Imperial College London

UNIVERSITY OF LONDON

Course:	M4A34	
Setter:	Holm	
Checker:	Gibbons	
Editor:	Chen	
External:		
Date:	March 26, 2009	

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2009

M4A34

GEOMETRICAL MECHANICS, Part 2

Setter's signature	Checker's signature	Editor's signature

M4A34 GEOMETRICAL MECHANICS, Part 2 (2009)

Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2009

This paper is also taken for the relevant examination for the Associateship.

M4A34

GEOMETRICAL MECHANICS, Part 2

Date: Time:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Consider the following action S for Hamilton's principle $\delta S = 0$ given by

$$S = \int L(\Omega, \omega, g) dt = \int l(\Omega) + \frac{1}{2\sigma^2} |\omega - \mathsf{Ad}_g \Omega|^2 dt \,,$$

where $g \in G$ and $\omega = \dot{g}g^{-1}(t) \in \mathfrak{g}$, for a matrix Lie group G and its right-invariant matrix Lie algebra \mathfrak{g} . Here $\sigma^2 \in \mathbb{R}$ is a positive constant and $|\cdot|$ is a Riemannian metric which defines a symmetric non-degenerate pairing $\mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$ between the Lie algebra \mathfrak{g} and its dual \mathfrak{g}^* . (The variables ω and $\operatorname{Ad}_g\Omega$ are both elements of the Lie algebra \mathfrak{g} .)

(a) Denote variations as, e.g., $\delta g = g'$ and show that

$$(\operatorname{Ad}_{g}\Omega)' = \operatorname{Ad}_{g}\Omega' - \operatorname{ad}_{\operatorname{Ad}_{g}\Omega}\eta \quad \text{with} \quad \eta = g'g^{-1} \in \mathfrak{g}$$

- (b) Express $\delta \omega = \omega'$ in terms of η , $\dot{\eta}$ and ad_{ω} using cross-derivatives of $\dot{g} = \omega g$ and $g' = \eta g$.
- (c) Use the relations from Parts a and b to derive the Euler-Poincaré equation for $\partial l/\partial \Omega$ from Hamilton's principle, $\delta S = 0$. (You may ignore endpoint terms when integrating by parts.)
- (d) Interpret this Euler-Poincaré equation as a conservation law.
- 2. (a) Consider the matrix Lie group Q of $n \times n$ Hermitian matrices, so that $Q^{\dagger} = Q$ for $Q \in Q$. The Poisson (symplectic) manifold is T^*Q , whose elements are pairs (Q, P) of Hermitian matrices. The corresponding Poisson bracket is

$$\{F,H\} = \operatorname{tr}\left(\frac{\partial F}{\partial Q}\frac{\partial H}{\partial P} - \frac{\partial H}{\partial Q}\frac{\partial F}{\partial P}\right).$$

Let G be the group U(n) of $n \times n$ unitary matrices: G acts on $T^*\mathcal{Q}$ through

$$(Q, P) \mapsto (UQU^{\dagger}, UPU^{\dagger}), \quad UU^{\dagger} = Id$$

- (i) What is the linearization of this group action?
- (ii) What is its momentum map?
- (iii) Is this momentum map equivariant? Explain why, or why not.
- (b) Is the momentum map in part (a) conserved by the Hamiltonian $H = \frac{1}{2} \text{tr } P^2$? Prove it.

3. Consider the Lagrangian

$$L = \frac{1}{2} \operatorname{tr} \left(\dot{S} S^{-1} \dot{S} S^{-1} \right) + \frac{1}{2} \dot{\mathbf{q}} \cdot S^{-1} \dot{\mathbf{q}} \,,$$

where S is an $n \times n$ symmetric matrix and $\mathbf{q} \in \mathbb{R}^n$ is an *n*-component column vector.

- (a) Legendre transform to construct the corresponding Hamiltonian and canonical equations.
- (b) Show that the Lagrangian and Hamiltonian are invariant under the group action

$$\mathbf{q} \to G\mathbf{q}$$
 and $S \to GSG^T$

for any constant invertible $n \times n$ matrix, G.

- (c) Compute the infinitesimal generator for this group action and construct its corresponding momentum map. Is this momentum map equivariant? Prove it.
- (d) Verify directly that this momentum map is a conserved $n \times n$ matrix quantity by using the equations of motion.
- 4. The EPDiff (H^1) equation is obtained from the Euler-Poincaré reduction theorem for a right-invariant Lagrangian, when one defines this Lagrangian to be half the H^1 norm on the real line of the vector field of velocity $u = \dot{g}g^{-1}$, namely,

$$l(u) = \frac{1}{2} \|u\|_{H^1}^2 = \frac{1}{2} \int_{-\infty}^{\infty} u^2 + u_x^2 \, dx \, .$$

(Assume u and u_x vanishes as $|x| \to \infty$.)

- (a) Derive the EPDiff (H^1) equation on the real line in terms of its velocity u and its momentum $m = \delta l / \delta u = u u_{xx}$ in one spatial dimension.
- (b) Use the Clebsch approach (hard constraint) to derive the peakon singular solution m(x,t) of EPDiff (H^1) as a cotangent-lift momentum map in terms of canonically conjugate variables q(t) and p(t). Derive Hamilton's canonical equations for the conjugate variables q(t) and p(t).