

Hence, the evolution of a smooth function on phase space is expressed as

Ḟ (q, p) = {F , H} =
∂F

∂q

∂H

∂p
− ∂H

∂q

∂F

∂p
. (4.12)

This expression defines the canonical Poisson bracket as a map {F,H} : C∞ × C∞ → C∞ for smooth, real-valued functions F, G on
phase space.

Remark

4.12. For one degree of freedom, the canonical Poisson bracket is the same as the determinant for a change of variables

(q, p)→ (F (q, p), H(q, p)),

namely,

dF ∧ dH = det
∂(F,H)

∂(q, p)
dq ∧ dp = {F,H}dq ∧ dp . (4.13)

Here the wedge product ∧ denotes the antisymmetry of the determinant of the Jacobian matrix under exchange of rows or columns,
so that

dF ∧ dH = − dH ∧ dF.

Proposition

4.13 (The canonical Poisson bracket).
The definition of the canonical Poisson bracket in (4.12) implies the following properties. By direct computation, the bracket is:
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1. bilinear,

2. skew symmetric, {F , H} = −{H , F},

3. satisfies the Leibnitz rule (product rule),

{FG , H} = {F , H}G+ F{G , H}

for the product of any two phase space functions F and G, and

4. satisfies the Jacobi identity

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0

for any three phase space functions F , G and H.

4.5 Canonical transformations

Definition

4.14 (Transformation).
A transformation is a one-to-one mapping of a set onto itself.

Example

4.15. For example, under a change of variables
(q, p)→ (Q(q, p), P (q, p))

in phase space T ∗M , the Poisson bracket in (4.13) transforms via the Jacobian determinant, as

dF ∧ dH = {F,H}dq ∧ dp

= {F,H} det
∂(q, p)

∂(Q,P )
dQ ∧ dP . (4.14)
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Definition

4.16 (Canonical transformations).
When the Jacobian determinant is equal to unity, that is, when

det
∂(q, p)

∂(Q,P )
= 1 , so that dq ∧ dp = dQ ∧ dP , (4.15)

then the Poisson brackets {F,H} have the same values in either set of phase space coordinates. Such transformations of phase space
T ∗M are said to be canonical transformations, since in that case Hamilton’s canonical equations keep their forms, as

Ṗ = {P , H} , Q̇ = {Q , H} . (4.16)

Remark

4.17. If the Jacobian determinant above were equal to any nonzero constant, then Hamilton’s canonical equations would still keep
their forms, after absorbing that constant into the units of time. Hence, transformations for which

det
∂(q, p)

∂(Q,P )
= constant , (4.17)

may still be said to be canonical.

Definition

4.18 (Lie transformation groups).

• A collection of transformations is called a group, provided:
– it includes the identity transformation and the inverse of each transformation;
– it contains the result of the consecutive application of any two transformations; and
– composition of that result with a third transformation is associative.

• A group is a Lie group, provided its transformations depend smoothly on a parameter.

Proposition

4.19. The canonical transformations form a group.
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Proof. Composition of change of variables (q, p)→ (Q(q, p), P (q, p)) in phase space T ∗M with constant Jacobian determinant satisfies
the defining properties of a group.

Remark

4.20. The smooth parameter dependence needed to show that the canonical transformations actually form a Lie group will arise
from their definition in terms of the Poisson bracket.

4.6 Flows of Hamiltonian vector fields

The Leibnitz property (product rule) in Proposition 4.13 suggests the canonical Poisson bracket is a type of derivative. This derivation
property of the Poisson bracket allows its use in the definition of a Hamiltonian vector field.

Definition

4.21 (Hamiltonian vector field).
The Poisson bracket expression

XH = {· , H} =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
, (4.18)

defines a Hamiltonian vector field XH , for any smooth phase space function H : T ∗M → R.

Proposition

4.22. Solutions of Hamilton’s canonical equations q(t) and p(t) are the characteristic paths of the first order linear partial differ-
ential operator XH . That is, XH corresponds to the time derivative along these characteristic paths.

Proof. Verify directly by applying the product rule for vector fields and Hamilton’s equations in the form, ṗ = XHp and q̇ = XHq.

Definition

4.23 (Hamiltonian flow).
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The union of the characteristic paths of the Hamiltonian vector field XH in phase space T ∗M is called the flow of the Hamiltonian
vector field XH . That is, the flow of XH is the collection of maps φt : T ∗M → T ∗M satisfying

dφt
dt

= XH

(
φt(q, p)

)
= {φt, H} , (4.19)

for each (q, p) ∈ T ∗M for real t and φ0(q, p) = (q, p).

Theorem

4.24. Canonical transformations result from the smooth flows of Hamiltonian vector fields. That is, Poisson brackets generate canon-
ical transformations.

Proof. According to Definition 4.16, a transformation

(q(0), p(0))→ (q(ε), p(ε)) ,

which depends smoothly on a parameter ε is canonical, provided it preserves area in phase space (up to a constant factor that defines
the units of area). That is, it is canonical provided it satisfies the condition in equation (4.15), namely

dq(ε) ∧ dp(ε) = dq(0) ∧ dp(0) . (4.20)

Let this transformation be the flow of a Hamiltonian vector field XF . That is, let it result from integrating the characteristic
equations of

d

dε
= XF = {· , F} =

∂F

∂p

∂

∂q
− ∂F

∂q

∂

∂p
=: F,p∂q − F,q∂p ,

for a smooth function F on phase space. Then applying the Hamiltonian vector field to the area in phase space and exchanging
differential and derivative with respect to ε yields

d

dε

(
dq(ε) ∧ dp(ε)

)
= d(XF q) ∧ dp+ dq ∧ d(XFp)

= d(F,p) ∧ dp+ dq ∧ d(F,q)

= (F,pqdq + F,ppdp) ∧ dp+ dq ∧ (F,qqdq + F,qpdp)

= (F,pq − F,qp)dq ∧ dp
= 0 , (4.21)

by equality of cross derivatives of F and asymmetry of the wedge product. Therefore, condition (4.20) holds and the transformation
is canonical.
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Corollary

4.25. The canonical transformations of phase space form a Lie group.

Proof. The flows of the Hamiltonian vector fields are canonical transformations that depend smoothly on their flow parameters.

Exercise. (Noether’s theorem)

Suppose the phase space action (4.8) is invariant under the infinitesimal transformation q → q + δq, with δq = ξM(q) ∈ TM
for q ∈M under the transformations of a Lie group G acting on a manifold M . That is, suppose S in (4.8) satisfies δS = 0 for
δq = ξM(q) ∈ TM .

What does Noether’s theorem imply for this phase space action principle? F

Answer. Noether’s theorem implies conservation of the quantity

Jξ =
〈
p, ξM(q)

〉
T ∗M×TM ∈ R , (4.22)

arising from integration by parts evaluated at the endpoints. This notation introduces a pairing 〈 · , · 〉T ∗M×TM : T ∗M × TM → R. The
conservation of Jξ is expressed as,

dJξ

dt
= {Jξ, H} = 0 . (4.23)

That is XHJ
ξ = 0, or, equivalently,

0 = XJξH =
∂Jξ

∂p

∂H

∂q
− ∂Jξ

∂q

∂H

∂p

= ξM(q)∂qH − pξ′M(q)∂pH

=
d

dε

∣∣∣
ε=0
H
(
q(ε), p(ε)

)
. (4.24)

This means that H is invariant under (δq, δp) = (ξM(q), −pξ′M(q)). That is, H is invariant under the cotangent lift to T ∗M of the
infinitesimal point transformation q → q + ξM(q) of the Lie group G acting by canonical transformations on the manifold M .
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Conversely, if the Hamiltonian H(q, p) is invariant under the canonical transformation generated by XJξ , then the Noether endpoint
quantity Jξ in (4.22) will be a constant of the canonical motion under H.

N

Definition

4.26 (Cotangent lift momentum map).
On introducing a pairing 〈 · , · 〉 : g∗ × g→ R one may define a map J : T ∗M → g∗ in terms of this pairing and the Noether endpoint
quantity in (4.22 as

Jξ =
〈
p, ξM(q)

〉
T ∗M×TM =:

〈
J(q, p), ξ

〉
g∗×g , (4.25)

for any fixed element of the Lie algebra ξ ∈ g. The map J(q, p) is called the cotangent lift momentum map associated to the
infinitesimal transformation δq = ξM(q) ∈ TM and its cotangent lift δp = −pξ′M(q) ∈ TM∗.

Exercise. (Cotangent lift momentum maps are Poisson)
Show that cotangent lift momentum maps are Poisson. That is, show that, for smooth functions F and H,{

F ◦ J , H ◦ J
}

=
{
F , H

}
◦ J . (4.26)

This relation defines a Lie-Poisson bracket on g∗ that inherits the properties in Proposition 4.13 of the canonical Poisson
bracket.

F

4.7 Properties of Hamiltonian vector fields

By associating Poisson brackets with Hamiltonian vector fields on phase space, one may quickly determine their shared properties.

Definition
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4.27 (Hamiltonian vector field commutator).
The commutator of the Hamiltonian vector fields XF and XH is defined as

[XF , XH ] = XFXH −XHXF , (4.27)

which is again a Hamiltonian vector field.

Exercise. Verify directly that the commutator of two Hamiltonian vector fields yields yet another one. F

Lemma

4.28. Hamiltonian vector fields satisfy the Jacobi identity,

[XF , [XG , XH ] ] + [XG , [XH , XF ] ] + [XH , [XF , XG] ] = 0 .

Proof. Write [XG , XH ] = G(H)−H(G) symbolically, so that

[XF , [XG , XH ] ] = F (G(H))− F (H(G))−G(H(F )) +H(G(F ))

Summation over cyclic permutations then yields the result.

Lemma

4.29. The Jacobi identity holds for the canonical Poisson bracket {· , ·},

{F, {G, H}}+ {G, {H, F}}+ {H, {F, G}} = 0 . (4.28)

Proof. Formula (4.28) may be proved by direct computation, as in Proposition 4.13. This identity may also be verified formally by
the same calculation as in the proof of the previous Lemma, by writing {G, H} = G(H)−H(G) symbolically.

Remark

4.30 (Lie algebra of Hamiltonian vector fields).
The Jacobi identity defines the Lie algebra property of Hamiltonian vector fields, which form a Lie subalgebra of all vector fields on
phase space.
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Theorem

4.31 (The Poisson bracket and the commutator).
The canonical Poisson bracket {F, H} is put into one-to-one correspondence with the commutator of the corresponding Hamiltonian
vector fields XF and XH by the equality

X{F ,H} = − [XF , XH ] . (4.29)

Proof. One computes,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .

The first line is the definition of the commutator of vector fields. The second line is the definition of Hamiltonian vector field in terms
of Poisson bracket. The third line is a substitution. The fourth line uses the Jacobi identity (4.28) and skew symmetry.

5 Rigid-body motion

5.1 Hamiltonian form of rigid body motion

A dynamical system on the tangent space TM of a manifold M

ẋ(t) = F(x) , x ∈M

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H : M → R ,

in terms of a Poisson bracket operation,
{· , ·} : F(M)×F(M)→ F(M) ,

which is bilinear, skew-symmetric, defines a derivative operation satisfying the Leibnitz rule for a product of functions and satisfies the Jacobi
identity.

As we shall explain, reduced equations arising from group-invariant Hamilton’s principles on Lie groups are naturally Hamiltonian. If we
Legendre transform the Lagrangian in Hamilton’s principle in Theorem 3.36 for geodesic motion on SO(3) – interpreted also as rigid body
dynamics – then its simple, beautiful and well-known Hamiltonian formulation emerges.
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Definition

5.1. The Legendre transformation from angular velocity Ω to angular momentum Π is defined by

δL

δΩ
= Π .

That is, the Legendre transformation defines the body angular momentum vector by the variations of the rigid body’s reduced
Lagrangian with respect to the body angular velocity vector. For the Lagrangian in (3.37),

L(Ω) =
1

2
Ω · IΩ , (5.1)

with moment of inertia tensor I, the body angular momentum,

Π =
δL

δΩ
= IΩ , (5.2)

has R3 components,

Πi = IiΩi =
∂L

∂Ωi

, i = 1, 2, 3, (5.3)

in which principal moments of inertia Ii with i = 1, 2, 3 are all positive definite. This is also how body angular momentum was defined in
Definition 2.33 in the Newtonian setting.

5.2 Lie-Poisson Hamiltonian rigid body dynamics

The Legendre transformation is defined for rigid body dynamics by

H(Π) := Π ·Ω− L(Ω) ,

in terms of the vector dot product on R3. From the rigid body Lagrangian in (5.1), one finds the expected expression for the rigid body
Hamiltonian,

H(Π) =
1

2
Π · I−1Π :=

Π2
1

2I1

+
Π2

2

2I2

+
Π2

3

2I3

. (5.4)

The Legendre transform for this case is invertible for positive definite Ii, so we may solve for

∂H

∂Π
= Ω +

(
Π− ∂L

∂Ω

)
· ∂Ω

∂Π
= Ω .
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In R3 coordinates, this relation expresses the body angular velocity as the derivative of the reduced Hamiltonian with respect to the body
angular momentum, namely,

Ω =
∂H

∂Π
.

Hence, the reduced Euler-Lagrange equation for L may be expressed equivalently in angular momentum vector components in R3 and
Hamiltonian H as:

d

dt
(IΩ) = IΩ×Ω⇐⇒ dΠ

dt
= Π× ∂H

∂Π
:= {Π, H} . (5.5)

This expression suggests we introduce the following rigid body Poisson bracket on functions of Π ∈ R3.

{F,H}(Π) := −Π ·
(
∂F

∂Π
× ∂H

∂Π

)
, (5.6)

or, in components,
{Πj,Πk} = −Πiεijk . (5.7)

For the Hamiltonian (5.4), one checks that the Euler equations in terms of the rigid body angular momenta,

dΠ1

dt
= −

(
1

I2

− 1

I3

)
Π2Π3 ,

dΠ2

dt
= −

(
1

I3

− 1

I1

)
Π3Π1 ,

dΠ3

dt
= −

(
1

I1

− 1

I2

)
Π1Π2 ,

(5.8)

that is, the equations in vector form,
dΠ

dt
= −Ω×Π , (5.9)

are equivalent to
dF

dt
= {F,H} , with F = Π .

The Poisson bracket proposed in (5.6) may be rewritten in terms of coordinates Π ∈ R3 as

{F,H} = −∇|Π|
2

2
· ∇F ×∇H , (5.10)
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where ∇ denotes ∂/∂Π. This is an example of the Nambu R3 bracket [Na1973], which may be seen to satisfy the defining relations to be a
Poisson bracket, by identifying it with the commutator of divergenceless vector fields. In this case, the distinguished function C(Π) = |Π|2/2
and its level sets are the angular momentum spheres. Hence, the Hamiltonian rigid body dynamics (5.9) rewritten as

dΠ

dt
=
{

Π, H
}

= ∇|Π|
2

2
×∇H (5.11)

may be interpreted as a divergenceless flow in R3 along intersections of level sets of angular momentum spheres |Π|2 = const with the
kinetic energy ellipsoids H = const in equation (5.4).

Figure 6: The dynamics of a rotating rigid body may be represented as a divergenceless flow along the intersections in R3 of the level sets of two conserved
quantities: the angular momentum sphere |Π|2 = const and the hyperbolic cylinders G = const in equation (5.18).
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5.3 Geometry of rigid body level sets in R3

Euler’s equations (5.11) are expressible in vector form as

d

dt
Π = ∇L×∇H , (5.12)

where H is the rotational kinetic energy

H =
Π2

1

2I1

+
Π2

2

2I2

+
Π2

3

2I3

, (5.13)

with gradient

∇H =

(
∂H

∂Π1

,
∂H

∂Π2

,
∂H

∂Π3

)
=

(
Π1

I1

,
Π2

I2

,
Π3

I3

)
,

and L is half the square of the body angular momentum

L =
1

2
(Π2

1 + Π2
2 + Π2

3) , (5.14)

with gradient
∇L = (Π1, Π2, Π3) . (5.15)

Since both H and L are conserved, the rigid body motion itself takes place, as we know, along the intersections of the level surfaces of the
energy (ellipsoids) and the angular momentum (spheres) in R3: The centres of the energy ellipsoids and the angular momentum spheres
coincide. This, along with the (Z2)3 symmetry of the energy ellipsoids, implies that the two sets of level surfaces in R3 develop collinear
gradients (for example, tangencies) at pairs of points which are diametrically opposite on an angular momentum sphere. At these points,
collinearity of the gradients of H and L implies stationary rotations, that is, equilibria.

The geometry of the level sets on whose intersections the motion takes place may be recast equivalently by taking linear combinations
of H and L. For example, consider the following.

Proposition

5.2. Euler’s equations for the rigid body (5.12) may be written equivalently as

d

dt
Π = ∇L×∇G , where G = H − L

I2

, (5.16)

or, explicitly, L and G are given by

L =
1

2
(Π2

1 + Π2
2 + Π2

3) (5.17)
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and

G = Π2
1

(
1

2I1

− 1

2I2

)
− Π2

3

(
1

2I2

− 1

2I3

)
. (5.18)

Proof. The proof is immediate. Since ∇L×∇L = 0,

d

dt
Π = ∇L×∇H = ∇L×∇

(
H − L

I2

)
= ∇L×∇G . (5.19)

Remark

5.3. With the linear combination G = H − L/I2, the solutions of Euler’s equations for rigid body dynamics may be realised as
flow along the intersections of the spherical level sets of the body angular momentum L = const and a family of hyperbolic cylinders
G = const. These hyperbolic cylinders are translation-invariant along the principal axis of the intermediate moment of inertia and
oriented so that the asymptotes of the hyperbolas (at G = 0) slice each angular momentum sphere along the four (heteroclinic) orbits
that connect the diametrically opposite points on the sphere that lie along the intermediate axis. See Figure 6.

5.4 Rotor and pendulum

The idea of recasting the geometry of flow lines in R3 as the intersections of different level sets on which the motion takes place was extended
in [?] to reveal a remarkable relationship between the rigid body and the planar pendulum. This relationship was found by further exploiting
the symmetry of the triple scalar product appearing in the R3 bracket (5.10).

Theorem

5.4. Euler’s equations for the rigid body (5.12) may be written equivalently as

d

dt
Π = ∇A×∇B , (5.20)

where A and B are given by the following linear combinations of H and L,(
A
B

)
=

[
a b
c e

](
H
L

)
, (5.21)

in which the constants a, b, c, e satisfy ae− bc = 1 to form an SL(2,R) matrix.
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Proof. Recall from equation (5.6) that

{F,H}d 3Π := dF ∧ dL ∧ dH (5.22)

=
1

ae− bc
dF ∧ d(aH + bL) ∧ d(cH + eL) ,

for real constants a, b, c, e. Consequently, the rigid body equation will remain invariant under any linear combinations of energy and
angular momentum (

A
B

)
=

[
a b
c e

](
H
L

)
,

provided the constants a, b, c, e satisfy ae− bc = 1 to form an SL(2,R) matrix.

Remark

5.5 (Equilibria).
For a general choice for the linear combination of A and B in (5.21), equilibria occur at points where the cross product of gradients
∇A×∇B vanishes. This can occur at points where the level sets are tangent (and the gradients are both nonzero), or at points where
one of the gradients vanishes.

Corollary

5.6. Euler’s equations for the rigid body (5.12) may be written equivalently as

d

dt
Π = ∇N ×∇K , (5.23)

where K and N are

K =
Π2

1

2k2
1

+
Π2

2

2k2
2

and N =
Π2

2

2k2
3

+
1

2
Π2

3 , (5.24)

for
1

k2
1

=
1

I1

− 1

I3

,
1

k2
2

=
1

I2

− 1

I3

,
1

k2
3

=
I3(I2 − I1)

I2(I3 − I1)
. (5.25)

Proof. If I1 < I2 < I3, the choice

c = 1, e =
1

I3

, a =
I1I3

I3 − I1

< 0, and b =
I3

I3 − I1

< 0
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yields
{F,H}d 3Π := dF ∧ dL ∧ dH = dF ∧ dN ∧ dK , (5.26)

from which equations (5.23) - (5.25) of the Corollary follow.

Since (
H
L

)
=

1

ae− bc

[
e −b
−c a

](
N
K

)
we also have

H = eN − bK =
1

I3

N +
I3

I3 − I1

K . (5.27)

Consequently, we may write
dF ∧ dL ∧ dH = dF ∧ dN ∧ dK = −I3 dF ∧ dK ∧ dH . (5.28)

With this choice, the orbits for Euler’s equations for rigid body dynamics are realised as motion along the intersections of two, orthogonally
oriented, elliptic cylinders, one elliptic cylinder is a level surface of K, with its translation axis along Π3 (where K = 0), and the other is a
level surface of N , with its translation axis along Π1 (where N = 0).

Equilibria occur at points where the cross product of gradients ∇K ×∇N vanishes. In the elliptic cylinder case above, this may occur
at points where the elliptic cylinders are tangent, and at points where the axis of one cylinder punctures normally through the surface of the
other. The elliptic cylinders are tangent at one Z2-symmetric pair of points along the Π2 axis, and the elliptic cylinders have normal axial
punctures at two other Z2-symmetric pairs of points along the Π1 and Π3 axes.

5.4.1 Restricting rigid body motion to elliptic cylinders

We pursue the geometry of the elliptic cylinders by restricting the rigid body equations to a level surface of K. On the surface K = constant,
define new variables θ and p by

Π1 = k1r cos θ, Π2 = k2r sin θ, Π3 = p , with r =
√

2K ,

so that
d 3Π := dΠ1 ∧ dΠ2 ∧ dΠ3 = k1k2 dK ∧ dθ ∧ dp .

In terms of these variables, the constants of the motion become

K =
1

2
r2 and N =

1

2
p2 +

(
k2

2

2k2
3

r2

)
sin2 θ.
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On a constant level surface of K the function {F,H} only depends on (θ, p) so the Poisson bracket for rigid body motion on any particular
elliptic cylinder is given by (5.26) as

{F, H} d 3Π = − dL ∧ dF ∧ dH
= k1k2 dK ∧ {F, H}EllipCyl dθ ∧ dp . (5.29)

The symplectic structure on the level set K = constant is thus given by the following Poisson bracket on this elliptic cylinder:

{F,H}EllipCyl =
1

k1k2

(
∂F

∂p

∂H

∂θ
− ∂F

∂θ

∂H

∂p

)
,

which is symplectic. In particular, it satisfies

{p, θ}EllipCyl =
1

k1k2

. (5.30)

The restriction of the Hamiltonian H to the symplectic level set of the elliptic cylinder K = constant is by (5.13)

H =
k2

1K

I1

+
1

I3

[
1

2
p2 +

I2
3 (I2 − I1)

2(I3 − I2)(I3 − I1)
r2 sin2 θ

]
=
k2

1K

I1

+
N

I3

.

That is, N/I3 can be taken as the Hamiltonian on this symplectic level set of K. Note that N/I3 has the form of kinetic plus potential
energy. The equations of motion are thus given by

dθ

dt
=

{
θ,
N

I3

}
EllipCyl

=
1

k1k2I3

∂N

∂p
= − 1

k1k2I3

p ,

dp

dt
=

{
p,
N

I3

}
EllipCyl

=
1

k1k2I3

∂N

∂θ
=

1

k1k2I3

k2
2

k2
3

r2 sin θ cos θ .

Combining these equations of motion gives the pendulum equation,

d2θ

dt2
= − r2

k1k2I3

sin 2θ .

In terms of the original rigid body parameters, this becomes

d2θ

dt2
= − K

I2
3

(
1

I1

− 1

I2

)
sin 2θ . (5.31)

Thus, simply by transforming coordinates, we have proved the following result.
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Proposition

5.7. Rigid body motion reduces to pendulum motion on level surfaces of K.

Corollary

5.8. The dynamics of a rigid body in three-dimensional body angular momentum space is a union of two-dimensional simple-pendulum
phase portraits, as shown in Figure 7.

Figure 7: The dynamics of the rigid body in three-dimensional body angular momentum space is recovered by taking the union in R3 of the intersections
of level surfaces of two orthogonal families of concentric cylinders. (Only one member of each family is shown in the figure here, although the curves on each
cylinder show other intersections.) On each cylindrical level surface, the dynamics reduces to that of a simple pendulum, as given in equation (5.31).

By restricting to a nonzero level surface of K, the pair of rigid body equilibria along the Π3 axis are excluded. (This pair of equilibria
can be included by permuting the indices of the moments of inertia.) The other two pairs of equilibria, along the Π1 and Π2 axes, lie in the
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p = 0 plane at θ = 0; π/2, π and 3π/2. Since K is positive, the stability of each equilibrium point is determined by the relative sizes of the
principal moments of inertia, which affect the overall sign of the right-hand side of the pendulum equation. The well-known results about
stability of equilibrium rotations along the least and greatest principal axes, and instability around the intermediate axis, are immediately
recovered from this overall sign, combined with the stability properties of the pendulum equilibria.

For K > 0 and I1 < I2 < I3; this overall sign is negative, so the equilibria at θ = 0 and π (along the Π1 axis) are stable, while those at
θ = π/2 and 3π/2 (along the Π2 axis) are unstable. The factor of 2 in the argument of the sine in the pendulum equation is explained by
the Z2 symmetry of the level surfaces of K (or, just as well, by their invariance under θ → θ+ π). Under this discrete symmetry operation,
the equilibria at θ = 0 and π/2 exchange with their counterparts at θ = π and 3π/2; respectively, while the elliptical level surface of K is
left invariant. By construction, the Hamiltonian N/I3 in the reduced variables θ and p is also invariant under this discrete symmetry.

6 Spherical pendulum

A spherical pendulum of unit length swings from a fixed point of support under the constant acceleration of gravity g. This motion is
equivalent to a particle of unit mass moving on the surface of the unit sphere S2 under the influence of the gravitational (linear) potential
V (z) with z = ê3 · x. The only forces acting on the mass are the reaction from the sphere and gravity. This system may be treated as an
enhanced coursework example by using spherical polar coordinates and the traditional methods of Newton, Lagrange and Hamilton. The
present section treats this problem more geometrically, inspired by the approach discussed in [CuBa1997, EfMoSa2005].

In this section, the equations of motion for the spherical pendulum will be derived according to the approaches of Lagrange and
Hamilton on the tangent bundle TS2 of S2 ∈ R3:

TS2 =
{

(x, ẋ) ∈ TR3 ' R6
∣∣ 1− |x|2 = 0, x · ẋ = 0

}
. (6.1)

After the Legendre transformation to the Hamiltonian side, the canonical equations will be transformed to quadratic variables that
are invariant under S1 rotations about the vertical axis. This is the quotient map for the spherical pendulum.

Then the Nambu bracket in R3 will be found in these S1 quadratic invariant variables and the equations will be reduced to the orbit
manifold, which is the zero level set of a distinguished function called the Casimir function for this bracket. On the intersections of the
Hamiltonian with the orbit manifold, the reduced equations for the spherical pendulum will simplify to the equations of a quadratically
nonlinear oscillator.

The solution for the motion of the spherical pendulum will be finished by finding expressions for its geometrical and dynamical phases.
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g
Figure 8: Spherical pendulum moving under gravity on TS2 in R3.

The constrained Lagrangian We begin with the Lagrangian L(x, ẋ) : TR3 → R given by

L(x, ẋ) = 1
2
|ẋ|2 − gê3 · x− 1

2
µ(1− |x|2), (6.2)

in which the Lagrange multiplier µ constrains the motion to remain on the sphere S2 by enforcing (1 − |x|2) = 0 when it is varied in
Hamilton’s principle. The corresponding Euler-Lagrange equation is

ẍ = −gê3 + µx . (6.3)

This equation preserves both of the TS2 relations 1− |x|2 = 0 and x · ẋ = 0, provided the Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (6.4)
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Remark

6.1. In Newtonian mechanics, the motion equation obtained by substituting (6.4) into (6.3) may be interpreted as

ẍ = F · (Id− x⊗ x)− |ẋ|2x ,

where F = −gê3 is the force exerted by gravity on the particle,

T = F · (Id− x⊗ x)

is its component tangential to the sphere and, finally, −|ẋ|2x is the centripetal force for the motion to remain on the sphere.

S1 symmetry and Noether’s theorem The Lagrangian in (6.2) is invariant under S1 rotations about the vertical axis, whose
infinitesimal generator is δx = ê3 × x. Consequently Noether’s theorem (Corollary 3.34) that each smooth symmetry of the Lagrangian in
an action principle implies a conservation law for its Euler-Lagrange equations, in this case implies that the equations (6.3) conserve

J3(x, ẋ) = ẋ · δx = x× ẋ · ê3 , (6.5)

which is the angular momentum about the vertical axis.

Legendre transform and canonical equations The fibre derivative of the Lagrangian L in (6.2) is

y =
∂L

∂ẋ
= ẋ . (6.6)

The variable y will be the momentum canonically conjugate to the radial position x, after the Legendre transform to the corresponding
Hamiltonian,

H(x,y) = 1
2
|y|2 + gê3 · x + 1

2
(gê3 · x− |y|2)(1− |x|2) , (6.7)

whose canonical equations on (1− |x|2) = 0, are

ẋ = y and ẏ = −gê3 + (gê3 · x− |y|2)x . (6.8)

This Hamiltonian system on T ∗R3 admits TS2 as an invariant manifold, provided the initial conditions satisfy the defining relations for TS2

in (6.1). On TS2, equations (6.8) conserve the energy

E(x,y) = 1
2
|y|2 + gê3 · x , (6.9)
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and the vertical angular momentum
J3(x,y) = x× y · ê3 .

Under the (x,y) canonical Poisson bracket, the angular momentum component J3 generates the Hamiltonian vector field

XJ3 = { · , J3} =
∂J3

∂y
· ∂
∂x
− ∂J3

∂x
· ∂
∂y

= ê3 × x · ∂
∂x

+ ê3 × y · ∂
∂y

, (6.10)

for infinitesimal rotations about the vertical axis ê3. Because of the S1 symmetry of the Hamiltonian in (6.7) under these rotations, we have
the conservation law,

J̇3 = {J3, H} = XJ3H = 0 .

6.1 Lie symmetry reduction

Algebra of invariants To take advantage of the S1 symmetry of the spherical pendulum, we transform to S1-invariant quantities.
A convenient choice of basis for the algebra of polynomials in (x,y) that are S1-invariant under rotations about the 3-axis is given by
[EfMoSa2005]

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2, σ6 = x1y2 − x2y1

Quotient map The transformation defined by

π : (x,y)→ {σj(x,y), j = 1, . . . , 6} (6.11)

is the quotient map TR3 → R6 for the spherical pendulum. Each of the fibres of the quotient map π is an S1 orbit generated by the
Hamiltonian vector field XJ3 in (6.10).

The six S1-invariants that define the quotient map in (6.11) for the spherical pendulum satisfy the cubic algebraic relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2) . (6.12)

They also satisfy the positivity conditions
σ4 ≥ 0, σ3 ≥ σ2

2. (6.13)

In these variables, the defining relations (6.1) for TS2 become

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0 . (6.14)

Perhaps not unexpectedly, since TS2 is invariant under the S1 rotations, it is also expressible in terms of S1-invariants. The three relations
in equations (6.12) – (6.14) will define the orbit manifold for the spherical pendulum in R6.
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Reduced space and orbit manifold in R3 On TS2, the variables σj(x,y), j = 1, . . . , 6, satisfying (6.14) allow the elimination of
σ4 and σ5 to satisfy the algebraic relation

σ2
1σ

2
2 + σ2

6 = (σ3 − σ2
2)(1− σ2

1) ,

which on expansion simplifies to
σ2

2 + σ2
6 = σ3(1− σ2

1) , (6.15)

where σ3 ≥ 0 and (1− σ2
1) ≥ 0. Restoring σ6 = J3, we may write the previous equation as

C(σ1, σ2, σ3; J2
3 ) = σ3(1− σ2

1)− σ2
2 − J2

3 = 0 . (6.16)

This is the orbit manifold for the spherical pendulum in R3. The motion takes place on the following family of surfaces depending on
(σ1, σ2, σ3) ∈ R3 and parameterised by the conserved value of J2

3 ,

σ3 =
σ2

2 + J2
3

1− σ2
1

. (6.17)

The orbit manifold for the spherical pendulum is a graph of σ3 over (σ1, σ2) ∈ R2, provided 1 − σ2
1 6= 0. The two solutions of 1 − σ2

1 = 0
correspond to the North and South poles of the sphere. In the case J2

3 = 0, the spherical pendulum restricts to the planar pendulum.

Reduced Poisson bracket in R3 When evaluated on TS2, the Hamiltonian for the spherical pendulum is expressed in these S1-invariant
variables by the linear relation

H = 1
2
σ3 + gσ1 , (6.18)

whose level surfaces are planes in R3. The motion in R3 takes place on the intersections of these Hamiltonian planes with the level sets of
J2

3 given by C = 0 in equation (6.16). Consequently, in R3-vector form, the motion is governed by the cross-product formula

σ̇ =
∂C

∂σ
× ∂H

∂σ
. (6.19)

In components, this evolution is expressed as

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk
with i, j, k = 1, 2, 3. (6.20)

The motion may be expressed in Hamiltonian form by introducing the following bracket operation, defined for a function F of the S1-invariant
vector σ = (σ1, σ2, σ3) ∈ R3 by

{F,H} = − ∂C
∂σ
· ∂F
∂σ
× ∂H

∂σ
= − εijk

∂C

∂σi

∂F

∂σj

∂H

∂σk
. (6.21)
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Figure 9: The dynamics of the spherical pendulum in the space of S1 invariants (σ1, σ2, σ3) is recovered by taking the union in R3 of the intersections of
level sets of two families of surfaces. These surfaces are the roughly cylindrical level sets of angular momentum about the vertical axis given in (6.17) and the
(planar) level sets of the Hamiltonian in (6.18). (Only one member of each family is shown in the figure here, although the curves show a few of the other
intersections.) On each planar level set of the Hamiltonian, the dynamics reduces to that of a quadratically nonlinear oscillator for the verical coordinate
(σ1) given in equation (6.24).
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The bracket in (6.21) is another example of the Nambu R3 bracket introduced in [Na1973], which satisfies the defining relations to be
a Poisson bracket. In this case, the distinguished function C(σ1, σ2, σ3; J2

3 ) in (6.16) defines a level set of the squared vertical angular
momentum J2

3 in R3 given by C = 0. The distinguished function C is a Casimir function for the Nambu bracket in R3. That is, the
Nambu bracket in (6.21) with C obeys {C,H} = 0 for any Hamiltonian H(σ1, σ2, σ3) : R3 → R. Consequently, the motion governed by
this R3 bracket takes place on level sets of J2

3 given by C = 0.

Poisson map Introducing the Nambu bracket in (6.21) ensures that the orbit map for the spherical pendulum π : TR3 → R6 is a
Poisson map. That is, the subspace obtained by using the relations (6.14) to restrict to the invariant manifold TS2 produces a set of
Poisson brackets {σi, σj} for i, j = 1, 2, 3, that close amongst themselves. Namely,

{σi, σj} = εijk
∂C

∂σk
, (6.22)

with C given in (6.16). These brackets may be expressed in tabular form, as

{ · , · } σ1 σ2 σ3

σ1

σ2

σ3

0 1− σ2
1 2σ2

−1 + σ2
1 0 − 2σ1σ3

− 2σ2 2σ1σ3 0

In addition, {σi, σ6} = 0 for i = 1, 2, 3, since σ6 = J3 and the {σi
∣∣ i = 1, 2, 3} are all S1-invariant under XJ3 in (6.10).

Exercise. Prove that the Nambu bracket in (6.21) satisfies the defining properties in Proposition 4.13 that are required
for it to be a genuine Poisson bracket. F

Reduced motion: Restriction in R3 to Hamiltonian planes The individual components of the equations of motion may be
obtained from (6.20) as

σ̇1 = −σ2 , σ̇2 = σ1σ3 + g(1− σ2
1) , σ̇3 = 2gσ2 . (6.23)

Substituting σ3 = 2(H − gσ1) from equation (6.18) and setting the acceleration of gravity to be unity g = 1 yields

σ̈1 = 3σ2
1 − 2Hσ1 − 1 (6.24)
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which has equilibria at σ±1 = 1
3
(H ±

√
H2 + 3) and conserves the energy integral

1
2
σ̇2

1 + V (σ1) = E (6.25)

with the potential V (σ1) parameterised by H in (6.18) and given by

V (σ1) = −σ3
1 +Hσ2

1 + σ1 (6.26)

Equation (6.25) is an energy equation for a particle of unit mass, with position σ1 and energy E, moving in a cubic potential field V (σ1).
For H = 0, its equilibria in the (σ1, σ̇1) phase plane are at (σ1, σ̇1) = (±

√
3/3, 0), as sketched in Figure 10.

Figure 10: The upper panel shows a sketch of the cubic potential V (σ1) in equation (6.26) for the case H = 0. For H = 0, the potential has three zeros
located at σ1 = 0,±1 and two critical points (relative equilibria) at σ1 = −

√
3/3 (centre) and σ1 = +

√
3/3 (saddle). The lower panel shows a sketch of its

fish-shaped saddle-centre configuration in the (σ1, σ̇1) phase plane, comprising several level sets of E(σ1, σ̇1) from equation (6.25) for H = 0.

Each curve in the lower panel of Figure 10 represents the intersection in the reduced phase-space with S1-invariant coordinates
(σ1, σ2, σ3) ∈ R3 of one of the Hamiltonian planes (6.18) with a level set of J2

3 given by C = 0 in equation (6.16). The critical points of
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the potential are relative equilibria, corresponding to S1-periodic solutions. The case H = 0 includes the homoclinic trajectory, for which
the level set E = 0 in (6.25) starts and ends with zero velocity at the North pole of the unit sphere. Refer to Section ?? for a discussion of
the properties of motion in a cubic potential and the details of how to compute its homoclinic trajectory.

6.2 Geometric phase for the spherical pendulum

We write the Nambu bracket (6.21) for the spherical pendulum as a differential form in R3

{F,H} d3σ = dC ∧ dF ∧ dH , (6.27)

with oriented volume element d3σ = dσ1 ∧ dσ2 ∧ dσ3. Hence, on a level set of H we have the canonical Poisson bracket

{f, h}dσ1 ∧ dσ2 = df ∧ dh =

(
∂f

∂σ1

∂h

∂σ2

− ∂f

∂σ2

∂h

∂σ1

)
dσ1 ∧ dσ2 (6.28)

and we recover equation (6.24) in canonical form with Hamiltonian

h(σ1, σ2) = −
(

1
2
σ2

2 − σ3
1 +Hσ2

1 + σ1

)
= −

(
1
2
σ2

2 + V (σ1)
)
, (6.29)

which, not unexpectedly, is also the conserved energy integral in (6.25) for motion on level sets of H.
For the S1 reduction considered in the present case, the canonical 1-form is

pidqi = σ2 dσ1 +Hdψ , (6.30)

where σ1 and σ2 are the symplectic coordinates for the level surface of H on which the reduced motion takes place and ψ ∈ S1 is canonically
conjugate to H.

Our goal is to finish the solution for the spherical pendulum motion by reconstructing the phase ψ ∈ S1 from the symmetry-reduced
motion in (σ1, σ2, σ3) ∈ R3 on a level set of H. Rearranging equation (6.30) gives

Hdψ = −σ2 dσ1 + pidqi . (6.31)

Thus, the phase change around a closed periodic orbit on a level set of H in the (σ1, σ2, ψ,H) phase space decomposes into the sum of the
following two parts: ∮

H dψ = H ∆ψ = −
∮
σ2 dσ1︸ ︷︷ ︸

geometric

+

∮
pidqi︸ ︷︷ ︸

dynamic

. (6.32)
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On writing this decomposition of the phase as

∆ψ = ∆ψgeom + ∆ψdyn , (6.33)

one sees from (6.23) that

H∆ψgeom =

∮
σ2

2 dt =

∫∫
dσ1 ∧ dσ2 (6.34)

is the area enclosed by the periodic orbit on a level set of H. Thus, the name: geometric phase for ∆ψgeom, because this part of the phase
equals the geometric area of the periodic orbit. The rest of the phase is given by

H∆ψdyn =

∮
pi dqi =

∫ T

0

(−σ2σ̇1 +Hψ̇) dt . (6.35)

Hence, from the canonical equations σ̇1 = ∂h/∂σ2 and ψ̇ = ∂h/∂H with Hamiltonian h in (6.29), we have

∆ψdyn =
1

H

∫ T

0

(
σ2
∂h

∂σ2

+H
∂h

∂H

)
dt

=
2T

H

(
h+

〈
V (σ1)

〉
− 1

2
H
〈
σ2

1

〉)
=

2T

H

(
h+

〈
V (σ1)

〉)
− T

〈
σ2

1

〉
, (6.36)

where T is the period of the orbit around which the integration is performed and the angle brackets 〈 · 〉 denote time average.
The second summand ∆ψdyn in (6.33) depends on the Hamiltonian h = E, the orbital period T , the value of the level set H and the

time averages of the potential energy and σ2
1 over the orbit. Thus, ∆ψdyn deserves the name dynamic phase, since it depends on the

several aspects of the dynamics along the orbit, not just its area.
This finishes the solution for the periodic motion of the spherical pendulum up to quadratures for the phase.
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7 Poincaré and symplectic manifolds

Henri Poincaré

The geometry of Hamiltonian mechanics is best expressed by using exterior
calculus on symplectic manifolds. Exterior calculus began with H. Poincaré
and was eventually perfected by E. Cartan using methods of S. Lie. This
chapter introduces key definitions and develops the necessary ingredients
of exterior calculus.
This chapter casts the ideas underlying the examples we have been studying
heuristically in the previous chapters into the language of differential forms.

The goals of the next few sections are, as follows.

1. Define differential forms using exterior product (wedge product) in a local basis.

2. Define the push-forward and pull-back of a differential form under a smooth invertible map.

3. Define the operation of contraction, or substitution of a vector field into a differential form.

4. Define the exterior derivative of a differential form.

5. Define Lie derivative in two equivalent ways, either dynamically as the tangent to the flow of a smooth invertible map acting by
push-forward on a differential form, or algebraically by using Cartan’s formula.

6. Derive the various identities for Lie derivatives acting on differential forms and illustrate them using steady incompressible fluid flows
as an example.

7. Explain Nambu’s bracket for divergenceless vector fields in R3 in the language of differential forms.

8. Define the Hodge star operation and illustrate its application in Maxwell’s equations.

9. Explain Poincaré’s Lemma for closed, exact and co-exact forms.
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We begin by recalling Hamilton’s canonical equations and using them to demonstrate Poincaré’s theorem for Hamiltonian flows heuristi-
cally, by a simple direct calculation. This will serve to motivate further discussion of manifolds, tangent bundles, cotangent bundles, vector
fields and differential forms in the remainder of this Chapter.

Definition

7.1 (Hamilton’s canonical equations).
Hamilton’s canonical equations are written on phase space, a locally Euclidean space with pairs of coordinates denoted (q, p).
Namely,

dq

dt
=
∂H

∂p
,

dp

dt
= − ∂H

∂q
, (7.1)

where ∂H/∂q and ∂H/∂p are the gradients of a smooth function on phase space H(q, p) called the Hamiltonian.
The set of curves in phase space (q(t), p(t)) satisfying Hamilton’s canonical equations (7.1) is called a Hamiltonian flow.

Definition

7.2 (Symplectic 2-form).
The oriented area in phase space

ω = dq ∧ dp = − dp ∧ dq

is called the symplectic 2-form.

Definition

7.3 (Sym·plec·tic).
From the Greek for plaiting, braiding or joining together.

Definition

7.4 (Symplectic flows).
Flows that preserve area in phase space are said to be symplectic.
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Theorem

7.5 (Poincaré’s theorem). Hamiltonian flows are symplectic. That is, they preserve the oriented phase space area ω = dq ∧ dp.

Proof. Preservation of ω may first be verified via the same formal calculation used to prove its preservation (4.20) in Theorem 4.24.
Namely, along the characteristic equations of the Hamiltonian vector field (dq/dt, dp/dt) = (q̇(t), ṗ(t)) = (Hp,−Hq), for a solution of
Hamilton’s equations for a smooth Hamiltonian function H(q, p), the flow of the symplectic two-form ω is governed by

dω

dt
= dq̇ ∧ dp+ dq ∧ dṗ = dHp ∧ dp− dq ∧ dHq

= (Hpqdq +Hppdp) ∧ dp− dq ∧ (Hqqdq +Hqpdp)

= Hpq dq ∧ dp−Hqp dq ∧ dp = (Hpq −Hqp) dq ∧ dp = 0 .

The first step uses the product rule for differential forms, the second uses antisymmetry of the wedge product (dq ∧ dp = − dp ∧ dq)
and last step uses equality of cross derivatives Hpq = Hqp for a smooth Hamiltonian function H.

8 Preliminaries for exterior calculus

8.1 Manifolds and bundles

Let us review some of the fundamental concepts that have already begun to emerge in the previous chapter and cast them into the language
of exterior calculus.

Definition

8.1 (Smooth submanifold of R3N).
A smooth K-dimensional submanifold M of the Euclidean space R3N is any subset which in a neighbourhood of every point on it is a
graph of a smooth mapping of RK into R(3N−K) (where RK and R(3N−K) are coordinate subspaces of R3N ' RK × R(3N−K)).

This means that every point in M has an open neighbourhood U such that the intersection M ∩U is the graph of some smooth function
expressing (3N −K) of the standard coordinates of R3N in terms of the other K coordinates, e.g., (x, y, z) = (x, f(x, z), z) in R3. This is
also called an embedded submanifold.

Definition
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8.2 (Tangent vectors and tangent bundle).
The solution q(t) ∈ M is a curve (or trajectory) in manifold M parameterised by time in some interval t ∈ (t1 , t2). The tangent
vector of the curve q(t) is the velocity q̇(t) along the trajectory that passes though the point q ∈ M at time t. This is written
q̇ ∈ TqM , where TqM is the tangent space at position q on the manifold M . Taking the union of the tangent spaces TqM over the
entire configuration manifold defines the tangent bundle (q, q̇) ∈ TM .

Remark

8.3 (Tangent and cotangent bundles).
The configuration space M has coordinates q ∈M . The union of positions on M and tangent vectors (velocities) at each position
comprises the tangent bundle TM . Its positions and momenta have phase space coordinates expressed as (q, p) ∈ T ∗M , where T ∗M
is the cotangent bundle of the configuration space.

The terms tangent bundle and cotangent bundle introduced earlier are properly defined in the context of manifolds. See
especially Definition 9.14 in the next section for a precise definition of the cotangent bundle of a manifold. Until now, we have gained
intuition about geometric mechanics in the context of examples, by thinking of the tangent bundle as simply the space of positions
and velocities. Likewise, we have regarded the cotangent bundle simply as a pair of vectors on an optical screen, or as the space of
positions and canonical momenta for a system of particles. In this chapter, these intuitive definitions will be formalised and made
precise by using the language of differential forms.

8.2 Contraction

Definition

8.4 (Contraction).
In exterior calculus, the operation of contraction denoted as introduces a pairing between vector fields and differential forms.
Contraction is also called substitution of a vector field into a differential form. For basis elements in phase space, contraction defines
duality relations,

∂q dq = 1 = ∂p dp , and ∂q dp = 0 = ∂p dq , (8.1)

so that differential forms are linear functions of vector fields. A Hamiltonian vector field:

XH = q̇
∂

∂q
+ ṗ

∂

∂p
= Hp∂q −Hq∂p = { · , H } , (8.2)
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satisfies the intriguing linear functional relations with the basis elements in phase space,

XH dq = Hp and XH dp = −Hq . (8.3)

Definition

8.5 (Contraction rules with higher forms).
The rule for contraction or substitution of a vector field into a differential form is to sum the substitutions of XH over the permuta-
tions of the factors in the differential form that bring the corresponding dual basis element into its leftmost position. For example,
substitution of the Hamiltonian vector field XH into the symplectic form ω = dq ∧ dp yields

XH ω = XH (dq ∧ dp) = (XH dq) dp− (XH dp) dq .

In this example, XH dq = Hp and XH dp = −Hq, so

XH ω = Hpdp+Hqdq = dH ,

which follows from the duality relations (8.1).

This calculation proves the following.

Theorem

8.6 (Hamiltonian vector field). The Hamiltonian vector field XH = { · , H } satisfies

XH ω = dH with ω = dq ∧ dp . (8.4)

Remark

8.7. The purely geometric nature of relation (8.4) argues for it to be taken as the definition of a Hamiltonian vector field.

Lemma

8.8 (d2 = 0 for smooth phase space functions).
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Proof. For any smooth phase space function H(q, p), one computes

dH = Hqdq +Hpdp

and taking the second exterior derivative yields

d2H = Hqp dp ∧ dq +Hpq dq ∧ dp
= (Hpq −Hqp) dq ∧ dp = 0 .

Relation (8.4) also implies the following.

Corollary

8.9. The flow of XH preserves the exact 2-form ω for any Hamiltonian H.

Proof. Preservation of ω may be verified first by a formal calculation using (8.4). Along (dq/dt, dp/dt) = (q̇, ṗ) = (Hp,−Hq), for a
solution of Hamilton’s equations, we have

dω

dt
= dq̇ ∧ dp+ dq ∧ dṗ = dHp ∧ dp− dq ∧ dHq

= d(Hp dp+Hq dq) = d(XH ω) = d(dH) = 0 .

The first step uses the product rule for differential forms and the third and last steps use the property of the exterior derivative d
that d2 = 0 for continuous forms. The latter is due to equality of cross derivatives Hpq = Hqp and antisymmetry of the wedge product:
dq ∧ dp = − dp ∧ dq.

Definition

8.10 (Symplectic flow).
A flow is symplectic, if it preserves the phase space area, or symplectic two-form, ω = dq ∧ dp.

According to this definition, Corollary 8.9 may be simply re-stated as
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Corollary

8.11 (Poincaré’s theorem).
The flow of a Hamiltonian vector field is symplectic.

Definition

8.12 (Canonical transformations).
A smooth invertible map g of the phase space T ∗M is called a canonical transformation, if it preserves the canonical symplectic
form ω on T ∗M , i.e., g∗ω = ω, where g∗ω denotes the transformation of ω under the map g.

Remark

8.13. The usage of the notation g∗ω as the transformation of ω under the map g foreshadows the idea of pull-back, made more
precise in Definition 9.18.

Remark

8.14 (Criterion for a canonical transformation). Suppose in the original coordinates (p, q) the symplectic form is expressed as
ω = dq ∧ dp. A transformation g : T ∗M 7→ T ∗M written as (Q,P ) = (Q(p, q), P (p, q) is canonical if the direct computation shows
that dQ∧ dP = c dq ∧ dp, up to a constant factor c. (Such a constant factor c is unimportant, since it may be absorbed into the units
of time in Hamilton’s canonical equations.)

Remark

8.15. By Corollary 8.11 of Poincaré’s Theorem 7.5, the Hamiltonian phase flow gt is a one-parameter group of canonical trans-
formations.

Theorem

8.16 (Preservation of Hamiltonian form).
Canonical transformations preserve Hamiltonian form.
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Proof. The coordinate-free relation (8.4) keeps its form if

dQ ∧ dP = c dq ∧ dp ,

up to the constant factor c. Hence, Hamilton’s equations re-emerge in canonical form in the new coordinates, up to a rescaling by c
which may be absorbed into the units of time.

Remark

8.17 (Lagrange-Poincaré theorem).
Lagrange’s equations [

L
]
q

:=
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

imply an evolution equation for the differential one-form

d

dt

(∂L
∂q̇

dq
)

=
( d
dt

∂L

∂q̇

)
dq +

∂L

∂q̇
dq̇

= dL .

Applying the exterior derivative, commuting it with the time derivative and using d2 = 0 yields

d

dt

(
d
∂L

∂q̇
∧ dq

)
= 0 , (8.5)

whose preservation is Lagrange’s counterpart of Poincaré’s theorem on the symplectic property of Hamiltonian flows, found and used
in ray optics almost a century before Poincaré!

The components ∂L/∂q̇a of the differential one-form,

θL =
∂L

∂q̇a
dqa ,

transform under a change of coordinates on M as a covariant vector. That is, under a change of coordinates Qi = Qi(q), we find

θL =
∂L

∂q̇a
dqa =

∂L

∂q̇a
∂qa

∂Qb
dQb .
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Proposition

8.18. A Lagrangian system (M,L) is non-degenerate (hyperregular) if and only if the two-form dθL on TM is non-degenerate.

Proof. In coordinates on TM with indices a, b = 1, . . . , K,

dθL =
∂2L

∂q̇a∂q̇b
dq̇b ∧ dqa +

∂2L

∂q̇a∂qb
dqb ∧ dqa , (8.6)

so that the 2K × 2K matrix corresponding to the two-form dθL is non-degenerate if and only if the K × K matrix HL in (4.3) is
non-degenerate.

Definition

8.19 (Canonical, or Liouville one-form).
The one-form θ on T ∗M , defined in phase space coordinates by

θ = padq
a = p · dq ,

is called the canonical, or Liouville one-form. Its exterior derivative yields (minus) the symplectic two-form,

dθ = −ω = dpa ∧ dqa .

Definition

8.20 (Cotangent lift).
A change of base coordinates Qb = Qb(q) in the cotangent bundle T ∗M of a manifold M induces a change in its fibre coordinates

pa = Pb
∂Qb

∂qa
such that padq

a = PbdQ
b ,

so (Qb, Pb) are also canonical coordinates. This transformation of the fibre coordinates (canonical momenta) is called the cotangent
lift of the base transformation.
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8.3 Hamilton-Jacobi equation

Definition

8.21 (Steady generating functions).
A sufficient condition for a transformation (Q,P ) = (Q(p, q), P (p, q)) to be canonical is that

P · dQ− p · dq = dF . (8.7)

Following Hamilton’s approach to geometric optics, this relation defines a generating function F , which may be chosen to depend
on one of the old phase space variables (p, q) and one of the new phase space variables (Q,P ).

Remark

8.22 (Time-dependent generating functions).
Generating functions based on the phase space action in (4.8) lead to the Hamilton-Jacobi equation. For this, one considers a

time-dependent transformation (Q,P ) = (Q(p, q, t), P (p, q, t)), under which the integrand of the phase space action in (4.8) transforms
as

p · dq −H(q, p)dt = P · dQ−K(Q,P )dt+ dS , (8.8)

in which we require the transformed Hamiltonian to vanish identically, that is

K(Q,P ) ≡ 0 .

Hence, all its derivatives are also zero, and Hamilton’s equations become trivial:

dP

dt
= 0 =

dQ

dt
.

That is, the new generalised coordinates Q and momenta P are constants of motion. Under this condition, one may rearrange equation
(8.8), so that

dS =
∂S

∂q
· dq +

∂S

∂t
dt+

∂S

∂Q
· dQ

= p · dq −H(q, p)dt− P · dQ . (8.9)
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Consequently, the generating function S(q, t, Q) satisfies, term by term,

∂S

∂q
= p ,

∂S

∂Q
= −P , ∂S

∂t
+H(q, p) = 0 . (8.10)

Combining these equations results in the Hamilton-Jacobi equation, written in the form,

∂S

∂t
(q, t, Q) +H

(
q,
∂S

∂q

)
= 0 . (8.11)

Thus, the Hamilton-Jacobi equation (8.11) is a single, first-order nonlinear partial differential equation for the function S of the
N generalised coordinates q = (q1, . . . , qN) and the time t. The generalised momenta do not appear, except as derivatives of S.
Remarkably, when the 2N constant parameters Q and P are identified with the initial values Q = q(ta), P = p(ta), the function S is
equal to the classical action,

S(q, t, Q) =

∫ t

ta

dS =

∫ t

ta

p · dq −H(q, p) dt . (8.12)

In geometrical optics, the solution S of the Hamilton-Jacobi equation (8.11) is called Hamilton’s characteristic function.

Remark

8.23 (Hamilton’s characteristic function in optics).
Hamilton’s characteristic function S in (8.12) has an interesting interpretation in terms of geometric optics. As we saw in Chapter

??, the tangents to Fermat’s light rays in an isotropic medium are normal to Huygens wave fronts. The phase of such a wave front is
given by [BoWo1965]

φ =

∫
k · dr− ω(k, r) dt . (8.13)

The Huygens wave front is a travelling wave, for which the phase φ is constant. For such a wave, the phase shift
∫

k · dr along a ray
trajectory such as r(t) in Figure ?? is given by

∫
ωdt.

On comparing the phase relation in (8.13) to the Hamilton-Jacobi solution in equation (8.12), one sees that Hamilton’s characteristic
function S plays the role of the phase φ of the wave front. The frequency ω of the travelling wave plays the role of the Hamiltonian
and the wavevector k corresponds to the canonical momentum. Physically, the index of refraction n(r) of the medium at position r
enters the travelling wave phase speed ω/k as

ω

k
=

c

n(r)
, k = |k| ,
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where c is the speed of light in a vacuum. Consequently, we may write Hamilton’s canonical equations for a wave front as

dr

dt
=

∂ω

∂k
=
c

n

k

k
=

c2

n2ω
k , (8.14)

dk

dt
= − ∂ω

∂r
=

ck

2n3

∂n2

∂r
=
ω

n

∂n

∂r
. (8.15)

After a short manipulation, these canonical equations combine into

n2

c

d

dt

(
n2

c

dr

dt

)
=

1

2

∂n2

∂r
. (8.16)

In terms of a different variable time increment cdt = n2dτ , equation (8.16) may also be expressed in the form of

d2r

dτ 2
=

1

2

∂n2

∂r
(Newton’s 2nd Law) (8.17)

If instead of τ we define the variable time increment cdt = ndσ, then equation (8.16) takes the form of the eikonal equation (??)
for the paths of light rays in geometric optics, r(σ) ∈ R3 as

d

dσ

(
n(r)

dr

dσ

)
=
∂n

∂r
(Eikonal equation) (8.18)

As discussed in Chapter ??, this equation follows from Fermat’s principle of stationarity of the optical length under variations of the
ray paths,

δ

∫ B

A

n(r(σ)) dσ = 0 (Fermat’s principle) (8.19)

with arclength parameter σ, satisfying dσ2 = dr(σ) · dr(σ) and, hence, |dr/dσ| = 1.
From this vantage point, one sees that replacing k→ ω

c
∇S in Hamilton’s first equation (8.14) yields

n(r)
dr

dσ
= ∇S(r) (Huygens equation) (8.20)

from which the eikonal equation (8.18) may be recovered by differentiating, using d/dσ = n−1∇S · ∇ and |∇S|2 = n2.
Thus, the Hamilton-Jacobi equation (8.11) includes and unifies the ideas that originated with Fermat, Huygens and Newton.
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Remark

8.24 (The threshold of quantum mechanics).
In a paper based on his PhD thesis, Feynman [Fe1948] derived a new formulation of quantum mechanics based on summing the

complex amplitude for each path exp(iS/~), with action S given by the Hamilton-Jacobi solution in equation (8.12), over all possible
paths between the initial and final points. Earlier Dirac [Di1933] had considered a similar idea, but Dirac had considered only the
classical path. Feynman showed that quantum mechanics emerges when the amplitudes exp(iS/~) for all paths are summed. That
is, the amplitudes for all paths are added together, then their modulus-squared is taken according to the quantum mechanical rule
for obtaining a probability density. Perhaps not unexpectedly, Feynman’s original paper [Fe1948] which laid the foundations of a new
formulation of quantum mechanics was rejected by the mainstream scientific journal then, Physical Review!

Feynman’s formulation of quantum mechanics provides an extremely elegant view of classical mechanics as being the ~→ 0 limit
of quantum mechanics, through the principle of stationary phase. In this limit, only the path for which S is stationary (i.e., satisfies
Hamilton’s principle) contributes to the sum over all paths, and the particle traverses a single trajectory, rather than many. For more
information, see [Fe1948, FeHi1965, Di1981].

9 Differential forms and Lie derivatives

9.1 Exterior calculus with differential forms

Various concepts involving differential forms have already emerged heuristically in our earlier discussions of the relations among Lagrangian
and Hamiltonian formulations of mechanics. In this chapter, we shall reprise the relationships among these concepts and set up a framework
for using differential forms that generalises the theorems of vector calculus involving grad, div and curl, and the integral theorems of Green,
Gauss and Stokes so that they apply to manifolds of arbitrary dimension.

Definition

9.1 (Velocity vectors of smooth curves).
Consider an arbitrary curve c(t) that maps an open interval t ∈ (−ε, ε) ⊂ R around the point t = 0 to the manifold M :

c : (−ε, ε)→M,

with c(0) = x. Its velocity vector at x is defined by c′(0) := dc
dt

∣∣
t=0

= v.
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Definition

9.2 (Tangent space to a smooth manifold).
The space of velocities v tangent to the manifold at a point x ∈ M forms a vector space called the tangent space to M at x ∈ M .
This vector space is denoted as TxM .

Definition

9.3 (Tangent bundle over a smooth manifold).
The disjoint union of tangent spaces to M at the points x ∈M given by

TM =
⋃
x∈M

TxM

is a vector space called the tangent bundle to M and is denoted as TM .

Definition

9.4. [Differential of a smooth function]
Let f : M 7→ R be a smooth, real-valued function on an n-dimensional manifold M . The differential of f at a point x ∈ M is a
linear map df(x) : TxM 7→ R, from the tangent space TxM of M at x to the real numbers.

Definition

9.5 (Differentiable map).
A map f : M → N from manifold M to manifold N is said to be differentiable (resp. Ck) if it is represented in local coordinates on
M and N by differentiable (resp. Ck) functions.

Definition

9.6 (Derivative of a differentiable map).
The derivative of a differentiable map

f : M → N
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at a point x ∈M is defined to be the linear map
Txf : TxM → TxN,

constructed for v ∈ TxM by using the chain rule to compute,

Txf · v =
d

dt
f(c(t))

∣∣∣
t=0

=
∂f

∂c

∣∣∣
x

d

dt
c(t)
∣∣∣
t=0
.

Thus Txf · v is the velocity vector at t = 0 of the curve f ◦ c : R→ N at the point x ∈M .

Remark

9.7. The tangent vectors of the map f : M → N define a space of linear operators at each point x in M , satisfying
(i) Tx(f + g) = Txf + Txg (linearity), and
(ii) Tx(fg) = (Txf)g + f(Txg) (the Leibniz rule).

Definition

9.8 (Tangent lift).
The union Tf =

⋃
x Txf of the derivatives Txf : TxM → TxN over points x ∈M is called the tangent lift of the map f : M → N .

Remark

9.9. The chain-rule definition of the derivative Txf of a differentiable map at a point x depends on the function f and the vec-
tor v. Other degrees of differentiability are possible. For example, if M and N are manifolds and f : M → N is of class Ck+1, then
the tangent lift (Jacobian) Txf : TxM → TxN is Ck.

Definition

9.10 (Vector field).
A vector field X on a manifold M is a map : M → TM that assigns a vector X(x) at any point x ∈ M . The real vector space of
vector fields on M is denoted X(M).

Definition
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9.11 (Local basis of a vector field).
A basis of the vector space TxM may be obtained by using the gradient operator, written as ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) in local
coordinates. In these local coordinates a vector field X has components Xj given by

X = Xj ∂

∂xj
=: Xj∂j ,

where repeated indices are summed over their range. (In this case j = 1, 2, . . . , n.)

Definition

9.12 (Dual basis).
As in Definition 9.11, relative to the local coordinate basis ∂j = ∂/∂xj, j = 1, 2, . . . , n of the tangent space TxM , one may write the
dual basis as dxk, k = 1, 2, . . . , n, so that, in familiar notation, the differential of a function f is given by

df =
∂f

∂xk
dxk ,

and again one sums on repeated indices.

Definition

9.13 (Subscript-comma notation).
Subscript-comma notation abbreviates partial derivatives as

f,k :=
∂f

∂xk
, so that df = f,k dx

k .

Definition

9.14 (Cotangent space of M at x).
Being a linear map from the tangent space TxM of M at x to the reals, the differential defines the space T ∗xM dual to TxM . The dual
space T ∗xM is called the cotangent space of M at x.
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Definition

9.15 (Tangent and cotangent bundles). The union of tangent spaces TxM over all x ∈ M is the tangent bundle TM of the
manifold M . Its dual is the cotangent bundle, denoted T ∗M .

9.2 Pull-back and push-forward notation:
coordinate-free representation

We introduce the pull-back and push-forward notation for changes of basis by variable transformations in functions, vector fields and
differentials. Let φ : M → N be a smooth invertible map from the manifold M to the manifold N .

φ∗f pull-back of a function: φ∗f = f ◦ φ .

φ∗g push-forward of a function: φ∗g = g ◦ φ−1 .

φ∗X push-forward of a vector field X by φ:
(φ∗X)

(
φ(z)

)
= Tzφ ·X(z) . (9.1)

The push-forward of a vector field X by φ has components,

(φ∗X)l
∂

∂φl(z)
= XJ(z)

∂

∂zJ
,

so that

(φ∗X)l =
∂φl(z)

∂zJ
XJ(z) =: (Tzφ ·X(z))l . (9.2)

This formula defines the notation Tzφ ·X(z).

φ∗Y pull-back of a vector field Y by φ:
φ∗Y = (φ−1)∗Y .

φ∗df pull-back of differential df of function f by φ:

φ∗df = d(f ◦ φ) = d(φ∗f) . (9.3)
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In components, this is

φ∗df = df(φ(z)) =
∂f

∂φl(z)
(Tzφ · dz)l =

∂f

∂zJ
dzJ ,

in which

(Tzφ · dz)l =
∂φl(z)

∂zJ
dzJ . (9.4)

9.3 Wedge product of differential forms

Differential forms of higher degree may be constructed locally from the one-form basis dxj, j = 1, 2, . . . , n, by composition with the wedge
product, or exterior product, denoted by the symbol ∧. The geometric construction of higher-degree forms is intuitive and the wedge
product is natural, if one imagines first composing the one-form basis as a set of line elements in space to construct oriented surface elements
as two-forms dxj ∧ dxk, then volume elements as three-forms dxj ∧ dxk ∧ dxl, etc. For these surface and volume elements to be oriented,
the wedge product must be antisymmetric. That is, dxj ∧ dxk = − dxk ∧ dxj under exchange of the order in a wedge product. By using
this construction, any k-form α ∈ Λk on M may be written locally at a point m ∈M in the dual basis dxj as

αm = αi1...ik(m)dxi1 ∧ · · · ∧ dxik ∈ Λk , i1 < i2 < · · · < ik , (9.5)

where the sum over repeated indices is ordered, so that it must be taken over all ij satisfying i1 < i2 < · · · < ik.

The rules for composition with the wedge product in the construction of k-forms Λk with k ≤ n on an n-dimensional manifold are
summarised in the following proposition.

Proposition

9.16 (Wedge product rules).
The properties of the wedge product among differential forms in n dimensions are:

(i) α ∧ β is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.



Notes: Geometric Mechanics I DD Holm Fall Term 2013 96

(ii) α ∧ β is bilinear in α and β:

(aα1 + bα2) ∧ β = aα1 ∧ β + bα2 ∧ β
α ∧ (cβ1 + eβ2) = cα ∧ β1 + eα ∧ β2 ,

for a, b, c, e ∈ R.

(iii) α ∧ β is anticommutative: α ∧ β = (−1)klβ ∧ α , where α is a k-form and β is an l-form. The prefactor (−1)kl counts
the signature of the switches in sign required in reordering the wedge product so that its basis indices are strictly increasing,
that is, they satisfy i1 < i2 < · · · < ik+l.

9.4 Pull-back & push-forward of differential forms

Smooth invertible maps act on differential forms by the operations of pull-back and push-forward.

Definition

9.17 (Diffeomorphism).
A smooth invertible map whose inverse is also smooth is said to be a diffeomorphism.

Definition

9.18 (Pull-back and push-forward).
Let φ : M → N be a smooth invertible map from the manifold M to the manifold N and let α be a k-form on N . The pull-back
φ∗α of α by φ is defined as the k-form on M given by

φ∗αm = αi1...ik(φ(m))(Tmφ · dx)i1 ∧ · · · ∧ (Tmφ · dx)ik , (9.6)

with i1 < i2 < · · · < ik. If the map φ is a diffeomorphism, the push-forward φ∗α of a k-form α by the map φ is defined by
φ∗α = (φ∗)−1α. That is, for diffeomorphisms, pull-back of a differential form is the inverse of push-forward.
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Example

9.19. In the definition (9.6) of the pull-back of the k-form α, the additional notation Tmφ expresses the chain rule for
change of variables in local coordinates. For example,

(Tmφ · dx)i1 =
∂φi1(m)

∂xiA
dxiA .

Thus, the pull-back of a one-form is given as in (9.2) and (9.4),

φ∗
(
v(x) · dx

)
= v

(
φ(x)

)
· dφ(x)

= vi1
(
φ(x)

)(∂φi1(x)

∂xiA
dxiA

)
= v

(
φ(x)

)
· (Txφ · dx) .

Pull-backs of other differential forms may be built up from their basis elements, by the following.

Proposition

9.20 (Pull-back of a wedge product).
The pull-back of a wedge product of two differential forms is the wedge product of their pull-backs:

φ∗(α ∧ β) = φ∗α ∧ φ∗β . (9.7)

Remark

9.21. The Definition 8.12 of a canonical transformation may now be rephrased using the pull-back operation, as follows.
A smooth invertible transformation φ is canonical, if

φ∗ω = c ω ,

for some constant c ∈ R.
Likewise, Poincaré’s Theorem 7.5 of invariance of the symplectic 2-form under a Hamiltonian flow φt depending on a real

parameter t may be expressed in terms of the pull-back operation as

φ∗t (dq ∧ dp) = dq ∧ dp .
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9.5 Summary of differential-form operations

Besides the wedge product, three basic operations are commonly applied to differential forms. These are contraction, exterior derivative and
Lie derivative.

Contraction with a vector field X lowers the degree:

X Λk 7→ Λk−1 .

Exterior derivative d raises the degree:

dΛk 7→ Λk+1 .

Lie derivative £X by vector field X preserves the degree:

£XΛk 7→ Λk , where £XΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k ,

in which φt is the flow of the vector field X.

Lie derivative £X satisfies Cartan’s formula:

£Xα = X dα + d(X α) for α ∈ Λk .

Remark

9.22.
Note that Lie derivative commutes with exterior derivative. That is,

d(£Xα) = £Xdα , for α ∈ Λk(M) and X ∈ X(M) .

9.6 Contraction, or interior product
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Definition

9.23 (Contraction, or interior product).
Let α ∈ Λk be a k-form on a manifold M

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk , with i1 < i2 < · · · < ik ,

and let X = Xj∂j be a vector field. The contraction, or interior product X α of a vector field X with a k-form α is defined by

X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik . (9.8)

Note that

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik , particularly in its first two indices.

Remark

9.24 (Examples of contraction).

(1) A mnemonic device for keeping track of signs in contraction or substitution of a vector field into a differential form is to sum
the substitutions of X = Xj∂j over the permutations that bring the corresponding dual basis element into the leftmost position
in the k-form α. For example, in two dimensions, contraction of the vector field X = Xj∂j = X1∂1 + X2∂2 into the two-form
α = αjkdx

j ∧ dxk with α21 = −α12, yields

X α = Xjαji2dx
i2 = X1α12dx

2 +X2α21dx
1 .

Likewise, in three dimensions, contraction of the vector field X = X1∂1+X2∂2+X3∂3 into the three-form α = α123dx
1 ∧ dx2 ∧ dx3

with α213 = −α123, etc. yields

X α = X1α123dx
2 ∧ dx3 + cyclic permutations,

= Xjαji2i3dx
i2 ∧ dxi3 with i2 < i3 .
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(2) The rule for contraction of a vector field with a differential form develops from the relation

∂j dxk = δkj ,

in the coordinate basis ej = ∂j := ∂/∂xj and its dual basis ek = dxk. Contraction of a vector field with a one-form yields the
dot product, or inner product, between a covariant vector and a contravariant vector is given by

Xj∂j vkdx
k = vkδ

k
jX

j = vjX
j ,

or, in vector notation,

X v · dx = v ·X .

This is the dot product of vectors v and X.

Our previous calculations for 2-forms and 3-forms provide the following additional expressions for contraction of a vector
field with a differential form,

X B · dS = −X×B · dx ,
X d 3x = X · dS ,

d(X d 3x) = d(X · dS) = (divX) d 3x .

Remark

9.25 (Physical examples of contraction).
The first of these contraction relations represents the Lorentz, or Coriolis force, when X is particle velocity and B is either mag-
netic field, or rotation rate, respectively. The second contraction relation is the flux of the vector X through a surface element.
The third is the exterior derivative of the second, thereby yielding the divergence of the vector X.

Exercise. Show that
X (X B · dS) = 0 ,

and
(X B · dS) ∧B · dS = 0 ,

for any vector field X and 2-form B · dS. F
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(3) By the linearity of its definition (9.8), contraction of a vector field X with a differential k-form α satisfies

(hX) α = h(X α) = X hα .

Proposition

9.26 (Contracting through wedge product).
Let α be a k-form and β be a one-form on a manifold M and let X = Xj∂j be a vector field. Then the contraction of X through the
wedge product α ∧ β satisfies

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) . (9.9)

Proof. The proof is a straightforward calculation using the definition of contraction. The exponent k in the factor (−1)k counts the
number of exchanges needed to get the one-form β to the left-most position through the k-form α.

Proposition

9.27 (Contraction commutes with pull-back).
That is,

φ∗(X(m) α) = X(φ(m)) φ∗α . (9.10)

Proof. Direct verification using the relation between pull-back of forms and push-forward of vector fields.

Definition

9.28 (Alternative notations for contraction).
Besides the hook notation with , one also finds in the literature the following two alternative notations for contraction of a vector
field X with k-form α ∈ Λk on a manifold M .

X α = iXα = α(X, · , · , . . . , ·︸ ︷︷ ︸
k − 1 slots

) ∈ Λk−1 . (9.11)

In the last alternative, one leaves a dot ( · ) in each remaining slot of the form that results after contraction. For example, contraction
of the Hamiltonian vector field XH = { · , H} with the symplectic 2-form ω ∈ Λ2 produces the 1-form,

XH ω = ω(XH , · ) = −ω( · , XH) = dH .
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Proposition

9.29 (Hamiltonian vector field definitions).
The two definitions of Hamiltonian vector field XH

dH = XH ω and XH = { · , H} ,

are equivalent.

Proof. The symplectic Poisson bracket satisfies {F,H} = ω(XF , XH), because

ω(XF , XH) := XH XF ω = XH dF = −XF dH = {F, H} .

Remark

9.30. The relation {F, H} = ω(XF , XH) means that the Hamiltonian vector field defined via the symplectic form coincides exactly
with the Hamiltonian vector field defined using the Poisson bracket.

9.7 Exterior derivative

Definition

9.31 (Exterior derivative of a k-form).
The exterior derivative of the k-form α written locally as

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ,

in which one sums on all ij satisfying i1 < i2 < · · · < ik), is the (k + 1)-form dα written in coordinates as

dα = dαi1...ik ∧ dxi1 ∧ · · · ∧ dxik , with i1 < i2 < · · · < ik ,

where dαi1...ik = (∂αi1...ik/∂x
j) dxj summed on all j.

With this local definition of dα in coordinates, one may verify the following properties.
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Proposition

9.32 (Properties of the exterior derivative).

(i) If α is a zero-form (k = 0), that is α = f ∈ C∞(M), then df is the one-form given by the differential of f .

(ii) dα is linear in α, that is

d(c1α1 + c2α2) = c1dα1 + c2dα2 for constants c1, c2 ∈ R .

(iii) dα satisfies the product rule ,

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ , (9.12)

where α is a k-form and β is a one-form.

(iv) d2 = 0, that is, d(dα) = 0 for any k-form α.

(v) d is a local operator, that is, dα depends only on local properties of α restricted to any open neighbourhood of x.
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9.8 Exercises in exterior calculus operations

Vector notation for differential basis elements
One denotes differential basis elements dxi and dSi = 1

2
εijkdx

j ∧ dxk, for i, j, k = 1, 2, 3, in vector notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3

=
1

6
εijkdx

i ∧ dxj ∧ dxk .

Exercise. Vector calculus operations
Show that contraction of the vector field X = Xj∂j =: X · ∇ with the differential basis elements recovers the following familiar
operations among vectors:

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .

F

Exercise. Exterior derivatives in vector notation
Show that the exterior derivative and wedge product satisfy the following relations in components and in three-dimensional vector
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notation:

df = f,j dx
j =: ∇f · dx ,

0 = d2f = f,jk dx
k ∧ dxj ,

df ∧ dg = f,j dx
j ∧ g,k dxk

=: (∇f ×∇g) · dS ,
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dxk ∧ h,l dxl

=: (∇f · ∇g ×∇h) d 3x .

F

Exercise. Vector calculus formulas
Show that the exterior derivative yields the following vector calculus formulas:

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) d 3x .

The compatibility condition d2 = 0 is written for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

The product rule (9.12) is written for these forms as

d
(
f(A · dx)

)
= df ∧A · dx + fcurlA · dS
=

(
∇f ×A + fcurlA

)
· dS

= curl(fA) · dS ,
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and

d
(
(A · dx) ∧ (B · dx)

)
= (curlA) · dS ∧B · dx
−A · dx ∧ (curlB) · dS

=
(
B · curlA−A · curlB

)
d 3x

= d
(
(A×B) · dS

)
= div(A×B) d 3x .

These calculations return the familiar formulas from vector calculus for quantities curl(grad), div(curl), curl(fA) and div(A×B).
F

Exercise. Integral calculus formulas
Show that Stokes theorem for the vector calculus formulas yields the following familiar results in R3:

(1) The fundamental theorem of calculus, upon integrating df along a curve in R3 starting at point a and ending at
point b, ∫ b

a

df =

∫ b

a

∇f · dx = f(b)− f(a) .

(2) Classical Stokes theorem, for a compact surface S with boundary ∂S:∫
S

(curl v) · dS =

∮
∂S

v · dx .

(For a planar surface Ω ∈ R2, this is Green’s theorem.)

(3) The Gauss divergence theorem, for a compact spatial domain D with boundary ∂D:∫
D

(div A) d 3x =

∮
∂D

A · dS .

F
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These exercises illustrate the following.

Theorem

9.33 (Stokes theorem).
Suppose M is a compact oriented k-dimensional manifold with boundary ∂M and α is a smooth (k − 1)-form on M . Then∫

M

dα =

∮
∂M

α .

9.9 Dynamic definition of Lie derivative

Definition

9.34 (Dynamic definition of Lie derivative). Let α be a k-form on a manifold M and let X be a vector field with flow φt
on M . The Lie derivative of α along X is defined as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) . (9.13)

Remark

9.35. This is the definition we have been using all along in defining vector fields by their characteristic equations.
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Definition

9.36 (Cartan’s formula for Lie derivative). Cartan’s formula defines the Lie derivative of the k-form α with respect to a
vector field X in terms of the operations d and as

£Xα = X dα + d(X α) . (9.14)

The proof of the equivalence of these two definitions of the Lie derivative of an arbitrary k-form is straightforward, but too cumbersome
to be given here. We shall investigate the equivalence of these two definitions in a few individual cases, instead.

9.10 Poincaré’s theorem

By Cartan’s formula, the Lie derivative of a differential form ω by a Hamiltonian vector field XH is defined by

£XHω := d(XH ω) +XH dω .

Proposition

9.37. Poincaré’s Theorem 8.11 for preservation of the symplectic form ω may be rewritten using Lie derivative notation as

0 =
d

dt
φ∗tω

∣∣∣∣
t=0

= £XHω := d(XH ω) +XH dω

=: (divXH)ω . (9.15)

The last equality defines the divergence of the vector field XH , which vanishes by virtue of d(XH ω) = d2H = 0 and dω = 0.

Remark

9.38.

• Relation (9.15) expresses Hamiltonian dynamics as the symplectic flow in phase space of the divergenceless Hamiltonian vector
field XH .
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• The Lie derivative operation defined in (9.15) is equivalent to the time derivative along the characteristic paths (flow) of the
first order linear partial differential operator XH , which are obtained from its characteristic equations,

dt =
dq

Hp

=
dp

−Hq

.

This equivalence instills the dynamical meaning of the Lie derivative. Namely,

£XHω =
d

dt
φ∗tω

∣∣∣∣
t=0

is the evolution operator for the symplectic flow φt in phase space.

Theorem

9.39 (Poincaré theorem for N degrees of freedom).
For a system of N degrees of freedom, the flow of a Hamiltonian vector field XH = { · , H} preserves each subvolume in the phase
space T ∗RN . That is, let ωn ≡ dqn ∧ dpn be the symplectic form expressed in terms of the position and momentum of the n-th particle.
Then

dωM
dt

∣∣∣∣
t=0

= £XHωM = 0 , for ωM = ΠM
n=1ωn , for all M ≤ N .

Proof. The proof of the preservation of the Poincaré invariants ωM with M = 1, 2, . . . , N follows the same pattern as the
verification for a single degree of freedom. This is because each factor ωn = dqn ∧ dpn in the wedge product of symplectic forms is
preserved by its corresponding Hamiltonian flow in the sum

XH =
M∑
n=1

(
q̇n

∂

∂qn
+ ṗn

∂

∂pn

)
=

M∑
n=1

(
Hpn∂qn −Hqn∂pn

)
= { · , H } .

Thus,
XH ωn = dH := Hpn dpn +Hqn dqn

with ωn = dqn ∧ dpn and one uses
∂qm dqn = δmn = ∂pm dpn



Notes: Geometric Mechanics I DD Holm Fall Term 2013 110

and
∂qm dpn = 0 = ∂pm dqn

to compute

dωn
dt

∣∣∣∣
t=0

= £XHωn := d(XH ωn)︸ ︷︷ ︸
d(dH) = 0

+ XH dωn︸ ︷︷ ︸
= 0

= 0 , (9.16)

where ωn ≡ dqn ∧ dpn is closed (dωn = 0) for all n.

Remark

9.40. Many of the following exercises may be solved (or checked) by equating the dynamical definition of Lie derivative in equa-
tion (9.13) with its geometrical definition by Cartan’s formula (9.14)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα)

= X dα + d(X α) ,

where α is a k-form on a manifold M and X is a smooth vector field with flow φt on M . Informed by this equality, one may derive
various Lie-derivative relations by differentiating the properties of the pull-back φ∗t , which commutes with exterior derivative as in
(9.3), wedge product as in (9.7) and contraction as in (9.10). That is, for m ∈M ,

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X(m) α) = X(φt(m)) φ∗tα .

9.11 Lie derivative exercises

Exercise. Lie derivative of forms in R3

Show that both the dynamic definition and Cartan’s formula imply the following Lie derivative relations in vector notation,
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(a) £Xf = X df = X · ∇f ,

(b) £X (v · dx) =
(
− X× curl v +∇(X · v)

)
· dx ,

(c) £X(ω · dS) =
(
− curl (X× ω) + X divω

)
· dS ,

(d) £X(f d 3x) = (div fX) d 3x .

F

Exercise. Lie derivative identities for k-forms
Show that both the dynamic definition and Cartan’s formula imply the following Lie derivative identities for a k-form α:

(a) £fXα = f£Xα + df ∧ (X α) ,

(b) £Xdα = d
(
£Xα

)
,

(c) £X(X α) = X £Xα ,

(d) £X(Y α) = (£XY ) α + Y (£Xα).

(e) When k = 1 so that α is a 1-form (α = dx), show that the previous exercise (d) implies a useful relation for (£XY ).
Namely,

£X(Y dx) = £XY dx + Y £Xdx , (9.17)

which implies the relation,
£XY = [X, Y ] , (9.18)

where [X, Y ] is the Jacobi-Lie bracket (??) of vector fields X and Y .

(f) Use the two properties

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

for contraction ( ) and

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ ,
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for exterior derivative (d), along with Cartan’s formula, to verify the product rule for Lie derivative of the wedge product,

£X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ . (9.19)

The product rule for Lie derivative (9.19) also follows immediately from its dynamical definition (9.13).

(g) Use
[X , Y ] α = £X(Y α)− Y (£Xα) , (9.20)

as verified in part (d) in concert with the definition(s) of Lie derivative to show,

£[X ,Y ]α = £X£Y α−£Y £Xα . (9.21)

(h) Use the result of (g) to verify the Jacobi identity for the Lie derivative,

£[Z , [X ,Y ] ] α + £[X , [Y , Z] ] α + £[Y , [Z ,X] ] α = 0 .

F

10 Formulations of ideal fluid dynamics

10.1 Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a fluid of unit density and velocity u satisfying divu = 0 in a rotating
frame with Coriolis parameter curlR = 2Ω are given in the form of Newton’s Law of Force by

∂t u + u · ∇u︸ ︷︷ ︸
Acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
Pressure

. (10.1)

Requiring preservation of the divergence-free (volume preserving) constraint ∇ · u = 0 results in a Poisson equation for pressure p, which
may be written in several equivalent forms,

−∆p = div
(
u · ∇u− u× 2Ω

)
,

= ui,juj,i − div
(
u× 2Ω

)
,

= tr S2 − 1

2
|curlu|2 − div

(
u× 2Ω

)
, (10.2)
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where S = 1
2
(∇u +∇uT ) is the strain-rate tensor.

The Newton’s Law equation for Euler fluid motion in (10.1) may be rearranged into an alternative form,

∂t v − u× ω +∇
(
p+

1

2
|u|2
)

= 0 , (10.3)

where we denote
v ≡ u + R , ω = curlv = curlu + 2Ω , (10.4)

and introduce the Lamb vector,
` := −u× ω , (10.5)

which represents the nonlinearity in Euler’s fluid equation (10.3). The Poisson equation (10.2) for pressure p may now be expressed in terms
of the divergence of the Lamb vector,

−∆
(
p+ 1

2
|u|2

)
= div(−u× curl v) = div ` . (10.6)

Remark

10.1 (Boundary Conditions).
Because the velocity u must be tangent to any fixed boundary, the normal component of the motion equation must vanish. This

requirement produces a Neumann condition for pressure given by

∂n
(
p+ 1

2
|u|2
)

+ n̂ · ` = 0 , (10.7)

at a fixed boundary with unit outward normal vector n̂.

Remark

10.2 (Helmholtz vorticity dynamics).
Taking the curl of the Euler fluid equation (10.3) yields the Helmholtz vorticity equation

∂tω − curl (u× ω) = 0 , (10.8)

whose geometrical meaning will emerge in discussing Stokes Theorem 10.5 for the vorticity of a rotating fluid.

The rotation terms have now been fully integrated into both the dynamics and the boundary conditions. In this form, the Kelvin
circulation theorem and the Stokes vorticity theorem will emerge naturally together as geometrical statements.
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Theorem

10.3 (Kelvin’s circulation theorem).
The Euler equations (10.1) preserve the circulation integral I(t) defined by

I(t) =

∮
c(u)

v · dx , (10.9)

where c(u) is a closed circuit moving with the fluid at velocity u.

Proof. The dynamical definition of Lie derivative (9.13) yields the following for the time rate of change of this circulation integral,

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=

∮
c(u)

(
∂v

∂t
+
∂v

∂xj
uj + vj

∂uj

∂x

)
· dx

= −
∮
c(u)

∇
(
p+

1

2
|u|2 − u · v

)
· dx

= −
∮
c(u)

d
(
p+

1

2
|u|2 − u · v

)
= 0 . (10.10)

The Cartan formula (9.14) defines the Lie derivative of the circulation integrand in an equivalent form that we need for the third step
and will also use in a moment for the Stokes theorem,

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)

= u d(curl v · dS) + d(u · v)

=
(
− u× curl v +∇(u · v)

)
· dx . (10.11)

This identity recasts Euler’s equation into the following geometric form,(
∂

∂t
+ £u

)
(v · dx) =

(
∂tv − u× curl v +∇(u · v)

)
· dx

= −∇
(
p+

1

2
|u|2 − u · v

)
· dx

= − d
(
p+

1

2
|u|2 − u · v

)
. (10.12)
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This finishes the last step in the proof (10.10), because the integral of an exact differential around a closed loop vanishes.

The exterior derivative of the Euler fluid equation in the form (10.12) yields Stokes theorem, after using the commutativity of the exterior
and Lie derivatives [d, £u] = 0,

d£u(v · dx) = £u d(v · dx)

= £u(curlv · dS)

= − curl
(
u× curlv

)
· dS

=
[
u · ∇curlv + curlv(divu)− (curlv) · ∇u

]
· dS

(by divu = 0) =
[
u · ∇curlv − (curlv) · ∇u

]
· dS

=: [u, curlv ] · dS , (10.13)

where [u, curlv ] denotes the Jacobi-Lie bracket (??) of the vector fields u and curlv. This calculation proves the following.

Theorem

10.4. Euler’s fluid equations (10.3) imply that

∂ω

∂t
= − [u, ω ] (10.14)

where [u, ω ] denotes the Jacobi-Lie bracket (??) of the divergenceless vector fields u and ω := curlv.

The exterior derivative of Euler’s equation in its geometric form (10.12) is equivalent to the curl of its vector form (10.3). That is,

d

(
∂

∂t
+ £u

)
(v · dx) =

(
∂

∂t
+ £u

)
(curlv · dS) = 0 . (10.15)

Hence from the calculation in (10.13) and the Helmholtz vorticity equation (10.15) we have(
∂

∂t
+ £u

)
(curlv · dS) =

(
∂tω − curl (u× ω)

)
· dS = 0 , (10.16)

in which one denotes ω := curlv. This Lie-derivative version of the Helmholtz vorticity equation may be used to prove the following form
of Stokes theorem for the Euler equations in a rotating frame.
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Theorem

10.5 (Stokes theorem for vorticity of a rotating fluid).

d

dt

∫∫
S(u)

curlv · dS =

∫∫
S(u)

(
∂

∂t
+ £u

)
(curlv · dS) (10.17)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS = 0 ,

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid.

10.2 Steady solutions: Lamb surfaces

According to Theorem 10.4, Euler’s fluid equations (10.3) imply that

∂ω

∂t
= − [u, ω ] . (10.18)

Consequently, the vector fields u, ω in steady Euler flows, which satisfy ∂tω = 0, also satisfy the condition necessary for the Frobenius
theorem to hold1 – namely, that their Jacobi-Lie bracket vanishes. That is, in smooth steady, or equilibrium, solutions of Euler’s fluid
equations, the flows of the two divergenceless vector fields u and ω commute with each other and lie on a surface in three dimensions.

A sufficient condition for this commutation relation is that the Lamb vector ` := −u× curlv in (10.5) satisfies

` := −u× curlv = ∇H(x) , (10.19)

for some smooth function H(x). This condition means that the flows of vector fields u and curlv (which are steady flows of the Euler
equations) are both confined to the same surface H(x) = const. Such a surface is called a Lamb surface.

The vectors of velocity (u) and total vorticity (curlv) for a steady Euler flow are both perpendicular to the normal vector to the Lamb
surface along ∇H(x). That is, the Lamb surface is invariant under the flows of both vector fields, viz

£uH = u · ∇H = 0 and £curlvH = curlv · ∇H = 0 . (10.20)

The Lamb surface condition (10.19) has the following coordinate-free representation [HaMe1998].

1For a precise statement and proof of the Frobenius Theorem with applications to differential geometry, see [La1999].
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Theorem

10.6 (Lamb surface condition [HaMe1998]).
The Lamb surface condition (10.19) is equivalent to the following double substitution of vector fields into the volume form,

dH = u curlv d 3x . (10.21)

Proof. Recall that the contraction of vector fields with forms yields the following useful formula for the surface element:

∇ d 3x = dS . (10.22)

Then using results from previous exercises in vector calculus operations one finds by direct computation that

u curlv d 3x = u (curlv · dS)

= −
(
u× curlv

)
· dx

= ∇H · dx
= dH . (10.23)

Remark

10.7. Formula (10.23)
u (curlv · dS) = dH

is to be compared with
Xh ω = dH ,

in the definition of a Hamiltonian vector field in equation (8.4) of Theorem 8.6. Likewise, the stationary case of the Helmholtz vorticity
equation (10.15), namely,

£u(curlv · dS) = 0 . (10.24)

is to be compared with the proof of Poincaré’s theorem in Proposition 9.37

£Xhω = d(Xh ω) = d2H = 0 .

Thus, the 2-form curlv · dS plays the same role for stationary Euler fluid flows as the symplectic form dq ∧ dp plays for canonical
Hamiltonian flows.
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Definition

10.8. The Clebsch representation of the 1-form v · dx is defined by

v · dx = −Π dΞ + dΨ . (10.25)

The functions Ξ, Π and Ψ are called Clebsch potentials for the vector v.2

In terms of the Clebsch representation (10.25) of the 1-form v · dx, the total vorticity flux curlv · dS = d(v · dx) is the exact 2-form,

curlv · dS = dΞ ∧ dΠ . (10.26)

This amounts to writing the flow lines of the vector field of the total vorticity curlv as the intersections of level sets of surfaces Ξ = const
and Π = const. In other words,

curlv = ∇Ξ×∇Π , (10.27)

with the assumption that these level sets foliate R3. That is, one assumes that any point in R3 along the flow of the total vorticity vector
field curlv may be assigned to a regular intersection of these level sets. To justify this assumption, we shall refer without attempting a proof
to the following theorem.

Theorem

10.9 (Geometry of Lamb surfaces [ArKh1992]).
In general, closed Lamb surfaces are tori foliating R3.

Hence, the symmetry [u, curlv ] = 0 that produces the Lamb surfaces for the steady incompressible flow of the vector field u on a
three-dimensional manifold M ∈ R3 affords a reduction to a family of two-dimensional total vorticity flux surfaces. These surfaces are
coordinatised by formula (10.26) and they may be envisioned along with the flow lines of the vector field curlv in R3 by using formula
(10.27). The main result is the following.

Theorem

10.10 (Lamb surfaces are symplectic manifolds).

2The Clebsch representation is another example of a momentum map. For more discussion of this aspect of fluid flows, see [MaWe83, HoMa2004].
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The steady flow of the vector field u satisfying the symmetry relation given by vanishing of the commutator [u, curlv ] = 0 on a three-
dimensional manifold M ∈ R3 reduces to incompressible flow on a two-dimensional symplectic manifold whose canonically conjugate
coordinates (Ξ, Π) are provided by the total vorticity flux

curlv d 3x = curlv · dS = dΞ ∧ dΠ .

The reduced flow is canonically Hamiltonian on this symplectic manifold. Furthermore, the reduced Hamiltonian is precisely the
restriction of the invariant H onto the reduced phase space.

Proof. Restricting formula (10.23) to coordinates on a total vorticity flux surface (10.26) yields the exterior derivative of the Hamil-
tonian,

dH(Ξ, Π) = u (curlv · dS)

= u (dΞ ∧ dΠ)

= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=:
dΞ

dT
dΠ− dΠ

dT
dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ , (10.28)

where T ∈ R is the time parameter along the flow lines of the steady vector field u, which carries the Lagrangian fluid parcels. On
identifying corresponding terms, the steady flow of the fluid velocity u is found to obey the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =:
dΞ

dT
=
∂H

∂Π
=
{

Ξ, H
}
, (10.29)

(u · ∇Π) = £uΠ =:
dΠ

dT
= − ∂H

∂Ξ
=
{

Π, H
}
, (10.30)

where { · , · } is the canonical Poisson bracket for the symplectic form dΞ ∧ dΠ.

Corollary

10.11. The vorticity flux dΞ ∧ dΠ is invariant under the flow of the velocity vector field u.

Proof. By (10.28), one verifies
£u(dΞ ∧ dΠ) = d

(
u (dΞ ∧ dΠ)

)
= d2H = 0 .

This is the standard computation in the proof of Poincaré’s theorem in Proposition 9.37 for the preservation of a symplectic form by a
canonical transformation. Its interpretation here is that the steady Euler flows preserve the total vorticity flux, curlv·dS = dΞ∧dΠ.
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10.3 Helicity in incompressible fluids

Definition

10.12 (Helicity).
The helicity Λ[curlv] of a divergence-free vector field curlv that is tangent to the boundary ∂D of a simply connected domain D ∈ R3

is defined as

Λ[curlv] =

∫
D

v · curlv d 3x , (10.31)

where v is a divergence-free vector-potential for the field curlv.

Remark

10.13. The helicity is unchanged by adding a gradient to the vector v. Thus, v is not unique and divv = 0 is not a restriction
for simply connected domains in R3, provided curlv is tangent to the boundary ∂D.

The helicity of a vector field curlv measures the average linking of its field lines, or their relative winding. (For details and mathematical
history, see Arnold and Khesin [ArKh1998].) The idea of helicity goes back to Helmholtz [He1858] and Kelvin [Ke1869] in the 19th century.
Interest in helicity of fluids was rekindled in magnetohydrodynamics (MHD) by Woltjer [Wo1958] and later in ideal hydrodynamics by
Moffatt [Mo1969] who first applied the name helicity and emphasised its topological character. Refer to [Mo1981, MoTs1992, ArKh1998]
for excellent historical surveys. The principal feature of this concept for fluid dynamics is embodied in the following theorem.

Theorem

10.14 (Euler flows preserve helicity).
When homogeneous or periodic boundary conditions are imposed, Euler’s equations for an ideal incompressible fluid flow in a rotating
frame with Coriolis parameter curlR = 2Ω preserves the helicity

Λ[curlv] =

∫
D

v · curlv d 3x , (10.32)

with v = u + R, for which u is the divergenceless fluid velocity (divu = 0) and curlv = curlu + 2Ω is the total vorticity.

Proof. Rewrite the geometric form of the Euler equations (10.12) for rotating incompressible flow with unit mass density in terms of
the circulation 1-form v := v · dx as (

∂t + £u

)
v = − d

(
p+

1

2
|u|2 − u · v

)
=: − d$ , (10.33)
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and £u d
3x = 0, where $ is an augmented pressure variable,

$ := p+
1

2
|u|2 − u · v . (10.34)

The fluid velocity vector field is denoted as u = u · ∇ with divu = 0. Then the helicity density, defined as

v ∧ dv = v · curlv d 3x = λ d 3x , with λ = v · curlv , (10.35)

obeys the dynamics it inherits from the Euler equations,(
∂t + £u

)
(v ∧ dv) = −d$ ∧ dv − v ∧ d2$ = −d($dv) , (10.36)

after using d2$ = 0 and d2v = 0. In vector form, this result may be expressed as a conservation law,(
∂tλ+ divλu

)
d 3x = − div($ curlv) d 3x . (10.37)

Consequently, the time derivative of the integrated helicity in a domain D obeys

d

dt
Λ[curlv] =

∫
D

∂tλ d
3x = −

∫
D

div(λu +$ curlv) d 3x

= −
∮
∂D

(λu +$ curlv) · dS , (10.38)

which vanishes when homogeneous or periodic boundary conditions are imposed on ∂D.

Remark

10.15. This result means the helicity integral

Λ[curlv] =

∫
D

λ d 3x ,

is conserved in periodic domains, or in all of R3 with vanishing boundary conditions at spatial infinity. However, if either the velocity
or total vorticity at the boundary possesses a nonzero normal component, then the boundary is a source of helicity. For a fixed
impervious boundary, the normal component of velocity does vanish, but no such condition is imposed on the total vorticity by the
physics of fluid flow. Thus, we have the following.
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Corollary

10.16. A flux of total vorticity curlv into the domain is a source of helicity.

Exercise. Use Cartan’s formula (9.14) to compute £u(v ∧ dv) in equation (10.36). F

Exercise. Compute the helicity for the 1-form v = v · dx in the Clebsch representation (10.25). What does this mean for the
linkage of the vortex lines that admit the Clebsch representation? F

Remark

10.17 (Helicity as Casimir).
The helicity turns out to be a Casimir for the Hamiltonian formulation of the Euler fluid equations [ArKh1998]. Namely, {Λ, H} = 0
for every Hamiltonian functional of the velocity, not just the kinetic energy. The Hamiltonian formulation of ideal fluid dynamics is
beyond our present scope. However, the plausibility that the helicity is a Casimir may be confirmed by the following.

Theorem

10.18 (Diffeomorphisms preserve helicity).
The helicity Λ[ξ] of any divergenceless vector field ξ is preserved under the action on ξ of any volume-preserving diffeomorphism of
the manifold M [ArKh1998].

Remark

10.19 (Helicity is a topological invariant).
The helicity Λ[ξ] is a topological invariant, not a dynamical invariant, because its invariance is independent of which diffeomorphism
acts on ξ. This means the invariance of helicity is independent of which Hamiltonian flow produces the diffeomorphism. This is the
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hallmark of a Casimir function. Although it is defined above with the help of a metric, every volume-preserving diffeomorphism carries
a divergenceless vector field ξ into another such field with the same helicity. However, independently of any metric properties, the
action of diffeomorphisms does not create or destroy linkages of the characteristic curves of divergenceless vector fields.

Definition

10.20 (Beltrami flows).
Equilibrium Euler fluid flows whose velocity and total vorticity are collinear are called Beltrami flows.

Theorem

10.21 (Helicity and Beltrami flows).
Critical points of the conserved sum of fluid kinetic energy and a constant κ times helicity are Beltrami flows of an Euler fluid.

Proof. A critical point of the sum of fluid kinetic energy and a constant κ times helicity satisfies

0 = δHΛ =

∫
D

1

2
|u|2 d 3x+ κ

∫
D

v · curlv d 3x

=

∫
D

(
u + 2κ curlv

)
· δu d 3x ,

after an integration by parts with either homogeneous, or periodic boundary conditions. Vanishing of the integrand for an arbitrary
variation in fluid velocity δu implies the Beltrami condition that the velocity and total vorticity are collinear.

Remark

10.22 (No conclusion about Beltrami stability).
The second variation of HΛ is given by

δ2HΛ =

∫
D

|δu|2 + 2κ δu · curl δu d 3x .

This second variation is indefinite in sign unless κ vanishes, which corresponds to a trivial motionless fluid equilibrium. Hence, no
conclusion is offered by the energy-Casimir method for the stability of a Beltrami flow of an Euler fluid.
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10.4 Silberstein-Ertel theorem for potential vorticity

Euler-Boussinesq equations. The Euler-Boussinesq equations for the incompressible motion of an ideal flow of a stratified fluid and
velocity u satisfying divu = 0 in a rotating frame with Coriolis parameter curlR = 2Ω are given by

∂t u + u · ∇u︸ ︷︷ ︸
Acceleration

= − gb∇z︸ ︷︷ ︸
Buoyancy

+ u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
Pressure

(10.39)

where −g∇z is the constant downward acceleration of gravity and b is the bouyancy, which satisfies the advection relation,

∂t b+ u · ∇b = 0 . (10.40)

As for Euler’s equations without buoyancy, requiring preservation of the divergence-free (volume preserving) constraint ∇ · u = 0 results in
a Poisson equation for pressure p,

−∆
(
p+

1

2
|u|2
)

= div(−u× curl v) + g∂zb , (10.41)

which satisfies a Neumann boundary condition because the velocity u must be tangent to the boundary.
The Newton’s Law form of the Euler-Boussinesq equations (10.39) may be rearranged as

∂t v − u× curl v + gb∇z +∇
(
p+

1

2
|u|2
)

= 0 , (10.42)

where v ≡ u + R and ∇ · u = 0. Geometrically, this is(
∂t + £u

)
v + gbdz + d$ = 0 , (10.43)

where $ is defined in (10.33). In addition, the buoyancy satisfies(
∂t + £u

)
b = 0 , with £u d

3x = 0 . (10.44)

The fluid velocity vector field is denoted as u = u ·∇ and the circulation 1-form as v = v · dx. The exterior derivatives of the two equations
in (10.43) are written as (

∂t + £u

)
dv = −gdb ∧ dz and

(
∂t + £u

)
db = 0 . (10.45)

Consequently, one finds from the product rule for Lie derivatives (9.19) that(
∂t + £u

)
(dv ∧ db) = 0 or ∂t q + u · ∇q = 0 , (10.46)
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in which the quantity
q = ∇b · curlv (10.47)

is called potential vorticity and is abbreviated as PV. The potential vorticity is an important diagnostic for many processes in geophysical
fluid dynamics. Conservation of PV on fluid parcels is called Ertel’s theorem [Er1942], although it was probably known much earlier, at
least by Silberstein, who presented it in his textbook [Si1913].

Remark

10.23 (Silberstein-Ertel theorem).
The constancy of the scalar quantities b and q on fluid parcels implies conservation of the spatially integrated quantity,

CΦ =

∫
D

Φ(b, q) d 3x , (10.48)

for any smooth function Φ for which the integral exists.

Remark

10.24 (Energy conservation).
In addition to CΦ, the Euler-Boussinesq fluid equations (10.42) also conserve the total energy

E =

∫
D

1

2
|u|2 + gbz d 3x , (10.49)

which is the sum of the kinetic and potential energies. We do not develop the Hamiltonian formulation of the 3D stratified rotating
fluid equations here. However, one may imagine that the quantity CΦ would be its Casimir, as the notation indicates. With this
understanding, we shall prove the following.

Theorem

10.25 (Energy-Casimir criteria for equilibria).
Critical points of the conserved sum EΦ = E + CΦ, namely,

EΦ =

∫
D

1

2
|u|2 + gbz d 3x+

∫
D

Φ(b, q) + κq d 3x , (10.50)

are equilibrium solutions of the Euler-Boussinesq fluid equations in (10.42). The function Φ in the Casimir and the Bernoulli function
K in (10.54) for the corresponding fluid equilibrium are related by qΦq − Φ = K.
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Proof. The last term in (10.50) was separated out for convenience in dealing with the boundary terms that arise on taking the
variation. The variation of EΦ is given by

δEΦ =

∫
D

(
ue − Φqq∇be ×∇qe

)
· δu d 3x

+

∫
D

(
gz + Φb − curlve · ∇Φq

)
δb d 3x (10.51)

+
(

Φq

∣∣∣
∂D

+ κ
)∮

∂D

(
δb curlve + be curl δu

)
· n̂ dS ,

in which the surface terms arise from integrating by parts and n̂ is the outward normal of the domain boundary, ∂D. Here, the partial
derivatives Φb, Φq and Φqq are evaluated at the critical point be, qe,ve and Φq|∂D takes the critical point values on the boundary. The
critical point conditions are obtained by setting δEΦ = 0. These conditions are,

δu : ue = Φqq∇be ×∇qe ,
δb : gz + Φb = curlve · ∇Φq , (10.52)

∂D : Φq

∣∣∣
∂D

+ κ = 0 .

The critical point condition on the boundary ∂D holds automatically for tangential velocity and plays no further role. The critical
point condition for δu satisfies the steady flow conditions,

ue · ∇qe = 0 = ue · ∇be .

An important steady flow condition derives from the motion equation (10.42)

ue × curl ve = − gz∇be +∇K , (10.53)

which summons the Bernoulli function,

K(be, qe) = pe +
1

2
|ue|2 + gbez , (10.54)

and forces it to be a function of (be, qe). When taken in concert with the previous relation for K, the vector product of ∇be with
(10.53) yields

ue =
1

qe
∇be ×∇K(be, qe) = ∇be ×∇Φq(be, qe) , (10.55)
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where the last relation uses the critical point condition arising from the variations of velocity, δu. By equation (10.55), critical points
of EΦ are steady solutions of the Euler-Boussinesq fluid equations (10.42) and the function Φ in the Casimir is related to the Bernoulli
function K in (10.54) for the corresponding steady solution by

qeΦqq(be, qe) = Kq(be, qe) . (10.56)

This equation integrates to
qeΦq − Φ = K + F (be) . (10.57)

The vector product of ∇qe with the steady flow relation (10.53) yields

Φqq(be, qe)(∇qe · curlve) = gz −Kb(be, qe) . (10.58)

Combining this result with the critical point condition for δb in (10.52) yields

qeΦq − Φ = K +G(qe) . (10.59)

Subtracting the two relations (10.59) and (10.56) eliminates the integration functions F and G, and establishes

qeΦq(be, qe)− Φ(be, qe) = K(be, qe) , (10.60)

as the relation between critical points of EΦ and equilibrium solutions of the Euler-Boussinesq fluid equations.

Remark

10.26.
The energy-Casimir stability method was implemented for Euler-Boussinesq fluid equilibria in [AbHoMaRa1986]. See also [HoMaRaWe1985]
for additional examples.

11 Hodge star operator on R3

Definition
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11.1. The Hodge star operator establishes a linear correspondence between the space of k-forms and the space of (3 − k)-forms,
for k = 0, 1, 2, 3. This correspondence may be defined by its usage:

∗1 := d 3x = dx1 ∧ dx2 ∧ dx3 ,

∗dx := dS ,

(∗dx1, ∗dx2, ∗dx3) := (dS1, dS2, dS3) ,

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

∗dS = dx ,

(∗dS1, ∗dS2, ∗dS3) := (dx1, dx2, dx3) ,

∗d 3x = 1 ,

in which each formula admits cyclic permutations of the set {1, 2, 3}.

Remark

11.2. Note that ∗∗ α = α for these k-forms.

Definition

11.3 (L2 inner product of forms).
The Hodge star induces an inner product ( · , · ) : Λk(M)×Λk(M)→ R on the space of k-forms. Given two k-forms α and β defined
on a smooth manifold M , one defines their L2 inner product as

(α, β) :=

∫
M

α ∧ ∗β =

∫
M

〈α, β〉 d 3x , (11.1)

where d 3x is the volume form. The main examples of the inner product are for k = 0, 1. These are given by the L2 pairings,

(f, g) =

∫
M

f ∧ ∗g :=

∫
M

fg d 3x ,

(u · dx, v · dx) =

∫
M

u · dx ∧ ∗(v · dx) :=

∫
M

u · v d 3x .
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Exercise. Show that combining the Hodge star operator with the exterior derivative yields the following vector calculus opera-
tions:

∗ d ∗ (v · dx) = div v ,

∗ d(v · dx) = (curl v) · dx ,
d ∗ d ∗ (v · dx) = (∇div v) · dx ,
∗ d ∗ d(v · dx) = curl (curl v) · dx .

F

The Hodge star on manifolds is used to define the codifferential.

Definition

11.4. The codifferential, denoted as δ, is defined for a k-form α ∈ Λk as

δα = (−1)k+1+k(3−k) ∗ d ∗ α . (11.2)

Note that the sign is positive for k = 1 and negative for k = 2.

Exercise. Verify that δ2 = 0. F

Remark

11.5. Introducing the notation δ for codifferential cannot cause any confusion with other familiar uses of the same notation,
for example, to denote Kronecker delta, or the variational derivative delta. All these standard usages of the notation (δ) are easily
recognised in their individual contexts.
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Proposition

11.6. The codifferential is the adjoint of the exterior derivative, in that

(δα, β) = (α, dβ) . (11.3)

Exercise. Verify that the codifferential is the adjoint of the exterior derivative by using the definition of the Hodge star inner
product.
(Hint: Why may one use

∫
M
d(∗α ∧ β) = 0 when integrating by parts?) F

Definition

11.7. The Laplace-Beltrami operator on smooth functions is defined to be ∇2 = div grad = δ d. Thus, one finds,

∇2f = δ df = ∗ d ∗ df , (11.4)

for a smooth function f .

Definition

11.8. The Laplace-deRham operator is defined by
∆ := dδ + δd . (11.5)

Exercise. Show that the Laplace-deRham operator on a 1-form v · dx expresses the Laplacian of a vector,

(dδ + δd)(v · dx) = (∇div v − curl curl v) · dx =: (∆v) · dx .

Use this expression to define the inverse of the curl operator applied to a divergenceless vector function as

curl−1v = curl(−∆−1v) when div v = 0. (11.6)

This is the Biot-Savart Law often used in electo-magnetism and incompressible fluid dynamics. F
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Remark

11.9. Identifying this formula for ∆v as the vector Laplacian on a differentiable manifold agrees with the definition of the Laplacian
of a vector in any curvilinear coordinates.

Exercise. Compute the components of the Laplace-deRham operator ∆v for a 1-form v · dx defined on a sphere of radius R.
How does this differ from the Laplace-Beltrami operator (∇2v = div gradv) in spherical curvilinear coordinates? F

Exercise. Show that the Laplace-deRham operator −∆ := dδ + δd is symmetric with respect to the Hodge star inner product,
that is,

(∆α, β) = (α, ∆β) .

F

Exercise. In coordinates, symmetry of ∆ with respect to the Hodge star inner product is expressed as∫
−∆α · βd 3x =

∫
(−∇divα + curlcurlα) · βd 3x

=

∫
(divα · divβ + curlα · curlβd 3x .

Conclude that the Laplace-deRham operator −∆ is non-negative, by setting α = β.

F
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Exercise. Use formula (11.2) for the definition of codifferential δ = ∗d∗ to express in vector notation,

δ(£uv) = −δdp− gδ(bdz) ,

for the 1-form v = v · dx, vector field u = u ·∇, functions p, b and constant g. How does this expression differ from the Poisson
equation for pressure p in (10.41)? F

12 Poincaré’s Lemma:

Closed vs exact differential forms

Definition

12.1 (Closed and exact differential forms).
A k-form α is closed if dα = 0.

The k-form is exact if there exists a (k − 1)-form β for which α = dβ.

Definition

12.2 (Co-closed and co-exact differential forms). A k-form α is co-closed if δα = 0 and is co-exact if there exists a (3 − k)-
form β for which α = δβ.

Proposition

12.3. Exact and co-exact forms are orthogonal with respect to the L2 inner product on Λk(M).

Proof. Let α = δβ be a co-exact form and let ζ = dη be an exact form. Their L2 inner product defined in (11.1) is computed as

(α, ζ) = (δβ, dη) = (β, d2η) = 0 .

This vanishes, because δ is dual to d, that is, (δβ, ζ) = (β, dζ) by Proposition 11.6.
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Remark

12.4. Not all closed forms are globally exact on a given manifold M .

Example

12.5 (Helicity example).
As an example, the one-form

v = fdg + ψdφ

for smooth functions f, g, ψ, φ on R3 may be used to create the closed three-form (helicity)

v ∧ dv = (ψdf − fdψ) ∧ dg ∧ dφ ∈ R3 .

This three-form is closed because it is a “top form” in R3. However, it is exact only when the combination ψdf − fdψ is exact, and
this fails whenever ψ and f are functionally independent. Thus, some closed forms are not exact.

However, it turns out that all closed forms may be shown to be locally exact. This is the content of the following Lemma.

Definition

12.6 (Locally exact differential forms).
A closed differential form α that satisfies dα = 0 on a manifold M is locally exact, when a neighbourhood exists around each
point in M in which α = dβ.

Lemma

12.7 (Poincaré’s lemma).
Any closed form on a manifold M is locally exact.

Remark
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12.8. Rather than give the standard proof appearing in most texts in this subject, let us illustrate Poincaré’s Lemma in an example,
then use it to contrast the closed versus exact properties.

Example

12.9. In the example of helicity above, the one-form v = fdg+ψdφ may always be written locally as v = fdg+cdφ in a neighbourhood
defined on a level surface ψ = c. In that neighbourhood, v ∧ dv = c (df ∧ dg ∧ dφ), which is exact because c is a constant.

Remark

12.10. Closed forms that are not globally exact have topological content. For example, the spatial integral of the three-form
v ∧ dv ∈ R3 is the degree-of-mapping formula for the Hopf map S3 7→ S2. It also measures the number of self-linkages (also
known as helicity) of the divergenceless vector field associated with the two-form dv. See [ArKh1998] for in-depth discussions of the
topological content of differential forms that are closed, but only locally exact, in the context of geometric mechanics.

Example

12.11 (A locally closed and exact two-form in R3). The transformation in R3 from 3D Cartesian coordinates (x, y, z) to spheri-
cal coordinates (r, θ, φ) is given by

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ) .

As is well known, the volume form transforms into spherical coordinates as

dVol = d 3x = dx ∧ dy ∧ dz = r2dr ∧ dφ ∧ d cos θ .

Exercise. Compute the transformation in the previous equation explicitly. F

In general, contraction of a vector field into a volume form produces a two-form X d 3x = X · n̂ dS, where dS is the surface area
element with unit normal vector n̂. Consider the two-form β ∈ Λ2 obtained by substituting the radial vector field,

X = x · ∇ = x∂x + y∂y + z∂z = r∂r ,



Notes: Geometric Mechanics I DD Holm Fall Term 2013 135

into the volume form dVol. This may be computed in various ways,

β = X d 3x = x · n̂ dS
= xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

=
1

2
εabcx

a dxb ∧ dxc

= r∂r r2dr ∧ dφ ∧ d cos θ = r3dφ ∧ d cos θ .

One computes the exterior derivative

dβ = d(X d 3x) = d(x · n̂ dS) = div x d 3x

= 3 d 3x = 3 r2dr ∧ dφ ∧ d cos θ 6= 0 .

So the two-form β is not closed. Hence it cannot be exact. When evaluated on the spherical level surface r = 1 (which is normal to
the radial vector field X) the 2-form β becomes the area element on the sphere.

Remark

12.12.

• The 2-form β in the previous example is closed on the level surface r = 1, but it is not exact everywhere. This is because
singularities occur at the poles, where the coordinate φ is not defined.

• This is an example of Poincaré’s theorem, in which a differential form is closed, but is only locally exact.

• If β were exact on r = 1, its integral
∫
S2 β would give zero for the area of the unit sphere instead of 4π!

Example

12.13. Instead of the radial vector field, let us choose an arbitrary three-dimensional vector field n(x) in which n : R3 → R3.
As for the radial vector field, we may compute the two-form,

β = X d 3n := n · ∂
∂n

d 3n =
1

2
εabc n

a dnb ∧ dnc

=
1

2
εabc n

a∇nb ×∇nc · dS(x) .
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One computes the exterior derivative once again,

dβ = d(X d 3x) = div n d 3n = det [∇n] d 3x .

Now suppose n is a unit vector, satisfying the relation |n(x)|2 = 1. Then n : R3 → S2 and the rows of its Jacobian will be functionally
dependent, so the determinant det [∇n] must vanish.

Consequently, dβ vanishes and the two-form β is closed. In this case, Poincaré’s Lemma states that a one-form α exists locally
such that the closed two-form β satisfies β = dα. In fact, the unit vector in spherical coordinates,

n = (sin θ cosφ, sin θ sinφ, cos θ) ,

does produce a closed two-form β that is expressible as an exterior derivative,

β = dφ ∧ d cos θ = d(φ dcos θ) . (12.1)

However, we know from the previous example that β could only be locally exact. The obstructions to being globally exact are indicated
by the singularities of the polar coordinate representation, in which the azimuthal angle φ is undefined at the North and South poles
of the unit sphere.

Remark

12.14 (Hopf fibration).
These considerations introduce the Hopf map in which the unit vector n(x) maps x ∈ S3 to the spherical surface S2 given by
|n(x)|2 = 1 locally as S3 ' S2 × S1. Such a direct-product map that holds locally, but does not hold globally, is called a fibra-
tion. Here S2 is called the base space and S1 is called the fibre. The integral

∫
S2 β is called the degree of mapping of the

Hopf fibration. This integral is related to the self-linkage or helicity discussed earlier in this section. For more details, see
[ArKh1998, Fl1963, Is1999, Ur2003].
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13 Euler’s equations in Maxwell form

Exercise. (Maxwell form of Euler’s fluid equations)
Show that by making the following identifications

B := ω + curl A0

E := `+∇
(
p+ 1

2
|u|2
)

+
(
∇φ− ∂tA0

)
D := ` (13.1)

H := ∇ψ ,

the Euler fluid equations (10.3) and (10.6) imply the Maxwell form

∂tB = − curl E

∂tD = curl H + J

div B = 0

div E = 0 (13.2)

div D = ρ = −∆
(
p+ 1

2
|u|2
)

J = E×B + (curl−1E)× curl B ,

provided the (smooth) gauge functions φ and A0 satisfy ∆φ− ∂tdivA0 = 0 with ∂nφ = n̂ · ∂tA0 at the boundary and ψ may
be arbitrary, because curl H = 0 removes H from further consideration in the dynamics. F

Remark

13.1.

• The first term in the current density J in the Maxwell form of Euler’s fluid equations in (13.2) is reminiscent of the Poynt-
ing vector in electromagnetism [BoWo1965]. The second term in J contains the inverse of the curl operator acting on the
divergenceless vector function E. This inverse-curl operation may be defined via the Laplace-DeRham theory that leads to the
Biot-Savart Law (11.6).
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• The divergence of the D-equation in the Maxwell form (13.2) of the Euler fluid equations implies a conservation equation, given
by

∂tρ = div J . (13.3)

Thus, the total “charge”
∫
ρ d3x is conserved, provided the current density J (or, equivalently, the partial time derivative of the

Lamb vector) has no normal component at the boundary.

• The conservation equation (13.3) for ρ = div` is potentially interesting in applications. For example, it may be interesting to
use the divergence of the Lamb vector as a diagnostic quantity in turbulence experiments.

• The equation for the curl of the Lamb vector is of course also easily accessible, if needed.

14 Euler’s equations in Hodge-star form in R4

Definition

14.1. The Hodge star operator on R4 establishes a linear correspondence between the space of k-forms and the space of (4−k)-forms,
for k = 0, 1, 2, 3, 4. This correspondence may be defined by its usage:

∗1 := d 4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

(∗dx1, ∗dx2, ∗dx3) := (dS1 ∧ dx0,−dS2 ∧ dx0, dS3 ∧ dx0) ,

:= (dx2 ∧ dx3 ∧ dx0, dx3 ∧ dx0 ∧ dx1, dx0 ∧ dx1 ∧ dx2) ,

(∗dS1, ∗dS2, ∗dS3) :=
(
∗ (dx2 ∧ dx3), ∗(dx3 ∧ dx1), ∗(dx1 ∧ dx2)

)
,

= (dx0 ∧ dx1, dx0 ∧ dx2, dx3 ∧ dx0) ,

∗d 3x = ∗(dx1 ∧ dx2 ∧ dx3) = dx0 ,

∗d 4x = 1 ,

in which each formula admits cyclic permutations of the set {0, 1, 2, 3}.

Remark

14.2. Note that ∗∗ α = α for these k-forms.
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Exercise. Prove that
∗(dxµ ∧ dxν) = 1

2
εµνσγdx

σ ∧ dxγ ,

where εµνσγ = +1 (resp. −1) when {µνσγ} is an even (resp. odd) permutation of the set {0, 1, 2, 3} and it vanishes if any of
its indices are repeated. F

Exercise. Introduce the R4-vectors for fluid velocity and vorticity with components uµ = (1,u) and ων = (0,ω). Let dx0 = dt
and prove that

F = ∗uµωνdxµ ∧ dxν = ` · dx ∧ dt+ ω · dS . (14.1)

F

Exercise. Show that Euler’s fluid equations (10.3) imply

F = d
(
v · dx− (p+ 1

2
u2)dt

)
, (14.2)

in the Euler fluid notation of equation (10.4). F

After the preparation of having solved these exercises, it is an easy computation to show that the Helmholtz vorticity equation (10.15)
follows from the compatibility condition for F . Namely,

0 = dF =
(
∂tω − curl (u× ω)

)
· dS ∧ dt+ divω d3x .

This Hodge-star version of the Helmholtz vorticity equation brings us a step closer to understanding the electromagnetic analogy in the
Maxwell form of Euler’s fluid equations (13.2). This is because Faraday’s Law in Maxwell’s equations has a similar formulation, but for
4-vectors in Minkowski space-time instead of R4 [Fl1963]. The same concepts from the calculus of differential forms still apply, but with the
Minkowski metric.
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Next, introduce the 2-form in R4

G = ` · dS + dχ ∧ dt, (14.3)

representing the flux of the Lamb vector though a fixed spatial surface element dS. Two more brief computations recover the other formulas
in the Maxwell representation of fluid dynamics in (13.2). First, the exterior derivative of G, given by

dG = ∂t` · dS ∧ dt+ div ` d3x (14.4)

= J · dS ∧ dt+ ρ d3x =: J , (14.5)

recovers the two relations ∂t` = J and div ` = ρ in (13.2). Here J is the current density 3-form with components (ρ,J). The second
calculation we need is the compatibility condition for G, namely

d2G =
(

div J− ∂tρ
)
d3x ∧ dt = 0 .

This recovers the conservation law in (13.3) for the Maxwell form of Euler’s fluid equations.
Thus, the differential-form representation of Euler’s fluid equations in R4 reduces to two elegant relations,

dF = 0 and dG = J , (14.6)

where the 2-forms F , G and the 3-form J are given in (14.1), (14.3) and (14.5), respectively.

Exercise. Show that equations (14.6) for the differential representation of Euler’s fluid equations in R4 may be written as a pair
of partial differential equations,

∂µF
µν = 0 and ∂µG

µν = Jν , (14.7)

written in terms of the R4-vector Jν = (−J, ρ)T and the 4× 4 antisymmetric tensors F µν = uµων − uνωµ. In matrix form F µν

is given by

F µν =


0 `3 −`2 ω1

−`3 0 `1 ω2

`2 −`1 0 ω3

−ω1 −ω2 −ω3 0

 ,
and Gµν is given by

Gµν =


0 χ,3 −χ,2 `1

−χ,3 0 χ,1 `2

χ,2 −χ,1 0 `3

−`1 −`2 −`3 0

 ,
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where µ, ν = 1, 2, 3, 4, with notation ∂µ = ∂/∂xµ with xµ = (x, t)T , uµ = (u, 1)T and ωµ = (ω, 0)T . Also, ∂µu
µ ≡ uµ,µ =

∇ · u = 0 and ωµ,µ = ∇ · ω = 0. F

Exercise. Write Maxwell’s equations for the propagation of electromagnetic waves in Hodge-star form (14.6) in Minkowski
space. Discuss the role of the Minkowski metric in defining Hodge-star and the effects of curlH 6= 0 on the solutions, in
comparison to the treatment of Euler’s fluid equations in R4 presented here. F
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