
seen ⇓
1. (a) (i) I: P(exactly 1 event occurs in [t, t+ δt)) = λδt+ o(δt),

[o(δt)/δt→ 0 as δt→ 0].

II: P(2 or more events occur in [t, t+ δt)) = o(δt).

III: Occurrence of events after time t is independent of occurrence of

events before t.
4

sim. seen ⇓(ii) Let X(t) be the number of realizations by time t and let p(t) =

P(X(t) = 0)

p(t+ δt) = P(0 realizations in [0, t) and 0 realizations in [t, t+ δt))

= p(t)(1− λδt+ o(δt)) (from axioms)

p(t+ δt)− p(t)
δt

= −p(t)λ+
o(δt)

δt

⇒
dp(t)

dt
= −p(t)λ

⇒ − log(p(t)) = λt+ c

Now p(0) = 1, so c = 0 giving p(t) = e−λt as required. 5

method seen ⇓
(iii) For a non-homogeneous process we have

p(t) = e−μ(t) where μ(t) =

∫ t

0

λ(u) du
2

So,

μ(t) =

∫ t

0

1 + sin(u) du = [u− cos(u)]t0 = t− cos(t) + 1,

giving

p(t) = exp(cos(t)− t− 1). 3

method seen ⇓(b) Let X(t1, t2) be the number of questions answered in in [t1, t2), then

E(X(t, t+ δt)) =
2

1 + t
δt+ o(δt).

Let D(t) = number questions answered by t in deterministic model. Then

D(t+ δt) = D(t) +
2

1 + t
δt+ o(δt)

⇒
D(t+ δt)−D(t)

δt
=

2

1 + t
+
o(δt)

δt

⇒
dD

dt
=

2

1 + t
⇒ D(t) = 2 log(1 + t) + c

and since D(0) = 0, we have c = 0

D(t) = 2 log(1 + t)
6
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part seen ⇓2. (a) (i) Let Π(s) be the pgf for X, and let μ = E(X) and μn = E(Zn), so

μ = Π
′
(1) μn = Π

′

n(1)

where Π
′

n(s) is the pgf of Zn = Y1 + . . . + YZn−1 with Yi being the

number of offspring of individual i in generation n − 1. From standard
pgf results, we have

Πn(s) = Πn−1 [Π(s)]

⇒ Π
′

n(s) = Π
′

n−1 [Π(s)] Π
′
(s)

Π
′

n(1) = Π
′

n−1 [Π(1)] Π
′
(1)

= Π
′

n−1(1)Π
′
(1)

so μ = μn−1μ = μn−2μ
2 = . . . = μn.

as E(X) = 1 we have E(Zn) = 1
n = 1. 5

(ii) Let σ2 = var(X) and let σ2n = var(Zn).

Π
′

n(s) = Π
′

n−1 [Π(s)] Π
′
(s)

Π
′′

n(s) = Π
′′

n−1 [Π(s)] Π
′
(s)2 +Π

′

n−1 [Π(s)] Π
′′
(s) (1)

Now Π(1) = 1,Π
′
(1) = μ,Π

′′
(1) = σ2 − μ+ μ2.

Also, since σ2n = Π
′′

n(1) + μn − μ
2
n, we have

Π
′′

n(1) = σ2n − μ
n + μ2n

and Π
′′

n−1(1) = σ2n−1 − μ
n−1 + μ2n−2.

From (1),

Π
′′

n(1) = Π
′′

n−1(1)Π
′
(1)2 +Π

′

n−1(1)Π
′′
(1)

σ2n − μ
n + μ2n = (σ2n−1 − μ

n−1 + μ2n−2)μ2 + μn−1(σ2 − μ+ μ2)

⇒ σ2n = μ2σ2n−1 + μ
n−1σ2

Leading to

σ2n = μ
n−1σ2(1 + μ+ μ2 + . . .+ μn−1)

So, as μ = 1 we have

var(Zn) = σ
2
n = nσ

2.

7
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method seen ⇓(b) (i) We have

Π(s) =
∞∑

i=0

P(X = i)si = α + (1− α)s3.

Giving,

Π
′
(s) = 3(1− α)s2

So μ = Π
′
(1) = 3(1− α).

Let P(ultimate extinction) = θ∗, then

1. μ ≤ 1⇒ θ∗ = 1⇒ ultimate extinction certain.

2. μ > 1⇒ θ∗ < 1⇒ ultimate extinction not certain.

μ > 1 when 3(1− α) > 1⇒ α < 2
3
.

So, when α < 2
3
ultimate extinction is not certain. 4

(ii) θ∗ = smallest positive solution of θ = Π(θ), and θ = 1
2
:

θ = α + (1− α)θ3

1

2
θ3 − θ +

1

2
= 0

θ3 − 2θ + 1 = 0

We know that θ = 1 is a solution:

θ3 − 2θ + 1 = (θ − 1)(θ2 + θ − 1)

roots of θ2 + θ − 1 are −1
2
±
√
5
2
, therefore

Probability of extinction =

√
5− 1
2

4
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sim. seen ⇓3. (a) (i) Show that

P(ever reach 0 | starts at i) = P(ever reach i− 1 | starts at i)

×P(ever reach i− 2 | starts at i− 1)
...

×P(ever reach 0 | starts at 1)

= A1 × A1 × . . .× A1︸ ︷︷ ︸
i times

(spatial homogeneity)

= (A1)
i

3

(ii) condition on first step:

A1 = P(visit origin | start from 1)

= qP(visit origin | start from 0) + pP(visit origin | start from 3)

= q + pA3

⇒ pA31 − A1 + q = 0

3

unseen ⇓(iii) Solving pA31 − A1 + q = 0 gives

A1 = 1 or A1 =
−1±

√
1 + 4q

p

2

Now look for solutions in [0, 1]:

−1−
√
1 + 4q

p

2
< 0,

also,
−1+

√
1+ 4q

p

2
≤ 1 ⇒ 1 + 4q

p
≤ 9

⇒ 1−p
p
≤ 2 ⇒ p ≥ 1

3

take positive solutions:

A1 =

{
−1+

√
1+ 4q

p

2
if p > 1/3

1 if p ≤ 1/3

(Noting that when p = 1/3, A1 = 1).
5
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sim. seen ⇓(b) (i) Let Xt be the value of the share on day t.

Let Yt be the change in value of the share on day t.

Then,

Xt = X0 + Y1 + . . .+ Yt.

X0 = 100 Yi =






0.4 with probability 0.5

−0.2 with probability 0.3
0 with probability 0.2

E(Yi) = 0.4× 0.5− 0.2× 0.3 = 0.2− 0.06 = 0.14.

var(Yi) = E(Y 2i )− E
2(Yi)

E(Y 2i ) = 0.42 × 0.5 + (0.2)2 × 0.3 = 0.16× 0.5 + 0.04× 0.3

= 0.08 + 0.012 = 0.092

var(Yi) = 0.092− 0.142 = 0.092− 0.0196 = 0.0724.

Giving

E(Xt) = 100 + 0.14t = μt

var(Xt) = 0.0724t = σ
2
t

5

(ii) For large t

Xt −X0 =
t∑

i=1

Yi ∼ N(0.014t, 0.0724t)

⇒
Xt −X0 − 0.14t√

0.0724t
∼ N(0, 1)

P(X365 > 110) = 1− Φ

(
110− (100 + 0.14× 365)

√
0.0724× 365

)

= 1− Φ

(
110− μ365√
σ2365

)

4
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seen ⇓4. (a) (i) A Markov chain is irreducible if it has only one communicating class, i.e.

there is a path of non-zero probability from state i to state j and back

again for all i, j in the sample space.
2

(ii) A Markov chain is aperiodic if all states have period 1, i.e. if

gcd{n : p(n)ij > 0} = 1.

where p
(n)
ij is the probability of going from i to j in n steps.

2

sim. seen ⇓(b) (i) State space = {0, 1, 2, 3} (Number of balls in the first urn).

P =

0

1

2

3








0 1 0 0
1
3
0 2

3
0

0 2
3
0 1

3

0 0 1 0








4

(ii) transition diagram:

0 1 2 3

2

(iii) Irreducible, finite state space⇒ there is a unique stationary distribution.
1

(iv) Need aperiodicity for this distribution to also be limiting. Here the

Markov chain is periodic with period 2, so the stationary distribution

is not limiting.
2

(v) Find stationary distribution, π from, π = πP,
∑3
i=0 πi = 1

π0 =
1
3
π1

π0 +
2
3
π2 = π1

2
3
π1 + π3 = π2

1
3
π2 = π3






⇒
π1 = 3π0
π2 = 3π0
π3 = π0

and

π0 + π1 + π2 + π3 = 1⇒ π0 + 3π0 + 3π0 + π0 = 1⇒ π0 =
1

8

Giving,

π =

(
1

8
,
3

8
,
3

8
,
1

8

)

5

Mean recurrence time to state 0, μ0 is given by:

μ0 =
1

π0
= 8

2
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seen ⇓5. (a) (i) Define

Q =
d

dt
P (t)

∣
∣
∣
∣
t=0

the transition rate matrix with elements qij, and let P (t) have element

pij(t), i, j in the sample space. The forward differential equations are

given by:

d

dt
P (t) = P (t)Q

⇒
d

dt
pij(t) =

∑

k

pik(t)qjk ∀ i, j.
2

(ii)

∑

i

πi = 1, πQ = 0 (or π = P (t)π, ∀t).
2

sim. seen ⇓(b) (i) Let state 0 ≡ good mood, and state 1 ≡ bad mood.

p01(δt) = P(0→ 1 in [t, t+ δt)) = α δt+ o(δt)

p10(δt) = P(1→ 0 in [t, t+ δt)) = β δt+ o(δt)

We have, by definition,

pij(δt) =

{
1 + δt qii + o(δt) i = j

δt qij + o(δt) i 6= j
small δt

So, as the rows of Q sum to zero, we have

Q =

(
−α α

β −β

)

.

3

unseen ⇓(ii) assume true for n = k, let n = k + 1

Qk+1 = QkQ

= ((−α− β)k−1Q)Q from assumption

= (−α− β)k−1Q2

Q2 =

(
α2 + αβ −α2 − αβ
−αβ − β2 αβ + β2

)

= (−α−β)

(
−α α

β −β

)

= (−α−β)Q

Qk+1 = (−α− β)k−1(−α− β)Q = (−α− β)kQ

true for n = k+1 if true for n = k, as true for n = 1 (Q1 = (−α−β)0Q),
result follows by induction.

4
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exp(tQ) = I +
∞∑

n=1

tn

n!
(−α− β)n−1Q

= I +
Q

−α− β

∞∑

n=0

(t(−α− β))n−1

n!

= I +
Q

−α− β
{exp(t(−α− β)− 1}

= I +
Q

α + β
+

Q

−α− β
exp(t(−α− β))

3

(iii) Backward differential equations:

d

dt
P (t) =

d

dt

{

I +
Q

α + β
+

Q

−α− β
exp(t(−α− β))

}

= exp(t(−α− β))Q

QP (t) = Q

{

I +
Q

α + β
+

Q

−α− β
exp(t(−α− β))

}

= Q+
Q2

α + β
+

Q2

−α− β
exp(t(−α− β))

= Q+
(−α− β)Q
α + β

+
(−α− β)Q
−α− β

exp(t(−α− β))

= Q exp(t(−α− β))

i.e. P (t) satisfies the backward differential equations:

d

dt
P (t) = QP (t).

3

(iv) stationary distribution satisfies

(π0 π1)

(
−α α

β −β

)

= (0 0) π0 + π1 = 1.

−απ0 + βπ1 = 0 and π0 + π1 = 1

−απ0 + β(1− π0) = 0⇒ π0 =
β

α + β

π1 = 1−
β

α + β
=

α

α + β

giving

π =

(
β

α + β
,

α

α + β

)

3
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