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4. The EPDiff(H1) equation is obtained from the Euler-Poincaré reduction theorem for a

right-invariant Lagrangian, when one defines this Lagrangian to be half the H1 norm on

the real line of the vector field of velocity u = ġg−1, namely,

l(u) =
1

2
‖u‖2H1 =

1

2

∫ ∞
−∞

u2 + u2x dx .

(Assume u and ux vanishes as |x| → ∞.)

(a) Derive the EPDiff(H1) equation on the real line in terms of its velocity u and its

momentum m = δl/δu = u− uxx in one spatial dimension.

(b) Use the Clebsch approach (hard constraint) to derive the peakon singular solution

m(x, t) of EPDiff(H1) as a cotangent-lift momentum map in terms of canonically

conjugate variables q(t) and p(t). Derive Hamilton’s canonical equations for the

conjugate variables q(t) and p(t).
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1. Quaternionic rigid body dynamics

Problem statement: Formulate rigid body dynamics as an EP problem in quaternions.

(a) Show that the variation of the pure quaternion Ω = 2q̂∗ ˙̂q that expresses body angular

velocity in terms of the pure unit quaternion q̂ = [0, q̂] with |q̂|2 = 1 satisfies the

identity

Ω ′ − Ξ̇ = Im(Ω Ξ) , (1)

where Ξ := 2q̂∗q̂′ and ( · )′ denotes variation.

(b) Define the kinetic energy Lagrangian for the rigid body in terms of the quaternionic

pairing, 〈 p , q 〉 = Re(pq∗).

(c) State Hamilton’s principle for the rigid body in terms of this Lagrangian.

(d) Use Hamilton’s principle to derive the equations of motion for the rigid body in

quaternionic form.

(e) Write the quaternionic formula (1) in its equivalent vector form,
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2. Adjoint and coadjoint actions of semidirect product (Ss v) acting on R

The action of the scaling and translation group (Ss v) on R may be represented by

multiplying an extended vector (r, 1)T with r ∈ R by a 2× 2 matrix, as[
S v

0 1

] [
r

1

]
=

[
S r + v

1

]
for a scaling parameter S ∈ R and a translation v ∈ R.

The group composition rule for (Ss v) is

(S̃, ṽ)(S, v) = (S̃S, S̃v + ṽ) , (2)

which can be represented by multiplication of 2× 2 matrices, as(
S̃ ṽ

0 1

)(
S v

0 1

)
=

(
S̃S S̃v + ṽ

0 1

)
. (3)

Problem statement

(a) Derive the AD, Ad and ad actions for (Ss v). Use the notation (S ′(0), v′(0)) =

(σ, ν) for Lie algebra elements.

(b) Introduce a natural pairing in which to define the dual Lie algebra and derive its Ad∗

and ad∗ actions. Denote elements of the dual Lie algebra as (α, β).

(c) Compute its coadjoint motion equations as Euler-Poincaré equations.

(d) Legendre transform and find the corresponding canonical Poisson brackets.

(e) Choose the Hamiltonian H = 1
2
α2 + 1

2
(log β)2 and solve its coadjoint motion

equations.

M4A34 Geometric Mechanics II (2012) Page 4 of 5



3. Momentum maps for cotangent lifts

Recall that the formula determining the momentum map for the cotangent-lifted action

of a Lie group G on a smooth manifold Q may be expressed in terms of the pairings

〈 · , · 〉 : g∗ × g→ R and 〈〈 · , · 〉〉 : T ∗Q× TQ→ R as

〈 J(q, p) , ξ 〉 = 〈〈 p , £ξq 〉〉 ,

where (q, p) ∈ T ∗qQ and £ξq is the infinitesimal generator of the action of the Lie algebra

element ξ on the coordinate q.

Problem statement:

(a) Define appropriate pairings and determine the momentum maps explicitly for the

following,

(i) £ξq = ξ × q for R3 × R3 → R3

(ii) £ξq = adξq for ad-action ad : g× g→ g in a Lie algebra g

(iii) UQU † for a unitary matrix U ∈ U(n) satisfying U † = U−1 acting on Hermitian

Q ∈ H(n) satisfying Q = Q†.

(b) For case (a.ii), compute the canonical equations in phase space for the Hamiltonian

corresponding to the norm of the momentum map,

H(q, p) =
1

2
〈 J(q, p) , J ](q, p) 〉 :=

1

2

(
J(q, p) , K−1J(q, p)

)
=

1

2
‖J‖2K ,

with J ](q, p) = K−1J(q, p) for a constant positive symmetric matrix K−1 : g∗ → g

and a nondegenerate pairing ( · , · ) : g∗ × g→ R.

(c) Use the canonical equations for case (a.ii) to derive the Euler-Poincaré equation for

the momentum map J .

(d) For case (a.i), compute the gradient flow equations for the norm of the momentum

map in phase space and show that the norm is non-increasing.
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4. Lie derivative relations.

Recall that the pull-back φ∗t of a smooth flow φt generated by a smooth vector field X

defined on a smooth manifold M commutes with the exterior derivative d, wedge product

∧ and contraction .

That is, for k-forms α, β ∈ Λk(M), and m ∈M , the pull-back φ∗t satisfies

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X α) = φ∗tX φ∗tα .

Recall that the Lie derivative £Xα of a k-form α ∈ Λk(M) by the vector field X tangent

to the flow φt on M is defined either dynamically or geometrically as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α),

in which the last is Cartan’s geometric formula for the Lie derivative.

Problem statement:

Verify the following formulas

(a) X (Y α) = −Y (X α).

(b) [X , Y ] α = £X(Y α)− Y (£Xα).

(c) Use (b) to verify £[X ,Y ]α = £X£Y α−£Y£Xα.

(d) Use (c) to verify the Jacobi identity.

(e) For a top form α and divergenceless vector fields X and Y , show that

[X , Y ] α = d
(
X (Y α)

)
. (4)

(f) Write the equivalent of equation (4) as a formula in vector calculus.
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