1.

(a) (i) I: P(exactly 1 event occurs in [t,t + 0t)) = Aot + o(dt),
[o(6t) /0t — 0 as ot — 0.

IT: P(2 or more events occur in [t,t + dt)) = o(dt).

III: Occurrence of events after time ¢ is independent of occurrence of
events before t.

(i) Let X(¢) be the number of realizations by time ¢ and let p(t) =

seen |}

sim. seen |}

P(X(t) = 0)
p(t+ 0t) = P(O0 realizations in [0,t) and O realizations in [t,t + dt))
= p(t)(1 — Mot + o(dt)) (from axioms)
p(t—i_é;i_p(t) _ —p(t))\—l— %
Q%Q = —p(t)A
= —log(p(t)) = M+c

A

Now p(0) =1, so ¢ = 0 giving p(t) = e~ as required.

(iii)  For a non-homogeneous process we have

t
p(t) = e®  where p(t) = / Au) du
0
So,
t
p(t) = / 1+ sin(u) du = [u — cos(u)], =t — cos(t) + 1,
0
giving
p(t) = exp(cos(t) —t —1).
(b) Let X(t1,t2) be the number of questions answered in in [t1,t5), then
2
E(X(t,t t)) = ——ot t).
(X (et +1)) = 1o 6t + o(a1)
Let D(t) = number questions answered by ¢ in deterministic model. Then

D(t+6t) = D(t)+ —— 5t + o(6t)

1+t
D(t + 6t) — D(t) 2 o(t)
= = 4 7
ot 1+¢ ot
:idD 2
At 1+t
= D(t) = 2log(1+1t)+c

and since D(0) =0, we have ¢ =0

D(t) = 2log(1 + t)
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Let TI(s) be the pgf for X, and let y = E(X) and p,, = E(Z,), so

p=T1)  p,=I,(1)

where IT) (s) is the pgf of Z, = Y1 +... + Y3

n—1

pgf results, we have

L(s) = I [I(s)]
= 10,(s) = I, [T(s)] T (s)
IT,(1) = I, [T(1)]IT'(1)
I, ()IT'(1)
SO f = fipaft = ot == gt

as E(X) =1 we have E(Z,) = 1" = 1.
Let 02 = var(X) and let 02 = var(Z,).

I, (s) = IL, [I(s)]IT (s)
IL,(s) = IL,_ [I(s)] I (s)* + 1L, [TL(s)] IT'(s)

with Y; being the
number of offspring of individual ¢ in generation n — 1. From standard

Now II(1 )_1,1_['(1): (1):az—u+p2.
Also, since 02 = II (1) + p, — p2, we have
H;'L(l) — o=yt p
and II,_;(1) = op —p" " +p
From (1),
(1) = I (DIT(1)* + I, , ()T (1)
or =t = (o — T+ N (0 = e+ )
=02 = plol  +u"lo?
Leading to

op =t p 4+

So, as = 1 we have

var(Z,) = o2 = no?,
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(b) (i) We have

Giving,
IT'(s) = 3(1 — a)s?
So u=1II'(1) = 3(1 — a).
Let P(ultimate extinction) = 6%, then
1. 4 < 1= 60" =1 = ultimate extinction certain.
2. p>1= 6* < 1= ultimate extinction not certain.
p>1when3(1—a)>1=a<?2
So, when a < % ultimate extinction is not certain.
(i) 6" = smallest positive solution of § =II(), and § = 1:

0 = a+(1-a)f?

1 1
—P -0+ = =

2 +2 0
2 —20+1 = 0

We know that § = 1 is a solution:
0 —20+1=(0-1)(0*+6-1)
roots of 0> + 6 — 1 are —5 + \/75 therefore

5—1
Probability of extinction = V5
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3.

(a) (i) Show that

P(ever reach 0 | starts at i) =

(i)  condition on first step:

sim. seen |}

P(ever reach i — 1 | starts at 7)

x P(ever reach ¢ — 2 | starts at ¢ — 1)

x P (ever reach 0 | starts at 1)

A x Ay xoox Ay (spatial homogeneity)

7 times
(Ay)"

3]

A; = P(visit origin | start from 1)

= ¢P(visit origin | start from 0) + pP(visit origin | start from 3)

= q+pAas

3]

(iii)  Solving pA3 — A; + ¢ = 0 gives ——
—14,/14+%
2
Now look for solutions in [0, 1]:
—1— 4q
1 1+ 0
2 Y
also,
- iq
T <1 s 14 <
=2 < 2 = p > 3

take positive solutions:

_ 4q
&:{_2ﬁiiw>w3

(Noting that when p = 1/3, A,
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(b) (i) Let X; be the value of the share on day ¢.
Let Y; be the change in value of the share on day t¢.
Then,
X;=Xo+Y1i+...+Y.

0.4  with probability 0.5
Xo=100 Y;=<¢ —0.2 with probability 0.3
0  with probability 0.2

E(Y;)) = 04x05-0.2x0.3=02-0.06=0.14.
var(Y;) = E(Y?) - EX(Y))
E(Y?) = 0.4*x0.5+(0.2)>x0.3=0.16 x 0.5+ 0.04 x 0.3
= 0.08+0.012 = 0.092
var(Y;) = 0.092 — 0.14% = 0.092 — 0.0196 = 0.0724.

Giving
E(X;) = 100 + 0.14¢ =
var(X,;) = 0.0724t = o}

(i) For large t

t
X, —Xo=)_Y; ~ N(0.014¢,0.0724¢)
i=1

Xy — Xo —0.14¢
v0.0724¢

~ N(0,1)

110 — (1 14
P(Xse5 > 110) = 1_q>< 0 — (100 40 ><365)>

4/0.0724 x 365
— 1_® (110 —2,“365)
V 0365
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A Markov chain is irreducible if it has only one communicating class, i.e.
there is a path of non-zero probability from state i to state 5 and back
again for all 7, j in the sample space.

A Markov chain is aperiodic if all states have period 1, i.e. if
ged{n 3P§?) >0} =1.

()

ij

State space = {0,1,2,3} (Number of balls in the first urn).

where p;.’ is the probability of going from 7 to j in n steps.

w N = O
O O w O
O wiv O
— O whn O
S wrr O O

transition diagram:

Irreducible, finite state space = there is a unique stationary distribution.

Need aperiodicity for this distribution to also be limiting. Here the
Markov chain is periodic with period 2, so the stationary distribution
is not limiting.

Find stationary distribution, 7 from, # = 7P, Y0 m =1

1

T = 37'('1 o 3

9 ™ = U
To+ 3m2 = T —~ 1 — 3
2 2 — 0
M+ T3 = T _

1 . T3 = T

3y — T3

3

and

1
7T0—|—7T1+7T2—|—7T3:1$7T0+37T0+37T0+7T0:1$7T0:g

/1331
T=\38%88

Mean recurrence time to state 0, pg is given by:

Giving,
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5.

(a) (i) Define ]
Q=P

=0
the transition rate matrix with elements g;;, and let P(¢) have element
pij(t), 4, in the sample space. The forward differential equations are

given by:

Cpwy = P1Q

seen |}

d .
j%pij(t) = Zk:pik(t)%k Vi, J.

Zm =1, wQ=0 (or m=P(t)m, Vt).

(b) (i) Let state 0 = good mood, and state 1 = bad mood.
po1(6t) =P(0—1 in[t,t+6t)) = adt+ o(dt)
p10(0t) =P(1 =0 in [t,t+6t)) = [dt+ o(dt)
We have, by definition,

e 146t gito(dt)  i=j
sz(cSt)—{ 5t gy + o(31) i small 5t

So, as the rows of ) sum to zero, we have

—a  «
“- ( 8 -8 ) |
(i) assume true forn =k, let n =k + 1
Q" = Q'@
(—a—p)F'Q)Q from assumption
= (a7

sim. seen |

unseen 1}

e e ) mcan (7Y 5) - a0

2 __
@ = ( —aB— B af+ P
Q" = (—a— ) (—a—-P)Q = (—a—3)*Q
true forn = k+1if trueforn = k, astrue forn = 1 (Q! = (—a—4)°Q),

result follows by induction.
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p(1Q) = T+Y (-a—p)Q
n=1 ’

n—1

2 (t(—a —
:I+%ﬁﬁ¥((n@)

= ]+

—— lexp(i(—a— ) -1}

Q Q

= I+ +
a+pB —-a—-p

exp(t(—a — f))

(i) Backward differential equations:

%P(t) = % {I + - f 3 + —aQ— 3 exp(t(—a — 5))}
= exp(t(—a—))Q

art) = fr+ 2w L epii-a—)}
-0+ L v Y i)

a+ﬁ+—a—ﬁ
_ (za-B)Q  (za—-p)Q
= o a+p * —a—p
= Qexp(t(—a—p))

exp(t(—a — )

i.e. P(t) satisfies the backward differential equations:

< p(ty = QP().

dt
2]

(iv) stationary distribution satisfies

(o ”1)<_§ _g):(o 0) m+m =1

—amg+pPm; = 0 and wy+m =1

—Ofﬂ'o—i—ﬁ(l—ﬂ'o) = O#ﬂoz%j_ﬁ
-2 o
a+p a+p

m™ =

giving

_(_B a
ﬂ-_<a+ﬁ’ oz+ﬁ>
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