Imperial College London

UNIVERSITY OF LONDON

Course:	M4A34
Setter:	Holm
Checker:	Gibbons
Editor:	Turaev
External:	
Date:	8 March 2012

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2012

M4A34

Geometric Mechanics II

Setter's signature	Checker's signature	Editor's signature

Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2012

This paper is also taken for the relevant examination for the Associateship.

M4A34

Geometric Mechanics II

Date: Time:

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

4. The EPDiff (H^1) equation is obtained from the Euler-Poincaré reduction theorem for a right-invariant Lagrangian, when one defines this Lagrangian to be half the H^1 norm on the real line of the vector field of velocity $u = \dot{g}g^{-1}$, namely,

$$l(u) = \frac{1}{2} \|u\|_{H^1}^2 = \frac{1}{2} \int_{-\infty}^{\infty} u^2 + u_x^2 \, dx \, .$$

(Assume u and u_x vanishes as $|x| \to \infty$.)

- (a) Derive the EPDiff (H^1) equation on the real line in terms of its velocity u and its momentum $m = \delta l/\delta u = u u_{xx}$ in one spatial dimension.
- (b) Use the Clebsch approach (hard constraint) to derive the peakon singular solution m(x,t) of EPDiff (H^1) as a cotangent-lift momentum map in terms of canonically conjugate variables q(t) and p(t). Derive Hamilton's canonical equations for the conjugate variables q(t) and p(t).

1. Quaternionic rigid body dynamics

Problem statement: Formulate rigid body dynamics as an EP problem in quaternions.

(a) Show that the variation of the pure quaternion $\Omega = 2\hat{\mathfrak{q}}^*\dot{\hat{\mathfrak{q}}}$ that expresses body angular velocity in terms of the pure unit quaternion $\hat{\mathfrak{q}} = [0, \hat{\mathbf{q}}]$ with $|\hat{\mathbf{q}}|^2 = 1$ satisfies the identity

$$\mathbf{\Omega}' - \dot{\mathbf{\Xi}} = \operatorname{Im}(\mathbf{\Omega}\,\mathbf{\Xi})\,,\tag{1}$$

where $\boldsymbol{\Xi} := 2\hat{\mathfrak{q}}^* \hat{\mathfrak{q}}'$ and $(\cdot)'$ denotes variation.

- (b) Define the kinetic energy Lagrangian for the rigid body in terms of the quaternionic pairing, (p, q) = Re(pq*).
- (c) State Hamilton's principle for the rigid body in terms of this Lagrangian.
- (d) Use Hamilton's principle to derive the equations of motion for the rigid body in quaternionic form.
- (e) Write the quaternionic formula (1) in its equivalent vector form,

2. Adjoint and coadjoint actions of semidirect product $(S \otimes v)$ acting on \mathbb{R}

The action of the scaling and translation group $(S \otimes v)$ on \mathbb{R} may be represented by multiplying an *extended* vector $(r, 1)^T$ with $r \in \mathbb{R}$ by a 2×2 matrix, as

$$\begin{bmatrix} S & v \\ 0 & 1 \end{bmatrix} \begin{bmatrix} r \\ 1 \end{bmatrix} = \begin{bmatrix} S \, r + v \\ 1 \end{bmatrix}$$

for a scaling parameter $S \in \mathbb{R}$ and a translation $v \in \mathbb{R}$.

The group composition rule for $(S \otimes v)$ is

$$(\tilde{S}, \tilde{v})(S, v) = (\tilde{S}S, \tilde{S}v + \tilde{v}), \qquad (2)$$

which can be represented by multiplication of 2×2 matrices, as

$$\begin{pmatrix} \tilde{S} & \tilde{v} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S & v \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \tilde{S}S & \tilde{S}v + \tilde{v} \\ 0 & 1 \end{pmatrix}.$$
 (3)

Problem statement

- (a) Derive the AD, Ad and ad actions for $(S \otimes v)$. Use the notation $(S'(0), v'(0)) = (\sigma, \nu)$ for Lie algebra elements.
- (b) Introduce a natural pairing in which to define the dual Lie algebra and derive its Ad^* and ad^* actions. Denote elements of the dual Lie algebra as (α, β) .
- (c) Compute its coadjoint motion equations as Euler-Poincaré equations.
- (d) Legendre transform and find the corresponding canonical Poisson brackets.
- (e) Choose the Hamiltonian $H = \frac{1}{2}\alpha^2 + \frac{1}{2}(\log\beta)^2$ and solve its coadjoint motion equations.

3. Momentum maps for cotangent lifts

Recall that the formula determining the momentum map for the cotangent-lifted action of a Lie group G on a smooth manifold Q may be expressed in terms of the pairings $\langle \cdot, \cdot \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$ and $\langle \langle \cdot, \cdot \rangle \rangle : T^*Q \times TQ \to \mathbb{R}$ as

$$\langle J(q,p), \xi \rangle = \langle \langle p, \pounds_{\xi}q \rangle \rangle,$$

where $(q, p) \in T_q^*Q$ and $\pounds_{\xi}q$ is the infinitesimal generator of the action of the Lie algebra element ξ on the coordinate q.

Problem statement:

- (a) Define appropriate pairings and determine the momentum maps explicitly for the following,
 - (i) $\pounds_{\xi}q = \xi \times q$ for $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
 - (ii) $\pounds_{\xi}q = \operatorname{ad}_{\xi}q$ for ad-action $\operatorname{ad} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ in a Lie algebra \mathfrak{g}
 - (iii) UQU^{\dagger} for a unitary matrix $U \in U(n)$ satisfying $U^{\dagger} = U^{-1}$ acting on Hermitian $Q \in H(n)$ satisfying $Q = Q^{\dagger}$.
- (b) For case (a.ii), compute the *canonical* equations in phase space for the Hamiltonian corresponding to the norm of the momentum map,

$$H(q,p) = \frac{1}{2} \langle J(q,p), J^{\sharp}(q,p) \rangle := \frac{1}{2} \Big(J(q,p), K^{-1}J(q,p) \Big) = \frac{1}{2} \|J\|_{K}^{2},$$

with $J^{\sharp}(q,p) = K^{-1}J(q,p)$ for a constant positive symmetric matrix $K^{-1} : \mathfrak{g}^* \to \mathfrak{g}$ and a nondegenerate pairing $(\cdot, \cdot) : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$.

- (c) Use the canonical equations for case (a.ii) to derive the Euler-Poincaré equation for the momentum map J.
- (d) For case (a.i), compute the *gradient flow* equations for the norm of the momentum map in phase space and show that the norm is non-increasing.

4. Lie derivative relations.

Recall that the pull-back ϕ_t^* of a smooth flow ϕ_t generated by a smooth vector field X defined on a smooth manifold M commutes with the exterior derivative d, wedge product \wedge and contraction \square .

That is, for $k\text{-forms }\alpha,\,\beta\in\Lambda^k(M),$ and $m\in M,$ the pull-back ϕ_t^* satisfies

$$d(\phi_t^*\alpha) = \phi_t^* d\alpha ,$$

$$\phi_t^*(\alpha \wedge \beta) = \phi_t^*\alpha \wedge \phi_t^*\beta ,$$

$$\phi_t^*(X \sqcup \alpha) = \phi_t^*X \sqcup \phi_t^*\alpha .$$

Recall that the Lie derivative $\pounds_X \alpha$ of a k-form $\alpha \in \Lambda^k(M)$ by the vector field X tangent to the flow ϕ_t on M is defined either dynamically or geometrically as

$$\pounds_X \alpha = \frac{d}{dt} \bigg|_{t=0} (\phi_t^* \alpha) = X \, \lrcorner \, d\alpha + d(X \, \lrcorner \, \alpha),$$

in which the last is Cartan's geometric formula for the Lie derivative.

Problem statement:

Verify the following formulas

- (a) $X \sqcup (Y \sqcup \alpha) = -Y \sqcup (X \sqcup \alpha).$
- (b) $[X, Y] \sqcup \alpha = \pounds_X(Y \sqcup \alpha) Y \sqcup (\pounds_X \alpha).$
- (c) Use (b) to verify $\pounds_{[X,Y]}\alpha = \pounds_X \pounds_Y \alpha \pounds_Y \pounds_X \alpha$.
- (d) Use (c) to verify the Jacobi identity.
- (e) For a top form α and divergenceless vector fields X and Y, show that

$$[X, Y] \,\lrcorner\, \alpha = d\big(X \,\lrcorner\, (Y \,\lrcorner\, \alpha)\big) \,. \tag{4}$$

(f) Write the equivalent of equation (4) as a formula in vector calculus.