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1. Consider the following action S for Hamilton’s principle δS = 0 given by

S =

∫
L(Ω, ω, g) dt =

∫
l(Ω) +

1

2σ2

∣∣ω − AdgΩ
∣∣2 dt ,

where g ∈ G and ω = ġg−1(t) ∈ g, for a matrix Lie group G and its right-invariant matrix

Lie algebra g. Here σ2 ∈ R is a positive constant and | · | is a Riemannian metric which

defines a symmetric non-degenerate pairing g∗ × g→ R between the Lie algebra g and its

dual g∗ . (The variables ω and AdgΩ are both elements of the Lie algebra g.)

(a) Denote variations as, e.g., δg = g′ and show that

(AdgΩ)′ = AdgΩ′ − adAdgΩη with η = g′g−1 ∈ g .

(b) Express δω = ω′ in terms of η, η̇ and adω using cross-derivatives of ġ = ωg and

g′ = ηg.

(c) Use the relations from Parts a and b to derive the Euler-Poincaré equation for ∂l/∂Ω

from Hamilton’s principle, δS = 0.

(You may ignore endpoint terms when integrating by parts.)

(d) Interpret this Euler-Poincaré equation as a conservation law.

2. (a) Consider the matrix Lie group Q of n × n Hermitian matrices, so that Q† = Q for

Q ∈ Q. The Poisson (symplectic) manifold is T ∗Q, whose elements are pairs (Q,P )

of Hermitian matrices. The corresponding Poisson bracket is

{F,H} = tr

(
∂F

∂Q

∂H

∂P
− ∂H

∂Q

∂F

∂P

)
.

Let G be the group U(n) of n× n unitary matrices: G acts on T ∗Q through

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id

(i) What is the linearization of this group action?

(ii) What is its momentum map?

(iii) Is this momentum map equivariant? Explain why, or why not.

(b) Is the momentum map in part (a) conserved by the Hamiltonian H = 1
2
trP 2?

Prove it.
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3. Consider the Lagrangian

L =
1

2
tr
(
ṠS−1ṠS−1

)
+

1

2
q̇ · S−1q̇ ,

where S is an n× n symmetric matrix and q ∈ Rn is an n−component column vector.

(a) Legendre transform to construct the corresponding Hamiltonian and canonical

equations.

(b) Show that the Lagrangian and Hamiltonian are invariant under the group action

q→ Gq and S → GSGT

for any constant invertible n× n matrix, G.

(c) Compute the infinitesimal generator for this group action and construct its

corresponding momentum map. Is this momentum map equivariant? Prove it.

(d) Verify directly that this momentum map is a conserved n×n matrix quantity by using

the equations of motion.

4. The EPDiff(H1) equation is obtained from the Euler-Poincaré reduction theorem for a

right-invariant Lagrangian, when one defines this Lagrangian to be half the H1 norm on

the real line of the vector field of velocity u = ġg−1, namely,

l(u) =
1

2
‖u‖2

H1 =
1

2

∫ ∞
−∞

u2 + u2
x dx .

(Assume u and ux vanishes as |x| → ∞.)

(a) Derive the EPDiff(H1) equation on the real line in terms of its velocity u and its

momentum m = δl/δu = u− uxx in one spatial dimension.

(b) Use the Clebsch approach (hard constraint) to derive the peakon singular solution

m(x, t) of EPDiff(H1) as a cotangent-lift momentum map in terms of canonically

conjugate variables q(t) and p(t). Derive Hamilton’s canonical equations for the

conjugate variables q(t) and p(t).
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