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seen ⇓

1. (a) {Xt} is second-order stationary if E{Xt} is a finite constant for all t, var{Xt} is a

finite constant for all t, and cov{Xt, Xt+τ}, is a finite quantity depending only on τ

and not on t. 3

sim. seen ⇓
(b) (i) Stationary (MA(2)!) E{Xt} = 0,

sτ = E{(εt − 0.9εt−1)(εt+τ − 0.9εt+τ−1)}

= E{εtεt+τ} − 0.9(E{εtεt+τ−1}+ E{εt−1εt+τ}) + 0.81E{εt−1εt+τ−1}.

So,

var{Xt} = s0 = σ2
ε + 0.81σ2

ε = 1.81σ2
ε ,

and

sτ =

{
0.9σ2

ε |τ | = 1;

0 |τ | > 1,

none of which depend on t and so process is stationary. 4

(ii) For stationarity the roots of the characteristic equation Φ(z) in the defining

equation Φ(B)Xt = εt must lie outside the unit circle.

Xt =
9

4
Xt−1 −

9

8
Xt−2 + εt

(1−
9

4
B +

9

8
B2)Xt = εt

(1−
3

4
B)(1−

3

2
B)Xt = εt

roots are 4/3 and 2/3, so process is non-statationary as |2/3| < 1. 4

unseen ⇓(c) (i)

var{Xt} = s0 = E{X2
t } = E{(αXt−1 + εt + αεt−1)(αXt−1 + εt + αεt−1)}

= α2E{X2
t−1}+ 2α2E{Xt−1εt−1}+ E{ε2t }+ α2E{ε2t−1}

s0(1− α2) = 2α2E{(αXt−2 + εt−1 + αεt−2)εt−1}+ σ2
ε (1 + α2)

s0(1− α2) = 2α2σ2
ε + σ2

ε (1 + α2)

s0 =
σ2
ε (1 + 3α2)

(1− α2)
.

5

(ii) Process is stationary as |α| < 1, multiply defining equation by Xt−1 and take

expectations

E{Xt−1Xt} = αE{Xt−1Xt−1}+ E{Xt−1εt}+ αE{Xt−1εt−1}

We have, from (c)(i) that E{Xt−1εt−1} = ασ2
ε , and using the fact that

E{XtXt−τ} = sτ , we have

s1 = αs0 + ασ2
ε

⇒ ρ1 =
s1

s0
= α+ α

1− α2

1 + 3α2
=
α(1 + 3α2) + α(1− α2)

1 + 3α2
=

2α(1 + α2)

1 + 3α2
.

4
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method seen ⇓

2. (a) (i) A: π1 = 0.89, π2 = 0.1, π3 = 0. 2

B:

(1− 0.1B)εt = (1−B)Xt

εt = (1−B)(1− 0.1B)−1Xt

εt = (1−B)(1 + 0.1B + (0.1B)2 + (0.1B)3 + . . .)Xt

εt = (1 + (0.1− 1)B + (0.12 − 0.1)B2 + (0.13 − 0.12)B3 + . . .)Xt

εt = (1− 0.9B − (0.1)0.9B2 − (0.1)20.9B3 − . . .)Xt

Xt = 0.9Xt + 0.09Xt−1 + 0.009Xt−2 + . . .+ εt.

So π1 = 0.9, π2 = 0.09, π3 = 0.009. 4

(ii) For B: πk = (0.1)k−10.9. 1

(b) (i) The three properties of an LTI filter are:

[1] Scale-preservation:

L {{αxt}} = αL {{xt}} .

[2] Superposition:

L {{xt,1 + xt,2}} = L {{xt,1}+ L {{xt,2}} .

[3] Time invariance:

If

L {{xt}} = {yt}, then L {{xt+τ}} = {yt+τ}.

Where τ is integer-valued, and the notation {xt+τ} refers to the sequence

whose t-th element is xt+τ . 3

(ii) Model A, we have L {{Xt}} = Xt−0.89Xt−1−0.1Xt−2 so that L {{Xt}} = {εt}.

L
{
{ei2πft}

}
= ei2πft − 0.89ei2πf(t−1) − 0.1ei2πf(t−2)

= ei2πft
(

1− 0.89e−i2πf − 0.1e−i4πf
)
,

giving,

G(f) = 1− 0.89e−i2πf − 0.1e−i4πf .

Since,

Sε(f) = |G(f)|2SA(f) and Sε(f) = σ2
ε ,

we have

SA(f) =
σ2
ε

|1− 0.89e−i2πf − 0.1e−i4πf |2
.

5

Model B: similarly, we have L {{Xt}} =
∑∞

k=0 πkXt−k, giving

SB(f) =
σ2
ε

|1−
∑∞

k=1 πke
−i2πfk|2

=
σ2
ε

|1−
∑∞

k=1(0.1)k−10.9e−i2πfk|2

3

(c) πk = (0.1)k0.9 so πk ≈ 0 for large k, also π1 and π2 are similar for both models,

so although these models have different formulation (with one being non-stationary!)

they are in fact quite similar in terms of their spectral shapes. 2
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seen ⇓
3. (a)

E{ŝ(p)
τ } =

1

N

N−|τ |∑

t=1

E{XtXt+|τ |} =
1

N
((N − |τ |)sτ ) =

(

1−
|τ |
N

)

sτ .

Hence ŝ
(p)
τ is biased for sτ . 1

Reasons for prefering the biased estimator:

1. For many stationary processes of practical interest

mse{ŝ(p)
τ } < mse{ŝ(u)

τ }.

2. If {Xt} has a purely continuous spectrum we know that sτ → 0 as |τ | → ∞. It

therefore makes sense to choose an estimator that decreases nicely as |τ | → N−1

(i.e. choose ŝ
(p)
τ ).

3. We know that the acvs must be positive semidefinite, the sequence {ŝ(p)
τ } has

this property, whereas other unbiased estimators may not. 2

(b)

E{Ŝ(p)(f)} = E{|J(f)|2} where J(f) =
1
√
N

N∑

t=1

Xte
−i2πft, |f | ≤

1

2
.

We know from the spectral representation theorem that there is an orthogonal

increments process Z(f) s.t. E{|dZ(f)|2} = S(f) df and

Xt =

∫ 1/2

−1/2
ei2πf

′t dZ(f ′),

so that,

J(f) =
N∑

t=1

(∫ 1/2

−1/2

1
√
N
ei2πf

′t dZ(f ′)

)

e−i2πft

=

∫ 1/2

−1/2

N∑

t=1

1
√
N
e−i2π(f−f ′)t dZ(f ′)

We find that,

E{Ŝ(p)(f)} = E{|J(f)|2} = E{J∗(f)J(f)}

= E

{∫ 1/2

−1/2

N∑

t=1

1
√
N
ei2π(f−f ′)t dZ∗(f ′)

∫ 1/2

−1/2

N∑

s=1

1
√
N
e−i2π(f−f ′′)s dZ(f ′′)

}

=

∫ 1/2

−1/2

∫ 1/2

−1/2

N∑

t=1

1
√
N
ei2π(f−f ′)t

N∑

s=1

1
√
N
e−i2π(f−f ′′)sE{dZ∗(f ′) dZ(f ′′)}

=

∫ 1/2

−1/2
F(f − f ′)S(f ′) df ′,

by the orthogonality of the increments process, and where F is Féjer’s kernel defined

by

F(f) =

∣
∣
∣
∣
∣

N∑

t=1

1
√
N
e−i2πft

∣
∣
∣
∣
∣

2

.

6
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unseen ⇓
(c) Dataset 1 Periodogram B [periodic - spectral peak]

Dataset 2 Periodogram C [slowly varying - more power at low frequencies]

Dataset 3 Periodogram A [rapidly varying - more power at high frequencies]

3

(d) The periodogram of processes with a high dynamic range (defined as

10 log10{maxf S(f)/minf S(f)}) can suffer from bias. 1 seen

Periodogram B could be biased at high frequencies due to leakage from the spectral

peak. 1

To counter bias we can use a technique known as tapering: We form the product

{htXt} where {ht} is a sequence of real-valued constants called a data taper. Define

J(f) =
N∑

t=1

htXte
−i2πft |f | ≤ 1/2.

By the spectral representation theorem,

Xt =

∫ 1/2

−1/2
ei2πf

′t dZ(f ′),

so that,

J(f) =
N∑

t=1

ht

(∫ 1/2

−1/2
ei2πf

′t dZ(f ′)

)

e−i2πft

=

∫ 1/2

−1/2

N∑

t=1

hte
−i2π(f−f ′)t dZ(f ′)

=

∫ 1/2

−1/2
H(f − f ′) dZ(f ′),

where,

H(f) =
N∑

t=1

hte
−i2πft

We define our direct spectral estimator as,

Ŝ(d)(f) = |J(f)|2 =

∣
∣
∣
∣
∣

N∑

t=1

htXte
−i2πft

∣
∣
∣
∣
∣

2

.

Then,

|J(f)|2 = J∗(f)J(f) =

∫ 1/2

−1/2
H∗(f − f ′) dZ∗(f ′)

∫ 1/2

−1/2
H(f − f ′′) dZ(f ′′),

and hence by the orthogonality of the increments process,

E{Ŝ(d)(f)} = E{|J(f)|2}

=

∫ 1/2

−1/2
|H(f − f ′)|2S(f ′) df ′ =

∫ 1/2

−1/2
H(f − f ′)S(f ′) df ′,

where H(f) = |H(f)|2, we take
∑N

t=1 h
2
t = 1.

The shape of H(f) determines the bias properties of the estimator - we choose a taper

whose associated H(f) has low sidelobes to reduce sidelobe leakage and thus reduce

the bias due to sidelow leakage. 6
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method seen ⇓

4. (a)

E{XtXt−τ} = E{Xt−τ (φXt−6 + εt)}

= φE{Xt−τXt−6}+ E{Xt−τ εt}

When τ = 0, we have

s0 = φs6 + σ2
ε (1)

Now E{Xt−τ εt} = 0 for all τ > 0. So,

sτ = φsτ−6 for τ > 0

Consider sτ , for τ = 1, 2, 3, 4, 5, we have

s1 = φs5; s2 = φs4; s3 = φs3; s4 = φs2; s5 = φs1

as |φ| < 1 we must have s1 = . . . = s5 = 0 (as φ 6= 0)

s6k = φs6k−6 = φs6(k−1) k = 1, 2, . . .

We have,

s6 = φs0, (2)

thus, from equation (??),

s6 = φ(φs6 + σ2
ε ) and s6 =

φσ2
ε

1− φ2

and

s0 =
σ2
ε

1− φ2
,

s0 is non-zero and therefore s6k is non-zero, for k = 1, 2, . . . 4

(b) (i) The Y-W estimators are obtained from (a) by replacing the acvs in equations

(??) and (??) with their biased estimators, giving

φ̂ =
ŝ6

ŝ0
=

∑N−6
t=1 XtXt+6
∑N

t=1X
2
t

and 3

σ̂2
ε = ŝ0 − φ̂ŝ6 =

1

N

N∑

t=1

X2
t −

1

N

(
∑N−6

t=1 XtXt+6)2

∑N
t=1X

2
t

3
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(ii) The forward least squares estimator is given by

φ̃ =
(
F>F

)−1
(F>XF ) =

(
N∑

t=7

X2
t

)−1 N−6∑

t=1

XtXt+6 =

∑N−6
t=1 XtXt+6
∑N

t=7X
2
t

4

σ̃2
ε =

(XF − Fφ̃)>(XF − Fφ̃)

N − 6− 1
=

1

N − 7

N∑

t=7

(Xt − φ̃Xt−6)2

=
1

N − 7






N∑

t=7

X2
t − 2

∑N−6
t=1 XtXt+6
∑N

t=7X
2
t

N∑

t=7

XtXt−6 +

(∑N−6
t=1 XtXt+6

)2

(∑N
t=7X

2
t

)2

N∑

t=7

X2
t−6






=
1

N − 7






N∑

t=7

X2
t − 2

(
∑N−6

t=1 XtXt+6)2

∑N
t=7X

2
t

+

(∑N−6
t=1 XtXt+6

)2

(∑N
t=7X

2
t

)2

N∑

t=7

X2
t−6






4

(iii) as N increases, the value of
∑N

t=7X
2
t−6,

∑N
t=7X

2
t and

∑N
t=1X

2
t all become closer

(Xt is stationary), and N/(N − 7)→ 1 so the the least squares and Yule-Walker

estimators become closer in value (in fact they are asymptotically equivalent). 2
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seen ⇓

5. (a) We want to minimize,

E{(Xt+l −Xt(l))
2} = E






(
∞∑

k=0

ψkεt+l−k −
∞∑

k=0

δkεt−k

)2





= E






(
l−1∑

k=0

ψkεt+l−k +
∞∑

k=0

[ψk+l − δk]εt−k

)2





= σ2
ε

{(
l−1∑

k=0

ψ2
k

)

+
∞∑

k=0

(ψk+l − δk)
2

}

.

The first term is independent of the choice of the {δk} and the second term is clearly

minimized by choosing δk = ψk+l, k = 0, 1, 2, . . .. 4

method seen ⇓
(b) (i) We have Xt = Ψ(B)εt ⇒ εt = Ψ−1(B)Xt, and so

Xt(l) =
∞∑

k=0

ψk+lεt−k = Ψ(l)(B)εt [= δ(B)εt]

= Ψ(l)(B)Ψ−1(B)Xt = G(l)(B)Xt

Now

Xt −
1

2
Xt−1 = εt ⇒

(

1−
B

2

)

Xt = εt

So that,

⇒ Ψ(B) =

(

1−
B

2

)−1

= 1 +
B

2
+
B2

4
+
B3

8
+ . . .

So δk = ψk+l = 2−(k+l) and when l = 1, δk = 2−(k+1) giving

Ψ(1)(B) =

(
1

2
+
B

4
+
B2

8
+ . . .

)

We have,

G(1)(B) = Ψ(1)(B)Ψ−1(B) =

(
1

2
+
B

4
+
B2

8
+ . . .

)(

1−
B

2

)

=
1

2

Giving

Xt(1) = G(1)(B)Xt =
1

2
Xt

Similarly, when l = 2 we have δk = 2−(k+2) and 4

G(2)(B) = Ψ(2)(B)Ψ−1(B) =

(
1

4
+
B

8
+
B2

16
+ . . .

)(

1−
B

2

)

=
1

4

Giving

Xt(2) = G(2)(B)Xt =
1

4
Xt

2
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seen ⇓

(ii) From (a)(i) we have

σ2(l) = σ2
ε

{(
l−1∑

k=0

ψ2
k

)

+
∞∑

k=0

(ψk+l − δk)
2

}

When δk = ψk+l the second term vanishes, and we have,

σ2(l) = E{(Xt+l −Xt(l))
2} = σ2

ε

l−1∑

k=0

ψ2
k,

3

unseen ⇓

Giving,

σ2(1) = σ2
εψ

2
0 = σ2

ε

σ2(2) = σ2
ε (ψ

2
0 + ψ2

1) = σ2
ε

(

1 +
1

4

)

= σ2
ε

5

4

2

(iii) We have

Xt+1(1) =
∞∑

k=0

ψk+1εt+1−k

= ψ1εt+1 + ψ2εt + ψ3εt−1 + . . . ,

but,

Xt(2) =
∞∑

k=0

ψk+2εt−k

= ψ2εt + ψ3εt−1 + ψ4εt−2 + . . . ,

and,

Xt+1(1) = Xt(2) + ψ1εt+1

= Xt(2) + ψ1(Xt+1 −Xt(1))

= Xt(2) +
1

2
(Xt+1 −Xt(1))

Hence, to forecast Xt+2 we can modify the 2-step ahead forecast at time t by producing

an 1-step ahead forecast at time t+ 1 using Xt+1 as it becomes available.

Note that we have

Xt+1(1) =
1

4
Xt +

1

2

(

Xt+1 −
1

2
Xt

)

=
1

2
Xt+1

as expected. 5
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