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Cotangent-lift momentum maps

Background

Suppose a Lie group G acts on a manifold Q from the left, as

G×Q→ Q : qs = Usq0 for q ∈ Q, Us=0 = Id and U ∈ G.

The tangent lift of this action is given by

q′s
∣∣
s=0

=
[
U ′sU

−1
s qs

]
s=0

=: £ξq =: ξQ(q),

with ξ ∈ g, the Lie algebra corresponding to the tangent space of G at the identity U0 and £ξq
is the Lie derivative of q ∈ Q with respect to ξ ∈ g. Sometimes these relations are encoded by
writing Us = exp(sξ). The quantity ξQ(q) is called the infinitesimal generator of the Lie group
action.

Consider Hamilton’s principle defined on g× TQ by the action integral

S(ξ; p, q) =

∫ (
l(ξ, q) +

〈
p , q̇ −£ξq

〉
Q

)
dt. (1)

The action integral S(ξ; p, q) contains a Lagrangian l and a constraint enforced by pairing

〈 · , · 〉Q : T ∗Q× TQ→ R.

In terms of this pairing, the tangent lift of the action of G on Q is enforced as a Clebsch constraint,
in which the momentum p ∈ T ∗Q canonically conjugate to q ∈ Q is used as a Lagrange multiplier.

Notation: In preparation for taking the variations in Hamilton’s principle, δS = 0, we shall define
some notation.

• The diamond-operation ( � ) is defined as〈
p , −£δξq

〉
Q

=:
〈
p � q , δξ

〉
g
,

for the two pairings 〈· , ·〉Q : T ∗Q× TQ→ R and 〈· , ·〉g : g∗ × g→ R.

• The dual (or transpose) £T
ξ of the Lie derivative £ξ with respect to the pairing on T ∗Q×TQ

is defined as 〈
p , −£ξδq

〉
Q

=:
〈
−£T

ξ p , δq
〉
Q

In this notation, the variation of the action integral in (1) may be expressed as

δS(ξ; p, q) =

∫ (〈 ∂l
∂ξ

+ p � q , δξ
〉

g
+
〈
δp , q̇ −£ξq

〉
Q

+
〈 ∂l
∂q
− ṗ−£T

ξ p , δq
〉
Q

)
dt
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Momentum maps

Proposition 1. The quantity defined by the pairing

Jη :=
〈
− p � q , η

〉
g

=:
〈
J , η

〉
g

is the Hamiltonian for the action of the Lie algebra g on T ∗Q.

Proof. One computes the Hamiltonian vector field for Jη with fixed η as

(q̇, ṗ) =

(
∂Jη

∂p
, − ∂J

η

∂q

)
=
(

£ηq, −£T
η p
)
,

from the variations

δJη =
〈
− δp � q , η

〉
g

+
〈
− p � δq , η

〉
g

=
〈
δp , £ηq

〉
Q

+
〈
p , £ηδq

〉
Q

=
〈
δp , £ηq

〉
Q

+
〈

£T
η p , δq

〉
Q
.

Remark 2. The relation ∂l/∂ξ = − p � q defines the map J : T ∗Q→ g∗. This is the cotangent-
lift momentum map for left action of Lie group G on manifold Q discussed in the lectures.

The evolution equation for the cotangent-lift momentum map J = − p � q may be computed as〈
J̇ , η

〉
=

〈
− ṗ � q − p � q̇ , η

〉
=

〈
£T
ξ p � q − p �£ξq −

∂l

∂q
� q , η

〉
=

〈
£T
ξ p , −£ηq

〉
+
〈
p , £η£ξq

〉
−
〈
∂l

∂q
� q , η

〉
=

〈
p , −£(adξη)q

〉
−
〈
∂l

∂q
� q , η

〉
=

〈
p � q , adξη

〉
−
〈
∂l

∂q
� q , η

〉
=

〈
ad∗ξ(p � q)−

∂l

∂q
� q , η

〉
=

〈
− ad∗ξJ −

∂l

∂q
� q , η

〉
for any η ∈ g .

This produces the Euler-Poincaré equation with advected quantities (q) acted on from the
left by the group G and moving with right-invariant velocity ξ. Namely, for a given l(ξ, q),

d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
+
∂l

∂q
� q = 0 and

dq

dt
= £ξq .

Of course, when ∂l/∂q = 0, the system reduces to the usual Euler-Poincaré equation. The
cotangent-lift momentum map conveys the Hamiltonian meaning of the Euler-Poincaré equation.
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