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seen ⇓
1. a) The hazard function, µ(t), records the instantaneous event rate, or force of

mortality given by

µ(t) ≡ lim
h→0+

1

h
Pr(T ≤ t+ h|T > t)

2

b) The hazard function can be written as

µ(t) =
fT (t)

∫∞
t fT (s)ds

,

where fT (t) is the probability density function of the random event time T . 1

c) Some reasons for considering the hazard function include,

(i) It may be physically enlightening to consider the immediate risk.

(ii) Comparisons of groups of individuals are sometimes most incisively made

via the hazard.

(iii) Hazard-based models are often convenient when there is censoring.

(iv) When fitting parametric models the form of the hazard function can

be enlightening about the assumptions made by the model: for example

Exponential, Weibull etc. 2

unseen ⇓d) i) The Kaplan-Meier estimate of the survivor function Ŝ(t) is given by

Ŝ(t) =
∏

ti<t

ni − di
ni

for unique death times ti and the variance, by Greenwood’s formula is

V̂arŜ(t) = [Ŝ(t)]2
∑

ti<t

di

ni(ni − di)

8

Death time Censored time nj dj Ŝ(t) V̂arŜ(t)
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4

(
3
4

)2
1
24
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4

(
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4
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1
24
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4

(
3
4

)2
1
24

0.85 - 4 2 3
8

(
3
8

)2
7
24

0.9 - 2 1 3
16

(
3
16

)2
19
24

- 0.95 - - 3
16

(
3
16

)2
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24
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ii) Note from the sketch below that the survivor function is undefined past the

last observation, t = 0.95, as this is censored.

time

S
(f

)

0 0.5 0.85 0.9 0.95 1

0

3/16

3/8

3/4

1

3

seen ⇓iii) Some of the assumptions made by the model include

· that the lives are independent and identically distributed.

· that the censoring mechanism is independent to the mortality process. 2

iv) The term “product limit” refers to the derivation of the Kaplan-Meier as

the function implied by the maximum likelihood estimate of the cumulative

hazard function defined on a finer and finer partition of the positive half-line,

{[0, dt), [dt, 2dt), . . .} as dt→ 0+. 2
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seen ⇓
2. a) i) The study is a Type II censoring procedure, where individuals are observed

until a specified number are seen to fail, the remaining individuals being right

censored. Individuals lost to follow up during the study are right censored.

The patients who have failed prior to the start of the study are left censored.

3

ii) A. The left censored observations (at 2 months) contribute terms, FT (2), to

the likelihood - where FT (t) denotes the distribution function.

B. The right censored observations contribute terms 1 − FT (t) ≡ ST (t),

where ST (t) is the survivor function and t is the censoring times.

C. The observations seen to fail contribute, d
dtFT (t) ≡ fT (t), where fT (t) is

the probability density function evaluated at the observed failure time

T = t. 3

b) i) Breslow’s approximation to the partial-likelihood function is given by

L(β) =
∏

i∈U

exp(βs′i)

[
∑
j∈Ri exp(βz′j)]

di

where U is the set of k unique event times U = {t1, . . . , tk}, di denotes the

number of events at time ti, si is the sum of covariates zj for events at time

ti and Ri denotes the “risk set” of those observations still in view at time ti.

3

unseen ⇓ii) Hence,

L(β) =
eβ

2(eβ + 1)

1

(eβ + 2)2

eβ

eβ

with log-likelihood

l(β) = β − log(1 + eβ)− 2 log(2 + eβ)− log(2)

To find the maximum we note

dl

dβ
= 1−

eβ

1 + eβ
−

2eβ

2 + eβ
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Let x = eβ then at maximum we have

0 = 1−
x

1 + x
−

2x

2 + x
=

1

1 + x
+

4

2 + x
− 2

So,
d2l

dx2
= −

1

(1 + x)2
−

4

(2 + x)2
< 0

Hence this is a maximum. So,

(1 + x)(2 + x)− x(2 + x)− 2x(1 + x) = 0

2x2 + x− 2 = 0

Hence, due to positivity constraints, x = eβ , we find

β̂ = log

(
−1 +

√
17

4

)

The estimtate β̂ < 0 implies that smoking has a relatively decreasing effect

on the hazard function. 8

seen ⇓iii) To test for the significance of an extra term we would fit two models: one

with the single parameter and one with both parameters recording the

log-likelihood of both models. Under the null hypothesis that the extra

parameter has value zero the deviance (twice the difference in the log-

likelihoods) follows a chi-squared distribution on one degree of freedom. If

the deviance is large we would reject the null hypothesis at some level of

significance. 3
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seen ⇓
3. a) The 3-state competing risk model is,

state 0

state 2

state 1

µ02

µ01

2

b) The three assumptions are that

Assumption 1 - Markov assumption: The probabilities that a life at any given

age will be found in any state at any subsequent age depends only on the

ages involved and on the state currently occupied.

P (X(t+ s)|X(0), X(1), . . . , X(t)) = P (X(t+ s)|X(t))

where X(t) denotes the state of the process at time t.

Assumption 2 : For X(t) = i various things can happen in the small time

interval (t, t+ dt).

∗ The chain can remain in state 0 with probability p00(t, dt) + o(dt)

∗ The chain may move to another state j with probability p0j(t, dt)+o(dt)

where o(dt)
dt → 0 as dt→ 0+. For small dt, the transition probability p0j(t, dt),

j ∈ 1, 2 is approximately linear in dt with constant of proportionality µ0j ,

Assumption 3 : The model is an homogeneous chain so that

p0j(t, dt) = µ0jdt+ o(dt) j = 1, 2 (1)

p00(t, dt) = 1 + µ00dt+ o(dt)

where µ00 = −µ01 − µ02. 5

c) i) For our homogeneous competing risk model, the likelihood function factor

for life i can be written as

l(µ01, µ02|Vi = vi, Di = di) = fV (vi)p0di(dt)

where the first term on the right hand side is simply the probability density

for the waiting time in state 0 denoted p0̄0(t). From assumption 2 above, for

small dt

p0̄0(t+ dt) = p0̄0(t)(1 + µ00dt) + o(dt)

and hence,
d

dt
p0̄0(t) = p0̄0(t)µ00

which leads to

p0̄0(t) = exp[−t(µ01 + µ02)]
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so that the waiting time is exponentially distributed. Hence the likelihood

function for (Vi = vi, Di = 0) is,

l(µ01, µ02|Vi = vi, Di = 0) = exp[−vi(µ01 + µ02)]

and,

l(µ01, µ02|Vi = vi, Di = 1) = p0̄0(vi)p01(dt)

l(µ01, µ02|Vi = vi, Di = 2) = p0̄0(vi)p02(dt)

from assumption 3,

l(µ01, µ02|Vi = vi, Di = 1) = exp[−vi(µ01 + µ02)]µ01

l(µ01, µ02|Vi = vi, Di = 2) = exp[−vi(µ01 + µ02)]µ02

The likelihood for the full data set is then,

l(µ01, µ02) = exp[−v+(µ01 + µ02)](µ01)#01(µ02)#02

where #0j denotes the number of transitions between state 0 and state j

and v+ denotes the total waiting time in state 0.

This yields the maximum likelihood estimates as,

µ̂01 =
#01

v+
, µ̂02 =

#02

v+
.

7

part seen ⇓
ii) The probability p0j(t) is given by the product

p0j(t) = Pr(jumps to j | jump)Pr(jumps during t)

where Pr(jumps to j given a jump) is

Pr(jumps to j | jump) =
µ0jdt

1− (1 + µ00dt)

=
µ0j

µ01 + µ02

and Pr(jumps during t) = 1 - Pr(no jump during t),

Pr(jumps during t) = 1− exp[−(µ01 + µ02)t]

hence,

p0j(t) =
µ0j

µ01 + µ02
[1− exp(−µ01 + µ02)t)

4

unseen ⇓iii) From the formula derived in (c)(i) we find, µ̂01 = 0.8 and µ̂02 = 1.2. From

(c)(ii) we see,

p̂01(log 2) =
2

5
×
[

1−
1

22

]

= 0.3

p̂02(log 2) =
3

5
×
[

1−
1

22

]

= 0.45

2
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seen ⇓
4. a) The three assumptions for the Binomial model are

a. The uniform distribution of deaths:

θx(t) = tθx(1) 0 ≤ t ≤ 1

b. The Balducci assumption

θx+t(1− t) = (1− t)θx(1) 0 ≤ t ≤ 1

c. The constant force of mortality

θx(t) = 1− exp(−µt)

5

unseen ⇓b) To begin we recall the identity relating to the survival functions (1 − θx(t)),

(1− θx(1)) = (1− θx(a))(1− θx+a(b))(1− θx+c(1− c))

where c = a+ b and 0 ≤ a ≤ b < 1. Hence,

θx+a(b) = 1−
1− θx(1)

(1− θx(a))(1− θx+c(1− c))

Under the assumption of uniform distribution of deaths we have

θx(a) = aθx(1)

and to find θx+c(1− c) we note from the identity above

1− θx+c(1− c) =
1− θx(1)

1− θx(c)

=
1− θx(1)

1− cθx(1)

Thus, 5

θx+a(b) = 1−
1− θx(1)

(1− θx(a))(1− θx+c(1− c))

= 1−
1− cθx(1)

1− aθx(1)

which for a = 0.2, b = 0.2, c = 0.4 gives

θx+0.2(0.2) =
0.02

0.98

and for a = 0.4, b = 0.2, c = 0.6 gives

θx+0.4(0.2) =
0.02

0.96

c© 2003 University of London M3S14 (SOLUTIONS) Page 8 of 11



Under the Balducci assumption we have

θx+c(1− c) = (1− c)θx(1)

and to find θx(a) we note

θx(a) = 1−
1− θx(1)

1− θx+a(1− a)

= 1−
1− θx(1)

1− (1− a)θx(1)

Thus,

θx+a(b) = 1−
1− θx(1)

(1− θx(a))(1− θx+c(1− c))

= 1−
1− (1− a)θx(1)

1− (1− c)θx(1)

which for a = 0.2, b = 0.2, c = 0.4 gives

θx+0.2(0.2) =
0.02

0.94

and for a = 0.4, b = 0.2, c = 0.6 gives

θx+0.4(0.2) =
0.02

0.96

4

seen ⇓c) The results show that the uniform distribution of death implies an increasing

force of mortality (hazard rate) while the opposite is true for the Balducci

assumption. 2

unseen ⇓d) The actuarial estimate is given by

θ̂x(1) =
d

v + 0.5d

where d is the number of deaths and v the total observation time on the

population. Hence, given θx(1) = 0.1, d = 80 we obtain v = 760. For the

Poisson model of deaths we have

Pr(D = d) = exp(−µv)
(µv)d

d!

where µ is the intensity rate and v the total observation time. This leads to the

maximum likelihood estimate as

µ̂ =
d

v

which from above is

µ̂ =
80

760
=

2

19

4
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5. I would hope to see some or all of the following issues mentioned.

For graduation and adherence to standard tables.

– The reasons for graduation (smoothing) of interval estimated mortality.

– The models used for graduation, for example, parametric models and

parametric fitting to a standard table.

– The range of statistical tests to compare observed data to those published in

standard tables. Chi-squared tests, groupings of signs tests, bias detection.

– The type of features that each test is designed to detect.

The Binomial and 2-state Markov models.

– Both methods are used by actuaries to model mortality in the time interval,

[x, x+ 1).

– Binomial model estimates the mortality rate, the Markov model estimates

the force of mortality (hazard).

– The Binomial requires approximations to allow for inference when

observations are made on the sub-interval.

– The Markov model is easily extended to more complex scenarios involving

multiple decrements and increments while the Binomial model is not easily

extended.

– The Binomial model uses an estimator crudely based on a method of

moments to estimate the mortality rate using the “Actuarial Estimate”.

The Markov model uses a probabilistic likelihood based approach.

The Nelson-Aarlen estimate.

– The Nelson-Aarlen estimate (NAE) is a non-parametric estimate of the

integrated hazard function.

– The NAE is an isotonic (monotone increasing) step function with jumps at

the observed death times.

– The form of the NAE should be given.

– The NAE is derived as the maximum likelihood estimate of the integrated

hazard function.
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Greenwood’s formula

– The use of Greenwood’s formula as an estimate of the variance in the

estimated product-limit nonparametric survivor function.

– An expression of the formula should be given.

– The approximations made in the derivation of the formula, using the delta

rule.

– Either a derivation or some mention of the estimate based on the variance

of a binomial random variable.

A comparison of proportional hazards (PH) and accelerated time to failure models.

– Expressions for the models should be provided.

– The implications of both models for the survivor function should be given.

– The estimation procedures for parameters in the model should be discussed.

In particular the semi-parametric feature of the PH model should be

highlighted.

– Methods for model checking should be discussed.

– Interpretation of the parameter values in terms of relative survival times for

two individuals with different covariates.
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