
M4A34 Assessed Homework 1 Spring Term 2009 Darryl Holm

Due at beginning of class one week from today

1. Heavy top motion: Approach A

The motion of a heavy top is determined from Euler’s equations in vector
form,

IΩ̇ + Ω× IΩ = −mgχ× Γ , (1)
Γ̇ + Ω× Γ = 0 , (2)

where Ω, Γ, χ ∈ R3 are vectors in the rotating body frame, I is a real
positive symmetric matrix and mgχ = const.

The angular velocity vector Ω is related to the rotation rate by Ω̂ = R−1Ṙ
and Γ = R−1ẑ is the vertical axis as seen from the rotating body.

[a] Derive the Euler-Poincaré and Euler-Lagrange motion equations for a
variational principle δS = 0, where

S =
∫ b

a
L(Ω,Γ, Γ̇) dt

=
∫ b

a

(
1
2

IΩ ·Ω−mgχ · Γ +
1

2σ2

∣∣Γ̇ + Ω× Γ
∣∣2)dt (3)

with penalty σ2, a positive constant.

[b] Legendre transform and write the resulting equations in canonical Hamil-
tonian form.

[c] Verify that these canonical equations recover the heavy top motion
equation (1). What identity is used in the key step in this verification?

[d] Is the Γ-equation also recovered from this variational principle?

Solution 1:

[a] Taking the variational derivative of the action integral S in (3) yields

δS =
∫ b

a

(
IΩ · δΩ−mgχ · δΓ + Λ ·

(
δΓ̇ + δΩ× Γ + Ω× δΓ

))
dt
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where the momentum Λ canonically conjugate to Γ is found to be

Λ :=
∂L

∂Γ̇
=

1
σ2

(
Γ̇ + Ω× Γ

)
.

Rearranging and integrating by parts in δS yields

δS =
∫ b

a

((
IΩ + Γ×Λ

)
· δΩ

−
(
Λ̇ + Ω×Λ +mgχ

)
· δΓ

)
dt+

[
Λ · δΓ

]b
a
.

Thus, stationarity δS = 0 implies

δΩ : IΩ + Γ×Λ = 0 ,
δΓ̇ : σ2Λ = Γ̇ + Ω× Γ ,

δΓ : Λ̇ + Ω×Λ +mgχ = 0 .

Substituting the last two stationarity conditions into the time
derivative of the first one easily leads to the motion equation (1)
for the heavy top. However, the Γ-equation (2) is only recovered
in the limit σ2 → 0.

[b] Legendre transforming leads to the Hamiltonian,

H(Γ,Λ) = Γ̇ ·Λ− L(Ω,Γ, Γ̇)

=
1
2

(Γ×Λ) · I−1(Γ×Λ) +
σ2

2

∣∣Λ∣∣2 +mgχ · Γ .

This Hamiltonian is the kinetic plus potential energy for the heavy
top. Hamilton’s canonical equations of motion now are

Γ̇ =
∂H

∂Λ
= −Γ× I−1(Γ×Λ) + σ2Λ = −Ω× Γ + σ2Λ ,

Λ̇ = − ∂H
∂Γ

= −Λ× I−1(Γ×Λ)−mgχ = −Ω×Λ−mgχ ,

where we have used Ω = − I−1(Γ×Λ).

[c] Combining these canonical equations with the time derivative of
IΩ = −Γ × Λ yields the heavy top equation of motion (1), upon
using the Jacobi identity for the triple vector product in R3.

The Jacobi identity is thus the key identity for deriving the equa-
tions of motion.
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[d] The Γ-equation is only recovered in the limit σ → 0.

The limit σ → 0 requires exact verification of the Γ-equation,
rather than merely a penalty for not satisfying it. The latter may
be achieved by introducing it as a constraint, enforced by a La-
grange multiplier,

S =
∫ b

a

(
1
2

IΩ ·Ω−mgχ · Γ + Λ ·
(
Γ̇ + Ω× Γ

))
dt

This is the action functional for the heavy top in the Clebsch
approach that was discussed in class.

2. Heavy top motion: Approach B

The Kaluza-Klein Lagrangian for the heavy top is the map

LKK : TQKK ' TSO(3)× TR3 7→ R ,

defined by extending the tangent space TSO(3) of the rigid body to include
new auxiliary variables q, q̇ ∈ TR3 in the sum of squares

LKK(R, Ṙ,q, q̇; ẑ) = lKK(Ω,Γ, q̇) =
1
2
〈 IΩ , Ω 〉+

1
2
|Γ + q̇|2 . (4)

The skew-symmetric matrix variable Ω̂ = R−1Ṙ ∈ so(3) and the unit vector
Γ = R−1ẑ ∈ S2 are defined as usual. The roles of the variables (q, q̇) ∈
TR3 are to be determined. To begin this interpretation, note that q ∈ R3

is an ignorable vector coordinate in the reduced Lagrangian lKK ; so its
canonically conjugate momentum p ∈ R3∗ ' R3 is a constant of the motion.

[a] Derive the coupled Euler-Poincaré and Euler-Lagrange motion equations
from the variational principle δS = 0, using the reduced Lagrangian
lKK , i.e., using the action

S =
∫ b

a
lKK(Ω,Γ, q̇) dt .

Explain how to obtain the Γ-equation in this case.
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[b] Perform the Legendre transformation of lKK in (4) to obtain its mo-
mentum variables. Explain why the momentum p conjugate to the
coordinate q is conserved, then identify it with the other constant
vector in the heavy top formulation and thereby derive the correct
motion equation for the heavy top.

[c] Continue the Legendre transformation of lKK in (4) to obtain its Hamil-
tonian HKK and the corresponding Hamiltonian equations.

[d] Evaluate HKK on a level set of the constant p and rewrite the Euler-
Poincaré equations in Lie-Poisson Hamiltonian form.

[e] Show that the Hamiltonian equations for h = HKK(Π,Γ,q,p) split
apart into a direct product of the heavy top equations in Lie-Poisson
form, times a canonical Hamiltonian system. Write the Poisson bracket
for the entire system.

Solution:

[a] According to its definition, the unit vector Γ = R−1ẑ ∈ S2 satisfies
the auxiliary equation,

Γ̇ = −Ω× Γ ,

upon taking the time derivative and using the hat map. So the Γ-
equation is part of the problem formulation in this case.

Variations in Ω and Γ yields the Euler-Poincaré motion equation, while
variations in q and q̇ yield the Euler-Lagrange equation.

[b] The Legendre transformation for lKK in (4) gives the momenta

Π = IΩ and p = Γ + q̇ . (5)

Since lKK does not depend on q, its Euler-Lagrange equation

d

dt

∂lKK
∂q̇

=
∂lKK
∂q

= 0 ,

shows that p = ∂lKK/∂q̇ is conserved. It’s natural to identify the
constant vector p in the body with the other constant vector in the
problem,

p = Γ + q̇ = −mgχ .
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After this identification, the Euler-Poincaré motion equation for the
Kaluza-Klein Lagrangian easily returns Euler’s motion equation for the
heavy top (1).

[c] The Hamiltonian HKK associated to lKK by the Legendre transfor-
mation (5) is

HKK(Π,Γ,q,p) = Π ·Ω + p · q̇− lKK(Ω,Γ,q, q̇)

=
1
2
Π · I−1Π− p · Γ +

1
2
|p|2

=
1
2
Π · I−1Π +

1
2
|p− Γ|2 − 1

2
|Γ|2 .

The Hamiltonian equations for the canonical variables are

q̇ =
∂HKK

∂p
= p− Γ ,

ṗ = − ∂HKK

∂q
= 0 .

Therefore, as expected, p is a constant of the augmented motion and,
consequently, the canonically conjugate q-equation decouples from the
rest.

[d] Recall that Γ is a unit vector. On the constant level set |Γ|2 = 1,
the Kaluza-Klein Hamiltonian HKK is a positive quadratic function,
shifted by a constant. Moreover, on the constant level set p = −mgχ,
the Kaluza-Klein Hamiltonian HKK is a function h(Π,Γ) of only the
variables (Π,Γ) and is equal to the sum of the kinetic plus potential
energy for the heavy top, plus a harmless constant,

h(Π,Γ) := HKK(Π,Γ,p)
∣∣∣
p=−mgχ

=
1
2
Π · I−1Π+mgχ ·Γ+

1
2

∣∣mgχ∣∣2 ,
in terms of whose derivatives one may rewrite the Euler-Poincaré equa-
tions in Lie-Poisson Hamiltonian form, as[

Π̇
Γ̇

]
=
[
Π× Γ×
Γ× 0

] [
Ω
mgχ

]
=
[
{Π, h}
{Γ, h}

]
. (6)

As a result, the Hamiltonian equations for h = HKK(Π,Γ,q,p) split
apart into a direct product of the heavy top equations in Lie-Poisson
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form, times a canonical Hamiltonian system consisting of a conserved
momentum and the linear evolution of its conjugate coordinate.

Π̇
Γ̇
q̇
ṗ

 =


Π× Γ× 0 0
Γ× 0 0 0
0 0 0 Id
0 0 − Id 0




Ω
−p
0

p− Γ

 . (7)

Equations (7) exactly recover the heavy top equations (1) and (2) upon
evaluating

p = −mgχ.

[e] Hence, we have the following.
The Lie-Poisson equations for the Kaluza-Klein Hamiltonian
HKK recover Euler’s equations for the heavy top (1) and (2).
The Lie-Poisson bracket may be written in matrix form as

{ f , h } =


∂f/∂Π
∂f/∂Γ
∂f/∂q
∂f/∂p


T 

Π× Γ× 0 0
Γ× 0 0 0
0 0 0 Id
0 0 − Id 0



∂h/∂Π
∂h/∂Γ
∂h/∂q
∂h/∂p

 . (8)
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M4A34 Assessed Homework 2 Spring Term 2010 Darryl Holm

Due at beginning of class one week from today

1. Generalised rigid body

Review
Recall the following definitions for the left action of a Lie group G on the
cotangent bundle T ∗Q of a manifold Q:

• The diamond operation � : T ∗Q→ g∗ is defined by〈
p � q , ξ

〉
=
〈
p , −£ξq

〉
V
,

with pairings 〈· , ·〉 : g∗ × g→ R and 〈· , ·〉V : TV ∗ × TV → R.

• The cotangent-lift momentum map for this action is given by

J = − p � q : T ∗Q→ g∗

for canonical variables (q, p) ∈ T ∗Q satisfying {q, p} = Id.

Let the Hamiltonian Hgrb for a generalised rigid body (grb) be defined as the
pairing of the cotangent-lift momentum map J with its dual J ] = K−1J ∈ g,

Hgrb =
1
2

〈
p � q , (p � q)]

〉
=

1
2

(
p � q , K−1(p � q)

)
,

for an appropriate inner product ( · , · ) : g∗×g→ R obtained, e.g., from the
Killing form K on g (which is symmetric and nondegenerate).

Problem statement

[a] Compute the canonical equations for the Hamiltonian Hgrb.

[b] Use these equations to compute the evolution equation for J = − p � q.

[c] Identify the resulting equation and give a plausible argument why this
was to be expected, by writing out its associated Hamilton’s principle
and Euler-Poincaré equations.

[d] Write the dynamical equations for q, p and J on R3 and explain why
the name generalised rigid body might be appropriate.
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Solution:

[a] By rearranging the Hamiltonian, we find

Hgrb =
1
2

〈
p , −£(p�q)]q

〉
V

=
1
2

〈
−£T

(p�q)]p , q
〉
V
.

Consequently, the canonical equations for this Hamiltonian are

q̇ =
δHgrb

δp
= −£(p�q)]q , (9)

ṗ = −
δHgrb

δq
= £T

(p�q)]p . (10)

[b] These equations allow us to compute the evolution equation for the
left cotangent-lift momentum map J = −p � q as〈
J̇ , ξ

〉
=

〈
− ṗ � q − p � q̇ , ξ

〉
=

〈
£T
γ p � q − p �£γq , ξ

〉
, where γ = −(p � q)] = J ]

= −
〈
£T
γ p , £ξq

〉
+
〈
p , £ξ£γq

〉
=

〈
p , −£(adγξ)q

〉
=
〈
p � q , adγξ

〉
=

〈
ad∗γ(p � q) , ξ

〉
=
〈

ad∗J]J , ξ
〉
, for any ξ ∈ g.

Thus, we find that the equation of motion for a generalised rigid
body is the same as the Euler-Poincaré equation for a left-invariant
Lagrangian, namely,

J̇ = ad∗J]J . (11)

[c] Equation (11) also results from Hamilton’s principle δS = 0 given
by

S(ξ; p, q) =
∫ (

l(ξ) + 〈p , q̇ −£ξq〉
)
dt

for the Clebsch-constrained reduced Lagrangian defined in terms
of variables (ξ; p, q) ∈ g× T ∗Q when we identify δl/δξ = J .

(For the right action of G on T ∗Q we would have written the
Clebsch constraint term as 〈p , q̇ + £ξq〉.)
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[d] On R3 the EP equation (11) for grb becomes

J̇ = − J ] × J ,

which recovers the rigid body when J is the body angular momen-
tum and J ] = K−1J is the body angular velocity.

The corresponding canonical Hamiltonian equations (9) and (10)
for q, p ∈ R3 are

q̇ = − J ] × q and ṗ = − J ] × p .

These equations describe rigid rotations of vectors q, p ∈ R3 at
angular velocity J ].

2. Momentum map for cotangent lifts

Review
The formula determining the momentum map for the cotangent-lifted action
of a Lie group G on a smooth manifold Q may be expressed in terms of the
pairings 〈 · , · 〉 : g∗ × g→ R and 〈〈 · , · 〉〉 : T ∗Q× TQ→ R as

〈 J , ξ 〉 = 〈〈 p , £ξq 〉〉 ,

where (q, p) ∈ T ∗qQ and £ξq is the infinitesimal generator of the action of
the Lie algebra element ξ on the coordinate q.

Problem statement:
Define appropriate pairings and determine the momentum maps explic-
itly for the following actions, then compute their symmetric double-bracket
canonical equations.

[a] £ξq = ξ × q for R3 × R3 7→ R3

[b] £ξq = adξq for ad-action ad : g× g 7→ g in a Lie algebra g

[c] AqA−1 for A ∈ GL(3, R) acting on q ∈ GL(3, R) by matrix conjugation

[d] Aq for left action of A ∈ SO(3) on q ∈ SO(3)

[e] AqAT for A ∈ GL(3, R) acting on q ∈ Sym(3), that is q = qT .
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[f] UQU † for a unitary matrix U ∈ U(n) satisfying U † = U−1 acting on
Hermitian Q ∈ H(n) satisfying Q = Q†.

[g] £ξφ = {ξ, φ} = (∂pξ)(∂qφ)− (∂qξ)(∂pφ)
for the canonical Poisson bracket { · , · } : F∗ ×F → F .

Solution:

[a] £ξq = ξ × q for R3 × R3 7→ R3 under spatial rotations

The definition of cotangent-lift momentum map yields

〈J , ξ 〉 = 〈p , ξ × q〉 = p · ξ × q = − p× q · ξ

Hence, one has J = − p× q = q × p ∈ so(3)∗ ' R3 for this action.

The Hamiltonian for geodesic motion on SO(3) with respect to
the metric given by the pairing I : so(3)→ so(3)∗ is

H =
1
2
J · I−1J =

1
2

(q × p) · I−1(q × p),

with canonical Poisson bracket { q , p } = 1, which yields canonical
equations in symmetric double-bracket form,

q̇ = {q,H} =
δH

δp
= − q × I−1(q × p),

ṗ = {p,H} = − δH
δq

= − p× I−1(q × p).

By the Jacobi identity for the cross product, these canonical equa-
tions yield

J̇ = J × I−1J

in the form

d

dt
(q × p) = (q × p)×

(
I−1(q × p)

)
These equations provide the symmetric phase-space formulation
of spatial rotations of a rigid body.
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[b] £ξq = adξq for ad : g× g 7→ g in a Lie algebra g.

The definition of cotangent-lift momentum map yields

〈J , ξ 〉 = 〈p , adξq〉 = −
〈
ad∗qp , ξ

〉
Hence, one has

J = − ad∗qp ∈ g∗

for this action.

The Hamiltonian for geodesic motion on the Lie group G with
respect to the metric defined as the pairing of the cotangent-lift
momentum map J with its dual J ] = K−1J ∈ g is given by,

HG =
1
2

〈
ad∗qp , (ad∗qp)

]
〉

=
1
2

(
ad∗qp , K

−1(ad∗qp)
)
,

for an appropriate inner product ( · , · ) : g∗×g→ R obtained, e.g.,
from the Killing form K on g (which is symmetric and nondegen-
erate).

The canonical Poisson bracket { q , p } = 1 yields canonical equa-
tions for the Hamiltonian HG in symmetric double-bracket form,

q̇ = {q,H} =
δH

δp
= ad∗J] q, (12)

ṗ = {p,H} = − δH
δq

= ad∗J] p. (13)

After a short calculation using the Jacobi identity for the ad-
operation in g, these canonical equations yield

d

dt

〈
J , ξ

〉
=
〈
J̇ , ξ

〉
=
〈

ad∗J] J , ξ
〉

(14)

in the form
d

dt
(ad∗qp) = ad∗K−1(ad∗qp)

ad∗qp . (15)

These equations provide the symmetric phase-space formulation
of the motions of a generalised rigid body.

[c] AqA−1 for A ∈ GL(3, R) acting on q ∈ GL(3, R) by matrix conju-
gation.
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In this case, one computes the ad-action for GL(3, R) conjugation
as

Te(AqA−1) = ξq − qξ = [ξ, q] ,

for ξ = A′(0) ∈ gl(3, R) acting on q ∈ GL(3, R) by matrix Lie
bracket [· , ·].
Consequently, one finds the momentum map by using the matrix
trace-pairing, 〈A , B 〉 = tr(ATB),

〈 p , adξq 〉 = tr(pT [ξ, q]) = tr
(

(pqT − qT p)T ξ
)

Thus,

J = pqT − qT p = [p, qT ] = − adqT p = − ad∗qp ,

where [ · , · ] is the matrix commutator, so that JT = [q, pT ] ex-
changes q ↔ p in J . (Page 175 of the book)

Then for a symmetric matrix K−1, we have

H =
1
2

〈
J , J ]

〉
=

1
2

tr(JTK−1J) ,

whose canonical Hamiltonian equations are, cf. (12) and (13)

q̇ =
δH

δp
= −

[
qT ,K−1J

]
=: ad∗J] q,

ṗ = − δH
δq

= −
[
pT ,K−1J

]
= −

[
(K−1J)T , p

]
=: ad∗J] p,

in which the last step uses a relation for the transpose of the matrix
commutator [AT , B ] = −[A , BT ]T and antisymmetry JT = −J .
Hence, cf. (15)

J̇ = ad∗J] J = −
[
(K−1J)T , J

]
(16)

[d] Aq for left action of A ∈ SO(3) on q ∈ SO(3)

Compute Te(Aq) = ξq for ξ = A′(0) ∈ so(3) acting on q ∈ SO(3)
by left matrix multiplication. For the matrix pairing 〈A , B 〉 =

12



trace(ATB), one finds the following expression for the momentum
map,

trace(pT ξq) = trace((pqT )T ξ) ⇒ J =
1
2

(pqT − qpT ) = −JT ,

upon using antisymmetry of the matrix ξ ∈ so(3).

Then for a symmetric matrix K−1, we have

H =
1
2

〈
J , J ]

〉
=

1
2

tr(JTK−1J) = − 1
2

tr(JK−1J) ,

whose canonical Hamiltonian equations are, cf. (12) and (13)

q̇ =
δH

δp
= − qT (K−1J + JK−1)

ṗ = − δH
δq

= − pT (K−1J + JK−1)

Compute equation for (q̇, ṗ, J̇)

[e] AqAT for A ∈ GL(3, R) acting on q ∈ Sym(3); that is, q = qT .

Compute
Te(AqAT ) = ξq + qξT = ξq + (ξq)T ,

for ξ = A′(0) ∈ gl(3, R) acting on q ∈ Sym(3). For the matrix
pairing 〈A , B 〉 = tr(ATB), one finds

tr(pT (ξq + qξT )) = tr((qpT + qT p)ξ)⇒ J = pqT + pT q = JT ,

Compute equation for (q̇, ṗ, J̇)

[f] UQU † for a unitary matrix U ∈ U(n) satisfying U † = U−1 acting
on Hermitian Q ∈ H(n) satisfying Q = Q†.

The canonically conjugate elements of T ∗Q are pairs (Q,P ) of
Hermitian matrices. The corresponding Poisson bracket is

{F,H} = tr
(
∂F

∂Q

∂H

∂P
− ∂H

∂Q

∂F

∂P

)
.
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The action of the group U(n) on T ∗Q is given by

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id .

The linearisation of this group action with U = exp(tξ), with skew-
Hermitian ξ† = − ξ yields the vector field with (Q,P ) components,

Xξ =
(

[ξ,Q], [ξ, P ]
)
.

This is the Hamiltonian vector field for

Jξ = tr
(
[Q,P ]ξ

)
,

thus yielding the momentum map J(Q,P ) = [Q,P ].

Compute equations of motion for for (Q̇, Ṗ , J̇) for the Hamil-
tonian

H(Q,P ) =
1
2

tr
(

[Q,P ]TK−1[Q,P ]
)

=
1
2

tr
(
JTJ ]

)
with J ] := K−1J . Hence, we find

Q̇ =
∂H

∂P
= − [J ], Q] ,

Ṗ = − ∂H
∂Q

= − [J ], P ] ,

J̇ =
d

dt
[Q,P ] = −

[
J ], [Q,P ]

]
= − [J ], J ] = −

[
∂H

∂J
, J

]
.

As a result, we have for any smooth function F (J),

d

dt
F (J) = − tr

(
J

[
∂F

∂J
,
∂H

∂J

])
=: {F, H}

[g] £ξφ = {ξ, φ} = (∂pξ)(∂qφ) − (∂qξ)(∂pφ) for canonical Poisson
bracket { · , · } : F∗ ×F → F .
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The definition of cotangent-lift momentum map yields

〈J , ξ〉 = 〈π , £ξφ〉 =
∫
π{ξ, φ}dqdp =

∫
ξ{φ, π}dqdp

Hence, one has J = {π, φ} for this action.

Writing f = {π, φ} in the Hamiltonian for geodesic Vlasov motion

H =
1
2

∫
f K ∗ fdqdp =

1
2

∫
{π, φ}K ∗ {π, φ}dqdp

with canonical Poisson bracket { · , · } : F∗×F → F yields canon-
ical equations in symmetric double-bracket form,

φ̇ =
δH

δπ
=
{
φ, K ∗ {π, φ}

}
,

π̇ = −δH
δφ

=
{
π, K ∗ {π, φ}

}
.

By the general theory, these canonical equations recover

∂tf =
{
f,
δH

δf

}
in the form

∂t{π, φ} =
{
{π, φ},K ∗ {π, φ}

}
These equations would appear in the symmetric phase-space for-
mulation of optimal control of geodesic Vlasov motion.

3. Nambu representation of Euler’s rigid-body equations

Review of the Nambu bracket
A Hamiltonian vector field XH defined on phase-plane coordinates (p, q) =
(x1, x2) ∈ R2 satisfies

XH d2x = − dH
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where H : R2 → R. The corresponding Poisson bracket may be be given
a 3D vector representation in Cartesian coordinates (x1, x2, x3) ∈ R3 by
writing it as

XH = { · , H}x =
∂H

∂x2

∂

∂x1
− ∂H

∂x1

∂

∂x2
= ∇x3 ×∇H · ∇ ,

in which ∇x3 = (0, 0, 1) is the unit vector normal to the R2 plane.
Consequently, a phase-plane function F : R2 → R satisfies

Ḟ = XHF = {F ,H}x = ∇F · ∇x3 ×∇H =: {F , x3 , H}x ,

in which the last expression defines the Nambu bracket for the ordered
triple (F, x3, H).
The level set of x3 is not special, so a Nambu bracket may be defined for
the ordered triple (F, S,H) with any smooth function S : R3 → R as

{F , S ,H}x dx1 ∧ dx2 ∧ dx3 := ∇F · ∇S ×∇H dx1 ∧ dx2 ∧ dx3 = dF ∧ dS ∧ dH .

A Nambu vector field XSH = { · , S ,H}x on R3 satisfies

XSH d3x = − dH ∧ dS

for functions S,H : R3 → R. Thus, the Nambu bracket {F , S ,H} reduces
to the canonical Poisson bracket at any nonsingular point on a level surface
of S. (This holds for S = x3 = constant, of course, and is guaranteed by
Darboux’s theorem for any regular surface S = constant.)
Euler’s equations for rigid-body motion in principal-axis body angular mo-
mentum coordinates x ∈ R3 consist of

ẋ =
1
4
∇|x|2 ×∇(x · I−1x) ,

with diagonal momentum of inertia tensor I = diag(I1, I2, I3).
These are expressed in Nambu form by identifying S = 1

2 |x|
2 and H =

1
2x · I−1x. Consequently, the motion in body coordinates x occurs along
intersections of level sets of the conserved angular momentum S and the
kinetic energy H.

Problem statement:

[a] Verify from its definition that the Nambu bracket is trilinear, has even
(odd) parity under corresponding permutations of its three entries, sat-
isfies the Jacobi identity, and is invariant under the volume-preserving
transformations of R3.
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[b] Show that volume-preserving transformations are the analogs for the
Nambu bracket of canonical transformations of the symplectic Poisson
bracket by specialising the last property in Part [a] to S = x3.

[c] Show that Euler’s rigid-body equations transform into

Ẋ =
1
4
∇(X2

1 −X2
2 )×∇(X2

1 −X2
3 )

upon defining

Xi := xi/γi (no sum), where γi = −1/Ij + 1/Ik ,

with cyclic permutation in i, j, k = 1, 2, 3. In performing this calcula-
tion, check that their definitions imply that the three γ’s satisfy the
relation

γ2
1 + γ2

2 + γ2
3 = 0

and impose γ1γ2γ3 = 1 on their product so that volume is preserved.
Hint: The easy way to do this is to use the wedge product and its
properties.

[d] Discuss the geometric meaning of this representation of rigid-body mo-
tion and sketch its solution trajectories for X ∈ R3. Explicitly write
the transformed Euler equations in components of X = (X1, X2, X3)
and check that the divergence of the resulting vector field Ẋ vanishes.

[e] Reduce the motion to a level surface of S = 1
2(X2

1−X2
2 ). Write the equa-

tions of motion explicitly and show that they are canonically Hamil-
tonian.

Solution:

[a] For example, the last property in [c] follows for the smooth trans-
formations (x1, x2, x3)→ (X1, X2, X3) ∈ R3 as

{F , S ,H}x dx1 ∧ dx2 ∧ dx3 = dF ∧ dS ∧ dH
= {F , S ,H}X dX1 ∧ dX2 ∧ dX3 ,

so that

{F , S ,H}x = {F , S ,H}X ,

when dX1 ∧ dX2 ∧ dX3 = dx1 ∧ dx2 ∧ dx3.
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[b] The specialisation to S = x3 in the last of the properties in Part [c]
immediately recovers the area-preserving (symplectic) transforma-
tions of the plane.

[c] Direct calculation.

[d] The solution trajectories for rigid-body motion in X ∈ R3 follow
along intersections of two families of hyperbolic cylinders whose
axes of translation symmetry are orthogoanal to each other. The
Euler equations in components of X = (X1, X2, X3) are Ẋ1 =
X2X3 and cyclic permutations.

[e] Direct calculation.
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4. Trilinear bracket representation of the heavy top equations

A certain trilinear bracket for any three smooth functions F, S,H : R6 → R
defines a dynamical system for (x,y) ∈ R6 as

Ḟ = {F , S ,H}

:=
∂F

∂y
· ∂S
∂x
× ∂H

∂x
+

∂S

∂y
· ∂H
∂x
× ∂F

∂x
+

∂H

∂y
· ∂F
∂x
× ∂S

∂x
. (17)

Let the dynamics of a given system be determined from ẋ = {x , S ,H} and
ẏ = {y , S ,H}.

Problem statement:

[a] Write the dynamical equations of the variables x(t) and y(t) generated
by the trilinear bracket (17) for arbitrary smooth functions S and H.

[b] Show that this dynamics conserves the functions S and H, so that
the motion in R6 takes place on the intersections of level sets of S
and H. What is the dimensionality of these intersections? Is the
dimensionality an even integer?

[c] Assume that S = x · y and H = 1
2x · I−1x + a · y for constant vector

a ∈ R3 and constant symmetric positive invertible 3 × 3 matrix I.
Reduce the problem to an equivalent rigid body problem when initial
conditions are chosen such that S = 0.

[d] Explain what the reduced motion on S = 0 in part [c] means physically.

[e] From its definition that the bracket (17) is trilinear. Show that it has
even (odd) parity under corresponding permutations of its three entries
and satisfies the Jacobi identity.

[f] What is the interpretation of the trilinear bracket (17) when S = x · y?

Solution:

[a] The dynamical equations of the variables x(t) and y(t) are

ẋ = {x , S ,H} =
∂S

∂y
× ∂H

∂x
− ∂H

∂y
× ∂S

∂x
,

ẏ = {y , S ,H} =
∂S

∂x
× ∂H

∂x
.
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[b] When F = S or F = H, the trilinear bracket (17) vanishes by
antisymmetry of cross product of vectors in R3. The dimensional-
ity of the intersections of level sets of these quantities is 5+5-6=4,
which is even and thus is a candidate for a symplectic Hamiltonian
formulation.

[c] The preserved condition S = x · y = 0 implies that the relation
y = b × x is preserved for a constant vector b ∈ R3. Hence,
H = 1

2x · I−1x + a · y becomes

H =
1
2
x · I−1x + x · (a× b) .

Substitution of this reduced Hamiltonian into the trilinear bracket
(17) results in

ẋ = x× (I−1x + a× b) ,
ẏ = b× ẋ .

[d] The 1st equation (for ẋ) may be identified as eccentrically rotating
rigid body motion. The second equation (for ẏ) decouples; so it
may be solved separately.

When b = 0, the heavy top is supported at its center of mass and
its motion reduces to ordinary rigid body motion.

[e] The various properties of the trilinear bracket (17) may be verified
directly.

[f] When S = x ·y, the trilinear bracket (17) reduces to the Lie-Poisson
bracket on se(3)∗. Its various properties follow in that case by
being linearly dual to the defining properties of a Lie algebra. The
quantity S = x · y is the Casimir for the Lie-Poisson bracket on
se(3)∗.
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