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seen ⇓1. (a)

E(X2t ) = E(σ2t ε
2
t )

= E((a0 + a1X
2
t−1)ε

2
t )

= (a0 + a1E(X
2
t−1))E(ε

2
t )

= a0 + a1E(X
2
t ),

which yields

E(X2t ) =
a0
1− a1

.

4

method seen ⇓(b)

X4t = (a0 + a1X
2
t−1)

2ε4t

= (a20 + 2a0a1X
2
t−1 + a

2
1X
4
t−1)ε

4
t .

Hence,

E(X4t ) = 3

(

a20 + 2a0a1
a0

1− a1
+ a21E(X

4
t )

)

,

which gives

E(X4t ) =
3a20(1 + a1)

(1− a1)(1− 3a21)
.

5

unseen ⇓
(c)

κXt =
E(X4t )
(E(X2t ))2

=
3a20(1 + a1)

(1− a1)(1− 3a21)
(1− a1)2

a20
=
3(1− a21)
1− 3a21

.

Note that κXt > 3 as 1−a
2
1 > 1−3a

2
1 for a1 > 0. On the other hand, if Z ∼ N(0, σ

2),

then

κZ =
E(Z4)
(E(Z2))2

=
3σ4

(σ2)2
= 3.

Therefore, Xt is not Normally distributed. 6

method seen ⇓
(d)

ρ1 =
E(X2tX

2
t−1)− (E(X

2
t ))
2

E(X4t )− (E(X
2
t ))
2
=:

A−B2

C −B2
.

We have already computed B and C. It remains to compute A.

E(X2tX
2
t−1) = E(ε2t )(a0E(X

2
t−1) + a1E(X

4
t−1))

= a0
a0

1− a1
+ a1

3a20(1 + a1)

(1− a1)(1− 3a21)

=
a20(1 + 3a1)

(1− a1)(1− 3a21)
.

Substituting into the above, we obtain ρ1 = a1. 5
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method seen ⇓2. (a) We have
[
ŝ1
ŝ2

]

=

[
ŝ0 ŝ1
ŝ1 ŝ0

] [
âYW

b̂YW

]

,

which gives

[
âYW

b̂YW

]

=
1

ŝ20 − ŝ
2
1

[
ŝ0 −ŝ1
−ŝ1 ŝ0

] [
ŝ1
ŝ2

]

=




ŝ0ŝ1−ŝ1ŝ2
ŝ20−ŝ

2
1

ŝ0ŝ2−ŝ21
ŝ20−ŝ

2
1



 .

Substituting

ŝτ =
1

n

n−|τ |∑

t=1

xtxt+|τ |,

we obtain

âYW =

∑n−1
t=1 xtxt+1

(∑n
t=1 x

2
t −

∑n−2
t=1 xtxt+2

)

(∑n
t=1 x

2
t

)2 −
(∑n−1

t=1 xtxt+1

)2

b̂YW =

∑n
t=1 x

2
t

∑n−2
t=1 xtxt+2 −

(∑n−1
t=1 xtxt+1

)2

(∑n
t=1 x

2
t

)2 −
(∑n−1

t=1 xtxt+1

)2

7

method seen ⇓(b) We have [
âLS

b̂LS

]

= (F TF )−1F Tx(2),

where

F T =

[
x2 ∙ ∙ ∙ xn−1
x1 ∙ ∙ ∙ xn−2

]

xT(2) = (x3, . . . , xn).

Thus,

[
âLS

b̂LS

]

=

[ ∑n−1
t=2 x

2
t

∑n−2
t=1 xtxt+1∑n−2

t=1 xtxt+1
∑n−2
t=1 x

2
t

]−1 [ ∑n−1
t=2 xtxt+1∑n−2
t=1 xtxt+2

]

=
1

∑n−1
t=2 x

2
t

∑n−2
t=1 x

2
t −

(∑n−2
t=1 xtxt+1

)2

×

[ ∑n−2
t=1 x

2
t −

∑n−2
t=1 xtxt+1

−
∑n−2
t=1 xtxt+1

∑n−1
t=2 x

2
t

] [ ∑n−1
t=2 xtxt+1∑n−2
t=1 xtxt+2

]

.

This leads to

âLS =

∑n−2
t=1 x

2
t

∑n−1
t=2 xtxt+1 −

∑n−2
t=1 xtxt+1

∑n−2
t=1 xtxt+2

∑n−1
t=2 x

2
t

∑n−2
t=1 x

2
t −

(∑n−2
t=1 xtxt+1

)2

b̂LS =

∑n−1
t=2 x

2
t

∑n−2
t=1 xtxt+2 −

∑n−2
t=1 xtxt+1

∑n−1
t=2 xtxt+1

∑n−1
t=2 x

2
t

∑n−2
t=1 x

2
t −

(∑n−2
t=1 xtxt+1

)2 .

7
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unseen ⇓
(c) (i) For n = 3, âLS does not make sense as we have âLS = 0/0, so Yule-Walker

should be used. 3

(ii) As n tends to infinity, from the above formulae it is apparent that the

corresponding Yule-Walker and least squares estimates become “closer and closer”

to each other. Therefore, it “does not matter” which one is used in the case

n = 1010 as the estimated values will probably be very similar for both methods. 3
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unseen ⇓3. (a) For τ > 0,

E(XtXt−τ ) = E(at)E(Xt−1Xt−τ ) +
√
8/9E(εt)E(Xt−τ ),

which, from the properties of the Uniform distribution, gives

sτ =
1

2
sτ−1.

Also,

s0 = E(X
2
t ) = E(a

2
tX
2
t−1 + 2

√
8/9atXt−1εt + 8/9 ε

2
t ) = 1/3E(X

2
t ) + 8/9,

which yields s0 = 4/3. Thus,

sτ =
4

3

(
1

2

)|τ |
.

5

seen ⇓(b) To compute the autocovariance function s̃τ of Yt, we use exactly the same technique

as in (a) above and find that

s̃τ =
4

3

(
1

2

)|τ |
= sτ .

Thus, the autocovariance functions are the same. 4

seen ⇓(c) The autocovariance function of Xt is the same as that of Yt (see above). Therefore,

the spectral densities will also be the same (as the spectral density is the Fourier

transform of the autocovariance sequence). Denoting the spectral density of a process

Zt by SZ(f), we have

|1− 1/2 exp(−i2πf)|2SX(f) = Sε(f),

which simplifies to

(5/4− cos(2πf))SX(f) = 1,

and therefore

SX(f) = (5/4− cos(2πf))
−1.

5

unseen ⇓(d) The distributions are not identical. To see this, it is enough to show, for example, that

E(X4t ) 6= E(Y
4
t ). We compute

E(X4t ) = E
(
a4tX

4
t−1 + 4a

3
tX
3
t−1

√
8/9εt + 6a

2
tX
2
t−18/9ε

2
t + 4atXt−1(8/9)

3/2ε3t + (8/9)
2ε4t

)

= 1/5E(X4t ) + 6 ∙ 1/3 ∙ 4/3 ∙ 8/9 + 3(8/9)
2,

which gives E(X4t ) = 160/27. On the other hand,

E(Y 4t ) = E
(
1/16Y 4t−1 + 4/8Y

3
t−1εt + 6/4Y

2
t−1ε

2
t + 4/2Yt−1ε

3
t + ε

4
t

)

= 1/16E(Y 4t ) + 6/4 ∙ 4/3 + 3,

which gives E(Y 4t ) = 16/3 6= 160/27. 6
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sim. seen ⇓4. (a)

MSE(μ̂, μ) = n−2
n∑

s,t=1

st−s

= n−2 (ns0 + 2(n− 1)s1 + . . .+ 2sn−1)

≤ 2n−1 (s0 + . . .+ sn−1)

= 2s0n
−1 + 2n−1

n−1∑

τ=1

1

τ

(

1 + . . .+
1

τ

)

= 2s0n
−1 + 2n−1

n−1∑

τ=1

1

τ
O(log(τ))

≤ 2s0n
−1 + 2O(log(n))n−1

n−1∑

τ=1

1

τ

= 2s0n
−1 + 2O(log2(n))n−1

→ 0 as n→∞.

5

unseen ⇓(b)

0 = n

(
1

n

n∑

s=1

(xs − μ̂)

)2

=
1

n

n∑

s=1

n∑

t=1

(xs − μ̂)(xt − μ̂)

=
1

n

∑

|τ |<n

n−|τ |∑

t=1

(xt − μ̂)(xt+|τ | − μ̂).

5

seen ⇓(c) Recall the spectral representation theorem

Xt =

∫ 1/2

−1/2
ei2πf

′t dZ(f ′).

We have E(Ŝ(f)) = E|J(f)|2, where

J(f) =
1
√
n

n∑

t=1

Xte
−i2πft

=
n∑

t=1

(∫ 1/2

−1/2

1
√
n
ei2πf

′t dZ(f ′)

)

e−i2πft

=

∫ 1/2

−1/2

n∑

t=1

1
√
n
e−i2π(f−f

′)t dZ(f ′)
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We find that,

E{Ŝ(f)} = E{|J(f)|2} = E{J∗(f)J(f)}

= E

{∫ 1/2

−1/2

n∑

t=1

1
√
n
ei2π(f−f

′)t dZ∗(f ′)

∫ 1/2

−1/2

n∑

s=1

1
√
n
e−i2π(f−f

′′)s dZ(f ′′)

}

=

∫ 1/2

−1/2

∫ 1/2

−1/2

n∑

t=1

1
√
n
ei2π(f−f

′)t
n∑

s=1

1
√
n
e−i2π(f−f

′′)sE{dZ∗(f ′) dZ(f ′′)}

=

∫ 1/2

−1/2
F(f − f ′)S(f ′) df ′,

where

F(f) =

∣
∣
∣
∣
∣

n∑

t=1

1
√
n
e−i2πft

∣
∣
∣
∣
∣

2

.

5

sim. seen ⇓(d) Define the process

Xt =
∞∑

k=1

1

k
εt−k+1.

We have

s0 = Var(Xt) =
∞∑

k=1

k−2 = π2/6,

and for τ ≥ 1,

sτ = E

(
∞∑

k=1

1

k
εt−k+1

∞∑

l=1

1

l
εt+τ−l+1

)

=
∞∑

k=1

1

k(k + τ)

=
∞∑

k=1

1

τ

(
1

k
−

1

k + τ

)

=
1

τ

(

1 +
1

2
+ . . .+

1

τ

)

.

So sτ is a valid autocovariance function. 5
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seen ⇓5. (a) We want to minimize,

E{(Xt+l −Xt(l))
2} = E






(
∞∑

k=0

ψkεt+l−k −
∞∑

k=0

δkεt−k

)2





= E






(
l−1∑

k=0

ψkεt+l−k +
∞∑

k=0

[ψk+l − δk]εt−k

)2



= σ2ε

{(
l−1∑

k=0

ψ2k

)

+
∞∑

k=0

(ψk+l − δk)
2

}

.

The first term is independent of the choice of the {δk} and the second term is clearly
minimized by choosing δk = ψk+l, k = 0, 1, 2, . . .. 6

method seen ⇓(b) We have Xt = Ψ(B)εt ⇒ εt = Ψ
−1(B)Xt, and so

Xt(l) =
∞∑

k=0

ψk+lεt−k = Ψ
(l)(B)εt [= δ(B)εt]

= Ψ(l)(B)Ψ−1(B)Xt = G
(l)(B)Xt

Now

Xt − aXt−1 = εt ⇒ (1− aB)Xt = εt

So that,

⇒ Ψ(B) = (1− aB)−1 = 1 + aB + a2B2 + . . .

So δk = ψk+l = a
k+l and when l = 1, δk = a

k+1 giving

Ψ(1)(B) =
(
a+ a2B + a3B2 + . . .

)

We have,

G(1)(B) = Ψ(1)(B)Ψ−1(B) =
(
a+ a2B + a3B2 + . . .

)
(1− aB) = a.

Giving

Xt(1) = G
(1)(B)Xt = aXt

6

unseen ⇓(c) Recalling that sτ = a
|τ |/(1− a2), it is easily seen that

Γ(n)a = γ(n).

The result follows upon applying Γ−1(n) to both sides of the above equation. 8
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