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1. (a) {X:} is second-order stationary if E{X;} is a finite constant for all ¢, var{X,} is a
finite constant for all ¢, and cov{X;, X;{,}, is a finite quantity depending only on 7
and not on t.

Iw

sim. seen |}

(b) (i) Stationary (MA(2)!) E{X,;} =0,

Sr = E{(Et - 0-9€t—l)(€t+7' - 0~9€t+7'—1)}
= E{6t€t+7—} - 0.9(E{6t6t+7_1} + E{Et_16t+»r}) + 0.81E{6t_16t+7_1}.

So,
var{X;} = so = 02 + 0.81¢% = 1.8102,
and
. _ 0902 |7| =1,
10 |7| > 1,
none of which depend on ¢ and so process is stationary.

(i) For stationarity the roots of the characteristic equation ®(z) in the defining
equation ®(B)X; = ¢ must lie outside the unit circle.

9 9
Xy = -X41— =X
t A1 g t—2 + €
9 9
(1 - ZB + ng)Xt = €t

3 3
(1 — Z__LB)(l - §B)Xt = €t

roots are 4/3 and 2/3, so process is non-statationary as [2/3| < 1.
©
var{X;} =so = E{th} =E{(aXi1 + e +ae_1)(aXi—1 + e+ ae_1)}
= o®E{X? |} + 20 E{X;_ 16,1} + E{}} + *E{e’ |}
so(l —a?) = 20°E{(aXi—2+ &—1 + ae_2)er—1} + 02(1 + a?)
so(1—a?) = 20202+ o2(1+ a?)
I 02(1+ 3a?)
’ (1—a?)

(i) Process is stationary as |a| < 1, multiply defining equation by X; ; and take
expectations

E{thlXt} = OéE{thlthl} + E{thlét} + aE{Xt,let,l}

We have, from (c)(i) that E{X; 16,1} = ao?, and using the fact that
E{X:X:—+} = s;, we have

s1 = ozso—i-aaf
1—a? 1+ 3a? 1-a?) 2a(l4a?
:>p1:s_1 ~ wta a :a(—l—a)—l—a( a): a(l+a%)
50 1+ 3a? 1+ 3a?2 1+ 3a?
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‘ method seen |}

2. (a) (i) A: m =0.89,m =0.1,75 = 0.
B:
(1-0.1B)¢, = (1—-B)X;
€ (1-B)(1-0.1B)'Xx;
¢ = (1-B)(14+0.1B+(0.1B)>+(0.1B)* +...)X;
€ (1+(0.1-=1)B+(0.12-0.1)B%+ (0.1> = 0.1%)B® + .. ) X,

¢ = (1-09B—(0.1)0.9B% - (0.1)%0.9B% — .. ) X;
X; = 0.9X;+0.09X; 1 +0.009X; 2 + ...+ ¢
So m = 0.9, 1 = 0.09, w3 = 0.009.

(=] [=]

(ii) For B: m, = (0.1)*710.9.

(b) (i) The three properties of an LTI filter are:
[1] Scale-preservation:

L{{awi}} = al{{z}}.
[2] Superposition:
L{{xin + 2oty = L{{zea} + L{{ze2}}-

[3] Time invariance:
If

L{{ze}} =A{ve, then  L{{xrir}} = {yeir}

Where 7 is integer-valued, and the notation {z;;.} refers to the sequence

whose t-th element is x4, ;.

(ii) Model A, we have L{{X;}} = X;—0.89X;_1—0.1X; o sothat L{{X:}} = {e}.
I {{ei27rft}} — Qi2mft _ () gQei2mf(t=1) _ () 1pi2mf(t=2)

— it (1 — 0.89¢ 127 _ (. 1¢-i4mS ) :

giving,
G(f) =1—0.89e 27/ — 0.1/,
Since,
S(f) = |G(HIPSa(f) and  Sc(f) = o2,
we have )
o

SaU) = T 208062 — 0.1 I

Model B: similarly, we have L {{X;}} = > 77 7 X;_, giving

o? o?

SB(f) = (o.9] < ) = [%e) - -
11— 300 mre—2nfk[2 1 — S0 (0.1)k—10.9e—i2n k|2

(c¢) 7 = (0.1)%0.9 so m, ~ 0 for large k, also m; and mo are similar for both models,
so although these models have different formulation (with one being non-stationary!)
they are in fact quite similar in terms of their spectral shapes.
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(a)
1 N—|7]| 1 ‘ |
-
S = 3 By} = (O [ehsn) = (10 ) o
Hence 3% is biased for s,.
Reasons for prefering the biased estimator:
1. For many stationary processes of practical interest
mse{5P)} < mse{5®}.
2. If {X;} has a purely continuous spectrum we know that s, — 0 as || — oco. It
therefore makes sense to choose an estimator that decreases nicely as |7| — N —1
(i.e. choose A(p)).
3. We know that the acvs must be positive semidefinite, the sequence {§(Tp)} has
this property, whereas other unbiased estimators may not.
(b)
1 & 1
E{S®) ()} = E{|J(f)|? where J(f) = — Y  Xje 27t < -
{5} = E{I(NI7} (f) \/N; ¢ <5

We know from the spectral representation theorem that there is an orthogonal
increments process Z(f) s.t. E{|dZ(f)|*} = S(f) df and

/2
o= [ errtaz (s,
~1/2

so that,
J(f) = Z( / " —=etaz(f )) eremit
t=1 \’~
1/2 N
— // Z 1 e—i2m(f— f)dZ(f’)
124 N
We find that,

E{SPD(HY = E{J(NP = E{J*(f)J(f)}

N N
- E /1/2 Z 227r (f—fe dZ* /1/2 —i27r(f—f”)s dZ(f//)
—1/2 = \/_ 1/2S “ VN

/2 172 N = L -i2n-1"5E {77 (f') dZ (f"
S Zﬁ {az*(f") dz (")}

1/2J-1/2 4= o
1/2
= F(f =S df,
—-1/2

by the orthogonality of the increments process, and where F is Féjer's kernel defined
by

1 e—i27rft
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(c) Dataset 1 Periodogram B [periodic - spectral peak]
Dataset 2 Periodogram C [slowly varying - more power at low frequencies]
Dataset 3 Periodogram A [rapidly varying - more power at high frequencies|

(d) The periodogram of processes with a high dynamic range (defined as
10logg{maxs S(f)/ mins S(f)}) can suffer from bias.
Periodogram B could be biased at high frequencies due to leakage from the spectral
peak.
To counter bias we can use a technique known as tapering: We form the product
{h¢X:} where {h;} is a sequence of real-valued constants called a data taper. Define

N
J(f) =" hXee 2™t |f| < 1/2.

t=1

By the spectral representation theorem,

1/2 ,
Xt _ / ez?ﬂftdZ(fl),
-1/2

so that,

N 2 |
J(f) — th (/ 6127rftdZ(fl)> 6—127rft
t=1

—1/2
1/2 N

= hee—i2m(F =1t g7 ( ¢
-1/2 ; e (f )
1/2
= H(f - f")dz(f"),

—-1/2

where,
N .
H(f) =Y he 2t
t=1

We define our direct spectral estimator as,
2

N
S) = 1T = 3 e 2!

t=1

Then,

1/2 1/2

[J(HIP = T*(HI(f) = H*(f = f)dz"(f) H(f - f")dz(f"),

—1/2 -1/2
and hence by the orthogonality of the increments process,
E{S(} = E{INHI}

1/2 1/2
= [ - pesunar = [ s - s
~1/2 ~1/2
where H(f) = |H(f)|?, we take 7{\;1 h? = 1.
The shape of H(f) determines the bias properties of the estimator - we choose a taper
whose associated #(f) has low sidelobes to reduce sidelobe leakage and thus reduce
the bias due to sidelow leakage.
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(a)

E{X: X, -} = E{Xi +(¢Xi6+e)}
= OE{Xi Xt} + E{X¢—rer}

When 7 = 0, we have
S0 = ¢sg + 062 (1)

Now E{X; e} =0 for all 7 > 0. So,
Sy = ¢sr—¢ for 7>0
Consider s, for 7 =1,2,3,4,5, we have
S1 = ¢s5; S2 = Ps4; S3 = Ps3; S4 = Psz; S5 = Ps1
as |¢| < 1 we must have s =... =355 =0 (as ¢ # 0)

Sek = PSek—6 = PSe(k—1) k=1,2,...

We have,
S = ¢30a (2)
thus, from equation (?7),
2
s6 = ¢(¢se + 07) and s6 = 1¢UE 2
—¢
and
o?
0T

so is non-zero and therefore sgi is non-zero, for k =1,2,...

(b) (i) The Y-W estimators are obtained from (a) by replacing the acvs in equations
(??) and (??) with their biased estimators, giving

~ N—6
3= 86 Q=1 XtXit6
== =&sl
50 > e Xi

and

N _
1 SOXZ - 1 (25 XiXy6)
¢ N
N t=1 N Zt:l Xt2
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(i)  The forward least squares estimator is given by

-1
~ T T iy SN X X6
QS:(F F) (FTXp) = ZXt ZX,:XH(;:W

t=1 t=7 Vi

~ _ (Xp—F9)'(Xp—F¢) 1 ~
e = N—6-1 = 57 (X = 0Xie)?
t="7
N N—6 N N—6 v x N
1 :_ XtXt+6 ( t=1 t t+6>
= o | X 2T o L XXt o — > X2
t=7 PIAED, C (Zt,7 X2) t=7

L1 (S x| (55 XtXt+6) v
T\ T iy B

(iii) as NV increases, the value of I - X2 o, SV X2 and 2 | X7 all become closer
(X} is stationary), and N/(N — 7) — 1 so the the least squares and Yule-Walker
estimators become closer in value (in fact they are asymptotically equivalent).
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(a) We want to minimize,
o0 o0 2
E{(X;y— X:(1))?} = E { (Z Y€tk — Z5k€t—k> }
k=0 k=0
-1 e 2
= E { (Z Ykeeri—k+ Y [kt — 5k]6t—k> }
k=0 k=0

The first term is independent of the choice of the {d;} and the second term is clearly
minimized by choosing 6 = ¥r4+1,k=0,1,2,.. ..

’ method seen |}

(b) (i) We have X; = ¥U(B)e = ¢, = V"1(B)X;, and so

X(1) = D tkneaw=0"B)e  [=(B)e]
k=0

= (B Y(B)X; = GY(B)X;
Now
Xt_%Xt—IZGt = (1_§>Xt:€t
So that, .
= ¥(B) = (1-%) :1+§+BT2+B§+...

So 6, = Yy = 2~ and when | = 1, 8§, = 2=*+1) giving

1 B B?
OB =+ + =+ ...
(B) <2+ st gt )
We have,
1 B B? B 1
OBy = gl ~1gy— (= b= e
GY(B) = vM(BY»1(B) <2+4+ 2 +> <1 2) 5
Giving
X,(1) = GY(B)X, = %Xt
Similarly, when [ = 2 we have & = 2~(%+2) and
1 B B? B 1
@ () — ¢ -1 b- _by_1
G (B) =¥ (B (B) = <4+8+16+...>(1 2) 1
Giving
1

X:(2) = GP(B)X,; = X
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(ii) From (a)(i) we have

-1 0o
a*(l) = o? { (Z 1/0%) + > (Yrir — 5k)2}
k=0 k=0

When §; = ¥4 the second term vanishes, and we have,

-1
o*(1) = E{(Xes1 — Xe(1)?} = 02 4k,
k=0

Giving,
0'2(1) = 0'621/}8:0'62

1 5

#Q) = A +ud =02 (1+7) =03

(iii) We have

o
Xip1(1) = D trirerik

k=0
16441 + oer + 31 + ...,

but,
o0
Xi(2) = D trioek
k=0
= o€ + P3€—1 +Yagso+ ...,
and,

Xen(1) = Xi(2) + drer
= Xi(2) + (X1 — X4(1))
= X;(2)+ % (X1 — Xa(1))

Hence, to forecast X;, o we can modify the 2-step ahead forecast at time ¢ by producing
an 1l-step ahead forecast at time ¢t + 1 using X;1; as it becomes available.

Note that we have

1 1 1 1
X1 (1) = ZXt + 5 (Xt+1 - §Xt> = §Xt+1

as expected.
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