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nearly complete answers.

There are four questions only, and the exam lasts 1.5 hours.

A project is set which carries the credit of the fifth question.

Calculators may not be used.

Statistical tables will not be available.
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1. (a) Define recurrence formula for both the mixed and multiplicative congruential

pseudorandom number generators. Clearly define all parameters. How are uniform

numbers on [0, 1] obtained from these generators? What does it mean for a

multiplicative generator to have maximal period?

(b) (i) Suppose a pseudorandom number generator is claimed to output discrete uniform

random variables on the range 0, 1, 2, . . . , k, and a sequence of n random numbers

is available. Fully describe the ‘Frequency Test of Digits’ for testing the uniformity

of this generator.

(ii) Suppose an Splus function called freq.test outputs the value of the test
statistic for the ‘Frequency Test for Digits’. Consider the following Splus session
commands and output, where the object data is claimed to be sampled from a
discrete uniform distribution on 0, 1, 2, . . . , 20.

> length(data)

[1] 1000

> freq.test(data)

[1] 10.436

> qchisq(0.95,20)

31.41042

What would this output lead you to conclude?

(iii) Give a short example of output from a discrete uniform pseudorandom generator

which would not be rejected by the frequency test, but would still not be

acceptable as output from a pseudorandom number generator.

(iv) Describe how you could modify the frequency test to deal with continuous

pseudorandom numbers distributed uniformly on (a, b).

(c) A distributed memory parallel computer is a collection of p independent processors,

each processor having its own memory. We can generate M independent

pseudorandom numbers {X1, . . . , XM} by generating p independent sequences of

length n: {X(j)
1 , . . . , X

(j)
n }, j = 1, . . . , p where n = b(M − 1)/pc+ 1, and taking

Xi = X
(j)
k i = 1, . . . ,M ; k = (i− 1)mod(n) + 1, j = b(i− 1)/nc+ 1,

where bxc is the smallest integer less than or equal to x.

(i) Suggest a reason why starting a congruential generator on each processor with a

randomly generated seed may not be a good idea.

(ii) The leapfrog method of computing pseudorandom numbers is based on the result

that Xn+k (k ≥ 1) can be calculated as a function of Xk
n . Describe how this

result could be used to reproduce {X1, . . . , XM} exactly as if it were computed

on a single processor. What other problems might occur in implementing this

result?
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2. (a) The random variable X has an Exponential(λ) distribution with density function

fX(x) = λe−λx x > 0, λ > 0

Describe the inversion algorithm for generating exponential random variates.

(b) Using moment generating functions, show that a Gamma(n,λ) random variable, with

density function

fX(x) =
λn

(n− 1)!
xn−1e−λx x > 0, λ > 0

can be expressed as the sum of n independent exponential random variables, each

having the Exponential(λ) distribution.

[ Recall that
∫∞

0
xke−λx dx = k!/λk+1 . ]

(c) Modify the algorithm in part (a) using the result in part (b) to generate Gamma(n, λ)

random variables. Pay attention to the efficiency of the algorithm.

(d) Construct a rejection sampling algorithm for generating a random variable, X, from

the Gamma
(

3
2
, 1
)

density,

fX(x) = kx
1
2 e−x x > 0,

where k = 2√
π

, using an Exponential
(

2
3

)
as the rejection envelope.
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3. (a) Define the Monte Carlo estimator, θ̂, of the integral

θ =

∫
φ(x)fX(x) dx,

using a sequence {X1, X2, . . . , Xn} of independent random variates with density

function fX(x). Show that θ̂ is unbiased, and that the variance of θ̂ decreases as

n increases.

(b) Describe situations where Monte Carlo integration maybe preferable to quadrature.

(c) Describe how antithetic variates can be used to reduce the variance of the estimator

in (a).

(d) The Beta(3,3) distribution has probability density function

30x2(1− x)2 0 ≤ x ≤ 1

Note that this distribution is symmetric about 0.5. Consider

θ =

∫ 1

Z

30x2(1− x)2 dx

where Z is a constant.

(i) Consider the case of sampling n Beta(3,3) variates and estimating θ as the

proportion greater than Z. Write down the φ and fX decomposition, and write

down an expression for the variance of the estimator so obtained.

(ii) Propose another possible φ and fX decomposition for estimating θ by Monte

Carlo integration.

(e) Consider the integral

I =

∫ ∞

0

25x2cos(x2)e−25x dx

Suggest an appropriate φ and fX decomposition and hence suggest a Monte Carlo

algorithm for computing Î, the Monte Carlo estimator of I.

4. Describe two of the following topics. You should provide detailed algorithms and take care

to define all notation introduced.

(a) Methods for generating Normal random variates.

(b) The Ratio of uniforms method.

(c) The Metropolis-Hastings algorithm.
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