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1. Hamilton-Pontryagin metamorphosis
Consider the left-invariant action S for Hamilton’s principle δS = 0 given by

S =
∫
L(Ω, ω, g) dt =

∫
l(Ω) +

1
2σ2

∣∣ω −AdgΩ
∣∣2 dt ,

where g ∈ G and ω = ġg−1 ∈ g, for a matrix Lie group G and matrix Lie algebra g. Here
σ2 ∈ R is a positive constant and | · | is a Riemannian metric which defines a symmetric
non-degenerate pairing g∗ × g → R between Lie algebra g and its dual g∗. (You may
assume that g∗∗ ' g.)

(1.a) Show that
(AdgΩ)′ = AdgΩ′ − adAdgΩη with η = g′g−1

(1.b) Write ω′ in terms of η, η̇ and adω using cross-derivatives of ġ = ωg and g′ = ηg.

(1.c) Derive the Euler-Poincaré equation for ∂l/∂Ω from δS = 0.
(You may ignore endpoint terms when integrating by parts.)

(1.d) Interpret this Euler-Poincaré equation as a conservation law.

1. Solution

(1.a) One computes

(AdgΩ)′ = (gΩg−1)′

= g′g−1AdgΩ + AdgΩ′ − (AdgΩ)g′g−1

= AdgΩ′ − adAdgΩη with η = g′g−1

(1.b) The cross-derivative identities for ġ = ωg and g′ = ηg yield

ġ′ = ω′g + ωg′ = η̇g + ηġ =⇒ ω′ = η̇ − adωη .

(1.c) The variation of the action integral S is

0 = δS =
∫ 〈 ∂l

∂Ω
, Ω′

〉
+
〈
π , ω′ − (AdgΩ)′

〉
dt

=
∫ 〈 ∂l

∂Ω
, Ω′

〉
+
〈
π , η̇ − adωη + adAdgΩη −AdgΩ′

〉
dt

=
∫ 〈 ∂l

∂Ω
−Ad∗gπ , Ω′

〉
−
〈
π̇ + ad∗ωπ − ad∗AdgΩπ , η

〉
dt

where endpoint terms are being ignored and we have introduced the conjugate
momentum for spatial angular velocity, π, given by

π :=
∂L

∂ω
=

1
σ2

(
ω −AdgΩ

)
.
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The pairing 〈 · , · 〉 : g∗ × g→ R is induced by the variational-derivative operation.
Requiring independent variations to vanish yields,

Π :=
∂l

∂Ω
= Ad∗gπ ,

π̇ + ad∗ωπ = ad∗AdgΩπ . (1)

In terms of Π = ∂l/∂Ω the two stationarity relations in (1) imply

d

dt

〈
Π , η

〉
=

d

dt

〈
Ad∗gπ , η

〉
taking d

dtAd∗g =
〈

Ad∗g
(
π̇ + ad∗ωπ

)
, η
〉

using π-eqn (1) =
〈

Ad∗g
(
ad∗AdgΩπ

)
, η
〉

using Ad & ad definitions =
〈
π , adAdgΩ

(
Adgη

)〉
rearranging =

〈
π , Adg

(
adΩη

)〉
taking duals =

〈
ad∗ΩAd∗gπ , η

〉
substituting the definition of Π =

〈
ad∗Ω Π , η

〉
This recovers the Euler-Poincaré equation,

d

dt

∂l

∂Ω
= ad∗Ω

∂l

∂Ω
,

for coadjoint motion on the dual of the left-invariant Lie-algebra of G.

(1.d) The definition of Ad∗ gives

d

dt

∂l

∂Ω
= ad∗Ω

∂l

∂Ω
, is equivalent to

d

dt

(
Ad∗g−1

∂l

∂Ω

)
= 0 ,

which is a conservation law (for π).
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2. Momentum map for unitary transformations
Consider the matrix Lie group Q of n×n Hermitian matrices, so that Q† = Q for Q ∈ Q.
The Poisson (symplectic) manifold is T ∗Q, whose elements are pairs (Q,P ) of Hermitian
matrices. The corresponding Poisson bracket is

{F,H} = tr
(
∂F

∂Q

∂H

∂P
− ∂H

∂Q

∂F

∂P

)
.

Let G be the group U(n) of n× n unitary matrices: G acts on T ∗Q through

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id

(2.a) What is the linearization of this group action?

(2.b) What is its momentum map?

(2.c) Is this momentum map equivariant? Explain why, or why not.

(2.d) Is the momentum map conserved by the Hamiltonian H = 1
2trP 2? Prove it.

2. Solution

(2.a.i) The linearization of this group action with U = exp(tξ), with skew-Hermitian
ξ† = −ξ yields the vector field

Xξ =
(
[Q, ξ], [P, ξ]

)
(2.a.ii) This is the Hamiltonian vector field for

Hξ = tr ([Q,P ]ξ)

thus yielding the momentum map J(Q,P ) = [Q,P ].

(2.a.iii) Being defined by a cotangent lift, this momentum map is equivariant.

(2.b) For H = 1
2trP 2,{

[Q,P ], H
}

= tr
(
∂[Q,P ]
∂Q

∂H

∂P

)
= tr

(
P 2 − P 2

)
= 0

so the momentum map J(Q,P ) = [Q,P ] is conserved by this Hamiltonian.

Alternatively, one may simply observe that the map

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id

preserves tr(P 2), since it takes

tr(P 2) 7→ tr(UPU †UPU †) = tr(P 2)
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3. GL(n,R)-invariant motions
Consider the Lagrangian

L =
1
2

tr
(
ṠS−1ṠS−1

)
+

1
2

q̇ · S−1q̇ ,

where S is an n× n symmetric matrix and q ∈ Rn is an n−component column vector.

(3.a) Legendre transform to construct the corresponding Hamiltonian and canonical
equations.

(3.b) Show that the Lagrangian and Hamiltonian are invariant under the group action

q→ Gq and S → GSGT

for any constant invertible n× n matrix, G.

(3.c) Compute the infinitesimal generator for this group action and construct its corre-
sponding momentum map. Is this momentum map equivariant? Prove it.

(3.d) Verify directly that this momentum map is a conserved n×n matrix quantity by
using the equations of motion.

3. Solution

(3.a) Legendre transform as

P =
∂L

∂Ṡ
= S−1ṠS−1 and p =

∂L

∂q̇
= S−1q̇

Thus, the Hamiltonian H(Q,P ) and its canonical equations are:

H(q,p, S, P ) =
1
2

tr
(
PS · PS

)
+

1
2
p · Sp ,

Ṡ =
∂H

∂P
= SPS , Ṗ = − ∂H

∂S
= −

(
PSP +

1
2
p⊗ p

)
,

q̇ =
∂H

∂p
= Sp , ṗ =

∂H

∂q
= 0 .

(3.b) Under the group action q → Gq and S → GSGT for any constant invertible
n× n matrix, G, one finds ṠS−1 → GṠS−1G−1 and q̇ · S−1q̇→ q̇ · S−1q̇. Hence,
L → L. Likewise, P → G−TPG−1 so PS → G−TPSGT and p → G−Tp so that
Sp→ GSp. Hence, H → H, as well; so both L and H for the system are invariant.
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(3.c) The infinitesimal actions for G(ε) = Id+ εA+O(ε2), where A ∈ gl(n) are

XAq =
d

dε

∣∣∣
ε=0

G(ε)q = Aq

and
XAS =

d

dε

∣∣∣
ε=0

(
G(ε)SG(ε)T

)
= AS + SAT

The defining relation for the corresponding momentum map yields

〈J,A〉 = 〈(Q,P ), XA〉 = tr (PXAS) + p ·XAq

= tr
(
P (AS + SAT )

)
+ p ·Aq

Hence, 〈J,A〉 := tr
(
JAT

)
= tr

(
(2SP + q⊗ p)A

)
, so

J = (2PS + p⊗ q)

This momentum map is a cotangent lift, so it is equivariant.

(3.d) Conservation of the momentum map is verified directly by:

J̇ = (2ṖS + 2PṠ + p⊗ q̇) = 0

4. Euler-Poincaré equation EPDiff in one dimension
The EPDiff(H1) equation is obtained from the Euler-Poincaré reduction theorem for a
right-invariant Lagrangian, when one defines this Lagrangian to be half the H1 norm on
the real line of the vector field of velocity u = ġg−1, namely,

l(u) =
1
2
‖u‖2H1 =

1
2

∫ ∞
−∞

u2 + u2
x dx .

(Assume u vanishes as |x| → ∞.)

(4.a) Derive the EPDiff(H1) equation on the real line in terms of its velocity u and its
momentum m = δl/δu = u− uxx in one spatial dimension.

(4.b) Use the Clebsch approach (hard constraint) to derive the peakon singular solution
m(x, t) of EPDiff(H1) as a momentum map in terms of canonically conjugate
variables qi(t) and pi(t), with i = 1, 2, . . . , N .

4. Solution

(4.a) The EPDiff(H1) equation is written on the real line in terms of its velocity u and
its momentum m = δl/δu in one spatial dimension as

mt + umx + 2mux = 0 , where m = u− uxx
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where subscripts denote partial derivatives in x and t. This equation is derived
from the variational principle with l(u) = 1

2‖u‖
2
H1 as follows.

0 = δS = δ

∫
l(u)dt =

1
2
δ

∫∫
u2 + u2

x dx dt

=
∫∫

(u− uxx) δu dx dt =:
∫∫

mδudx dt

=
∫∫

m (ξt − aduξ) dx dt

=
∫∫

m (ξt + uξx − ξux) dx dt

= −
∫∫

(mt + (um)x +mux) ξ dx dt

= −
∫∫

(mt + ad∗um) ξ dx dt ,

where u = ġg−1 implies δu = ξt − aduξ with ξ = δgg−1.

(4.b) The constrained Clebsch action integral is

S(u, p, q) =
∫
l(u) dt+

∫
p(t)

(
q̇(t)− u(q(t), t)

)
dt

whose variation in u is gotten by inserting a delta function, so that

0 = δS =
∫ (

δl

δu
− p(t)δ(x− q(t))

)
δu dx dt

−
∫ (

ṗ(t) +
∂u

∂q
p(t)

)
δq − δp

(
q̇(t)− u(q(t), t)

)
dt .

The singular momentum solution m(x, t) of EPDiff(H1) is written as m(x, t) =
δl/δu = p(t)δ(x− q(t)) with canonical equations for (q, p),

q̇(t) = u(q(t), t) =
∂h

∂p
, ṗ(t) = −∂u

∂q
p(t) = −∂h

∂q
,

with Hamiltonian h(p, q) = 1
2p

2G(q) and u(q(t), t) = p(t)G(q(t)).


