Imperial College
 London

UNIVERSITY OF LONDON

Course: M4A34
Setter: Holm
Checker: Gibbons
Editor: Turaev
External:
Date: 14 Feb 2011

BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2011

M4A34

Geometric Mechanics II

Setter's signature	Checker's signature	Editor's signature

Imperial College
 London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2011

This paper is also taken for the relevant examination for the Associateship.

M4A34

Geometric Mechanics II
Date: \square
Time: \square

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.
Calculators may not be used.

1. Special Euclidean group, $S E(3)$

Problem statement:
(a) List the subgroups of $S E(3)$.
(b) Write a 4×4 matrix representation of $S E(3)$.
(c) Give the definition of a semidirect-product Lie group $G=H(S) N$.
(d) Show that $S E(3)$ is a semidirect-product Lie group.
(e) Compute the tangent space at the identity of $T_{I} S E(3)$ in its 4×4 matrix representation.
(f) Show that elements of $T_{I} S E(3)$ form a Lie algebra, se(3).
(g) Compute the adjoint actions, $\operatorname{Ad}: S E(3) \times S E(3) \rightarrow S E(3), \operatorname{Ad}: S E(3) \times$ $s e(3) \rightarrow s e(3)$ and $a d: s e(3) \times s e(3) \rightarrow s e(3)$.
(h) Use the hat map to write the ad-action as vector multiplication.

2. Monopole Kepler problem

Consider the Kepler problem with a magnetic monopole, whose dynamical equation is,

$$
\begin{equation*}
\ddot{\mathbf{r}}+\frac{\lambda}{r^{3}} \mathbf{L}+\left(\frac{\mu}{r^{3}}-\frac{\lambda^{2}}{r^{4}}\right) \mathbf{r}=0 \tag{1}
\end{equation*}
$$

for real positive constants λ and μ. When $\lambda=0$ this equation governs the Kepler problem for planetary motion.
(a) Does equation (1) conserve an energy? Prove it.
(b) Take vector cross products of equation (1) with \mathbf{r} and $\mathbf{L}=\mathbf{r} \times \dot{\mathbf{r}}$ to find its two additional conserved vectors.
(c) Is angular momentum also conserved? Prove it.
(d) Are the orbits still conic sections? Prove it.
(e) Write the Lagrangian for which equation arises from Hamilton's principle. Hint: Assume there exists a generalised vector function $\mathbf{A}(\mathbf{r}): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose curl satisfies $\operatorname{curl} \mathbf{A}=\mathbf{r} / r^{3}$.
(f) Write the Hamiltonian for equation (1). How does it relate to the energy?
(g) Write the Poisson brackets for equation (1) between position and velocity.

3. Rigid body in a quadratic potential field

The Lagrangian of an arbitrary rigid body rotating about a fixed point at the origin of spatial coordinates $x \in \mathbb{R}^{n}$ in a field with a quadratic potential

$$
\phi(x)=\frac{1}{2} \operatorname{tr}\left(x^{T} \mathbb{S}_{0} x\right)
$$

is defined in the body coordinates by the difference between its kinetic and potential energies in the form,

$$
\begin{equation*}
l=\underbrace{\frac{1}{2} \operatorname{tr}\left(\Omega^{T} \mathbb{A} \Omega\right)}_{\text {Kinetic }}-\underbrace{\frac{1}{2} \operatorname{tr}(\mathbb{S A})}_{\text {Potential }} . \tag{2}
\end{equation*}
$$

Here $\Omega(t)=O^{-1}(t) \dot{O}(t) \in s o(n)$, the $n \times n$ constant matrices \mathbb{A} and \mathbb{S}_{0} are symmetric, and $\mathbb{S}(t)=O^{-1}(t) \mathbb{S}_{0} O(t)$.

Problem statement:

(a) Compute the reduced Euler-Lagrange equations for this Lagrangian by taking matrix variations in its Hamilton's principle $\delta S=0$ with $S=\int l d t$.
(b) Following Manakov's idea discussed in class, combine these equations into a commutator of polynomials in a constant "spectral parameter", λ.
(c) Use Manakov's form of the equations as a Lax pair to determine the resulting set of constants of motion.
(d) Take the Legendre transformation and formulate these equations as a Lie-Poisson Hamiltonian system. Determine the Lie algebra involved.
(e) Determine the dimension of the generic solution of the reduced Euler-Lagrange equations for this Lagrangian? That is, what is the sum of the dimensions of $s o(n)$ and the symmetric $n \times n$ matrices, minus the number of conservation laws?

4. Momentum maps for cotangent lifts

Review

The formula determining the momentum map for the cotangent-lifted action of a Lie group G on a smooth manifold Q may be expressed in terms of the pairings $\langle\cdot, \cdot\rangle: \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}$ and $\langle\langle\cdot, \cdot\rangle\rangle: T^{*} Q \times T Q \rightarrow \mathbb{R}$ as

$$
\langle J, \xi\rangle=\left\langle\left\langle p, £_{\xi} q\right\rangle\right\rangle,
$$

where $(q, p) \in T_{q}^{*} Q$ and $£_{\xi} q$ is the infinitesimal generator of the action of the Lie algebra element ξ on the coordinate q.

Problem statement:

Define appropriate pairings and determine the momentum maps explicitly for the following four actions, then compute their symmetric double-bracket canonical equations.

$$
[\mathrm{a}] £_{\xi} q=\xi \times q \text { for } \mathbb{R}^{3} \times \mathbb{R}^{3} \mapsto \mathbb{R}^{3}
$$

[b] $£_{\xi} q=\operatorname{ad}_{\xi} q$ for ad-action ad : $\mathfrak{g} \times \mathfrak{g} \mapsto \mathfrak{g}$ in a Lie algebra \mathfrak{g}
[c] $U Q U^{\dagger}$ for a unitary matrix $U \in U(n)$ satisfying $U^{\dagger}=U^{-1}$ acting on Hermitian $Q \in H(n)$ satisfying $Q=Q^{\dagger}$.

