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1. a) If F (x) is the distribution function of X, a continuous random variable

which takes only positive values and for which E(X) exists, prove that

E(X) =

∫ ∞

0

[1− F (x)] dx .

b) In a simple Poisson process, the number of events which occur in a time

interval of length t is Poisson (λt).

i) From this, derive the probability density function (pdf) of the waiting

time, T , between consecutive events.

ii) State the mean of T .

iii) The kth event will occur in the interval [t, t + δt] if and only if k − 1

events occur in the interval [0, t] and one event occurs in the interval

[t, t + δt]. Use this fact to derive the probability density function of

the time to the kth event.

What is the name of the associated distribution?

c) The rate at which items are purchased at a small shop is modelled as a

compound Poisson process. Customers arrive at the checkout according

to a Poisson process with a mean µ arrivals per hour, where they are

immediately served. The number, X, of purchases made by each customer

is modelled as a geometric random variable, having

P (X = x) = qx−1p, x = 1, 2, . . . ; p+ q = 1.

Derive the probability generating function of Z, the number of items

purchased per hour, and hence find the mean number of items purchased

per hour. You may quote, without derivation, the probability generating

functions of the Poisson and geometric distributions, and you may use,

without derivation, an appropriate way of combining these.

c© 2003 University of London M3S4/M4S4 Page 2 of 6



2. a) i) If a Markov chain is said to be irreducible, what does this mean?

ii) Write down and explain the meaning of the Chapman-Kolmogorov

equations.

iii) Define the terms transient, recurrent, null recurrent, and positive

recurrent for Markov chains.

b) In a psychological study, an individual is classified as being in one of three

possible moods: euphoric (state 0), normal (state 1), or depressed

(state 2). Observation of the individual over an extended period of time

shows that the transition matrix for his probabilities of moving between

states from one day to the next is

P =






0.5 0.4 0.1

0.3 0.4 0.3

0.2 0.3 0.5




 .

i) If he is in state 0 on Monday, find the probability that he will be in

state 0 on Wednesday.

ii) Find the probability that, in the long term, he will be in each of states

0, 1, and 2.

iii) Find the mean recurrence time of state 0.

c) The Ehrenfest chain originated in physics, but can be modelled as a system

of N balls distributed between two urns, A and B. We pick one of the N

balls at random and move it to the other urn.

i) Write down the transition matrix for the number of balls in urn A

when N = 3.

ii) Draw the transition diagram of this matrix.

iii) Why does this system not have a limiting distribution?
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3. a) At each generation, individual organisms in a population act independently

to split into X offspring, where X has a Poisson (µ) distribution.

The population starts from a single organism at generation 0.

i) Find the mean size of the nth generation.

ii) Find the expected total number of organisms that have existed

altogether up to and including the nth generation.

iii) If observation suggests that P (X = 0) ≈ 1/
√
e, what would you expect

the mean generation size to be in the long term?

iv) If it is known that µ = 2 ln 2, show that the probability of ultimate

extinction of this process is 0.5.

v) If, instead of starting with a single individual, the process in (iv)

starts with M individuals, how large must M be to ensure that the

probability of extinction is less than 1/32?

b) Suppose that, in a branching process with immigration, the mean of

the offspring size probability distribution is µ and the mean number of

immigrants per generation is ν. Find an expression for µ∗n, the mean

number of individuals in the nth generation, in terms of µ∗n−1.

[You may use without derivation results relating to probability generating

functions.]
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4. a) A particular stochastic process has led to the following partial differential

equation for the probability generating function Π(s, t),

t
∂Π

∂s
= s

∂Π

∂t
+ st

∂

∂s
(sΠ) .

Solve this equation for Π(s, t) using the initial condition that Π(s, 0) = s2.

b) i) In a general birth and death system which currently contains x objects,

the overall birth rate of new objects is βx and the overall death rate is

νx. Write down or derive the differential difference equations for px(t),

the probability that there are x objects in the system at time t.

ii) Cells in a particular biological system have an exponential lifetime

distribution with parameter ν. The larger the system is, the less

likely it is to accumulate new cells, and in fact new cells are added to

the system according to a Poisson process with parameter β/(1 + x)

where x is the number of cells already in the system. Use the

general differential difference equation from part (i) to give differential

difference equations for px(t), the probability that there are x cells in

the system at time t. Briefly describe, without actually performing

the calculations, how you could derive a partial differential equation

for the probability generating function of the number of cells at time

t from these differential difference equations.
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5. Two candidates, A and B, stand for election. In the population of voters, a

proportion p will vote for A, a proportion q for B, and a proportion r will

abstain, with p + q + r = 1. Let nA (t) be the number who have voted for A

by time t and nB (t) be the number who have voted for B by time t, where

the votes are recorded sequentially at random. The winner is declared when a

candidate first achieves M more votes than the rival candidate.

An attempt to rig the election was made by recording bogus votes for the

candidates before the voting started. Suppose that A has j more bogus votes

than B (where j may be negative), so that, by time t, the number of votes

apparently favouring A is m (t) = j + nA (t)− nB (t) .

a) Let qj be A’s probability of losing the election. You can assume that the

population is so large that it can be regarded as effectively infinite. By

considering the first legitimate vote (i.e. after time t = 0), which could be

for A or B or an abstention, derive the relationship

qj = qj+1p+ qjr + qj−1q .

b) Solve this recurrence relation for p 6= q and for p = q.

[You may wish to use the result that the solution of the recurrence relation

xj = axj+1 + bxj−1, with 0 < a, b < 1, is

xj =

{
c1 + c2(b/a)j a 6= b;

c3 + c4j a = b,

where the ci are constants determined by boundary conditions.]

c) If Dj is the expected number of votes which are cast before an outcome is

reached, show that

(p+ q)Dj = pDj+1 + qDj−1 + 1 .

d) Hence, for the case when p = q, show that a solution is given by

Dj = c5 + c6j − j
2/2p.

State the boundary conditions, and hence find the constants c5 and c6 .
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