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(a)

(b)

(c)

(d)

E(X7) = E(oje})
= E((ao + a1 X7 )e7)
= (a0 + a1 E(X{ 1))E(e})
= ag+ alE(th),

which yields a
E(X2) = —2—.
(X =
’ method seen |}
X} = (ap+ a1 X2 )%}
= (6§ + 2a0a1 X7_1 + a} X[ )ep.
Hence,
E(X}) =3 (ag +2a0a17 aoa + a%E(Xf)) :
— a1
which gives ,
3ag(1
E(Xf) = %(l - a1) 2)°
(1—a1)(1—3a7)
o E(X{) _  3a§(l+a) (1-a))? 3(1-a})
T EEDP T (1-a)(1-3a}) o 1—3a}

Note that kx, > 3 as 1—a? > 1—3a? for a; > 0. On the other hand, if Z ~ N (0, 0?),
then

E(Z%) 304
K;Z pry fry fry 3.
(E(Z2))?  (0?)?
Therefore, X; is not Normally distributed. @

’ method seen |}

E(X?X}? ) - (EXP)? _ A-B
E(X}) - (E(X7)? C-B¥

p1 =
We have already computed B and C. It remains to compute A.

E(X{ X7 1) = E(e)(aoB(X{ 1) + aiE(X )
agp 3a3(1 +ay)
O T A a)( - 3ad)
a2(1 + 3ay)
(1—a1)(1—3a2)

Substituting into the above, we obtain p; = a;.
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2. (a) We have method seen |

52 S1 S0
which gives
~ ~ —~ —~ 80518153
a1 so —s1 || S| _ e
/Z;/W 32 _ 32 _:9\1 3\0 ’5\2 59\52—31
0 1 Sn—S8
0 1

Substituting

n—|7|

— 1
S — E E $t$t+|7‘,
t=1
we obtain
Zn_l Zn 2 En—?
t=1 TtTt+1 t=1 %% t—1 TtTt42
2
n 2\2 n—1
(thl fft) - (thl ﬂft$t+1>
2
n 2 -2 n—1
D1 T Dopy Tiy2 — (Zt:l mtﬂit+1>

2 _ 2
(27?:1 :c?) - (Z?:f $t$t+1>

~YW

)
3

(b) We have ’ method seen ||

~LS

a T y—1 T
s | = FF) "Flx),

~

where

FT o 1’2 oo xn_l
Ty o Tpe2

xg) = (23,...,%n).

Thus,

~LS n—1 _29 n—2 —1 n—1
@ _ [ t—2 Tt Dol TeTeyl ] [ Yoo TiTiyl ]

7LS - n—2 n—2 92 n—2
b Dbl TeTil =1 Lt Doy Ty

2
n—1 9 n—2 9 n—2
teo Tf g1 Tf — (thl $t$t+1>
n—2_2 n—2 n—1
% |: t=1 Lt _Etzl TtTt41 :| |: thg TtTt41 :|
n—2 -1 _92 n—2 .
— D o] TeTey Do X Dol T4Tgo

This leads to

n—2_2xn—1 n—2 n—2
LS — Dol T s Tyl — P gy TeTl D opq TeTeg2
o 2
n—1_9 n—2 _9 n—2
teo Ti D 4 Ti — (thl $t$t+1>
n—1 _92 n—2 n—2 n—1
/BLS _ thz Ly thl LTiLt42 — thl TtTt41 thz TtTe41

o 2
n—1 _2x~n-2 2 n—2
teo Tf D 4oy Tf — (Zt:1 $t$t+1>
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(c) (i) For n = 3, a° does not make sense as we have a“® = 0/0, so Yule-Walker
should be used.

(ii) As n tends to infinity, from the above formulae it is apparent that the
corresponding Yule-Walker and least squares estimates become “closer and closer”
to each other. Therefore, it “does not matter” which one is used in the case
n = 100 as the estimated values will probably be very similar for both methods.
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(a)

(b)

(c)

(d)

For 7 > 0,
E(X¢Xi—r) = E(a)E(X—1Xi—r) + /8/9E(e) E(X—r),

which, from the properties of the Uniform distribution, gives

1
S = =S:_1.

2
Also,

50 = E(X?) = E(a?X? | +2/8/9a:X;_16¢ +8/9¢2) = 1/3E(X?) + 8/9,

4 /1 |7
87—:§<§> .

To compute the autocovariance function s, of Y;, we use exactly the same technique

as in (a) above and find that
_ 41\
Sr = g (5) = Sr.

Thus, the autocovariance functions are the same.

which yields sg = 4/3. Thus,

The autocovariance function of X; is the same as that of Y; (see above). Therefore,
the spectral densities will also be the same (as the spectral density is the Fourier
transform of the autocovariance sequence). Denoting the spectral density of a process
Zy by Sz(f), we have

11— 1/2exp(—i2m f)[*Sx (f) = S:(f),

which simplifies to
(5/4 — cos(2mf))Sx (f) = 1,
and therefore

Sx(f) = (5/4 — cos(2nf))".

The distributions are not identical. To see this, it is enough to show, for example, that
E(X}) # E(Y;*). We compute

IU—l

seen |

I'J;

seen |

E(X}) = E (anf_l +4a3 X} [\/8/9e; + 6a2X? 18/9¢% + 4a X,_1(8/9)3/%e} + (8/9)25?)

= 1/5E(X})+6-1/3-4/3-8/9 +3(8/9),
which gives E(X}) = 160/27. On the other hand,

E(Y?) = E(1/16Y, +4/8Y3 &) + 6/4Y €7 +4/2Y; 1€} + £})
= 1/16E(Y;*) +6/4-4/3 + 3,

which gives E(Y;1) = 16/3 # 160/27.
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4. (a)
MSEG ) = n2 > s
s,t=1
= n2(nso+2(n—1)s; + ...+ 25, 1)
< 2n71(30+.. + Sp— 1)
_1n 1 1
= 230n + 2n Z ot -
-
n— 1
= 2son” +2n_12 —O(log(7))
T= 1
1 1
< 2son” !+ 20(log(n Z —
-
= 2son '+ 20(log? (n))n_1
— 0 as n — oo.
(b)
1 ¢ ’
0 = n <E Z(ms — ﬁ))
s=1
1 n n
= —> ) (@)@ -
s=1t=1
1 n—|7|
= = > D (@ )@y — 1)
|T|<n t=1

(c) Recall the spectral representation theorem
2
Xt_/ eI az(f").
“1/2

, Where

We have E(g(f)) =E[J(f)|?

) = J= > e
t=1

n

1/2
_ Z // LeiQﬂf’tdZ(fl) efi27rft
—12Vn

t=1

12 n
= Z e—i2m(f—f")t dz(f")
n

=1
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We find that,

E{S(f)}

where

E{|J(£)*} = B{J*(£)J ()}
) &L i2m(f— )t gz 4! S
B /1/2;%6 (f)/l/Q;
/2 p1/2 n
SR
1/2

F(f = S df’,

—-1/2

(d) Define the process
X = Z A
k=1
We have -
so = Var(Xy) = de = 7r2/6,
k=1
and for 7 > 1,

E (Z %Et—k-i-l Z %5t+r—l+1>

sy =
k=1 =1
kzlk(k—i—T)
S
N —T kK k+T
1 1 1
= —<1+—+ —i——)
T 2 T

So s, is a valid autocovariance function.

(© 2005 University of London

M3S8 (Solutions)

1

vn

_efi27r(fff”)s dz(f//) }

= 1 et m( "Ms *
Uy e U Bz () a2 ()
5:1

Page 7 of 8



5. (a) We want to minimize,

o0 o0 2
E{(Xeri - Xe(D)*} = E ( ¢k€t+lk—z5k8tk>

k=0 k=0

-1 2
= (Z kEt+1—k + Z [Vr+1 — Okler— k)
-
= { Z¢k>+2wk+z—6k> }
fa k=0

The first term is independent of the choice of the {d;} and the second term is clearly
minimized by choosing 6 = ¥,k =0,1,2,....

(b)  We have X; = ¥(B)e; = ¢, = U1(B) Xy, and so

’ method seen |}

X(1) = D vkuer=Y(Be  [=3(B)e
k=0
= (BT Y(B)X; = GY(B)X;

Now
Xt — CLXt_l =&t = (1 — aB) Xt =&t

So that,
= U(B)=(1—-aB) ' =14+aB+a’B*+

k+1 and when [ = 1, 6}, = a**1! giving

So oy =Yry1=a
vM(B) = (a+a®B+a*B*+...)
We have,
GW(B)=v(B)THB) = (a+d®’B+a*B*+...) (1 —aB) =a.

Giving
X,(1) = GY(B)X, = aX,

(c) Recalling that s, = al™l/(1 — a?), it is easily seen that

Lmya = vm)-

The result follows upon applying F( ) to both sides of the above equation.
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