4 Branching Processes

Organise by generations: Discrete time.
If P(no offspring) # 0 there is a probability that the process will die out.

Let X = number of offspring of an individual
p(z) =P(X =2)= “offspring prob. function”
Assume:
(1) p same for all individuals
(ii) individuals reproduce independently
(iii) process starts with a single individual at time 0.

Assumptions (i) and (ii) define the Galton-Watson discrete time branching pro-
cess.

Two random variables of interest:

Z, = number of individuals at time n (Zy; =1 by (iii))

T, = total number born up to and including generation n

e.g.
p0)=r p(1)=q p(z) =p
What is the probability that the second generation will contain 0 or 1 member?
P(Zy;=0) = P(Z1=0)+P(Z1=1)xP(Zy=0|Z1=1)+P(Z1 =2)xP(Z, =0| 2, =2)
= r+qr+ pfr2
P(Zi=1) = P(Z1=1)xP(Zy=1|Z1=1)+P(Z1 =2) xP(Zy =17, =2)

= ¢ +plrg+qr) = ¢+ 2pqr.
Note: things can be complicated because
ZQZX1+X2+...X21

with Z; a random variable.
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4.1 Revision: Probability generating functions

Suppose a discrete random variable X takes values in {0,1,2,...} and has proba-
bility function p(z).
Then p.g.f. is

My (s) = B(s¥) = i plz)s®

Note: TII(0) = p(0)

pef uniquely determines the distribution and vice versa.

4.2 Some important pgfs

Distribution pdf Range pgf
Bernoulli(p) prqt—® 0,1 q+ ps
Binomial(n, p) (Z)p”q”*x 0,1,2,...,n  (¢g+ps)"
Poisson(j) C 0,1,2... e~ H(1=3)
Geometric, G1(p) ¢ p 1,2,... 15—28
Negative Binomial (fj) g p" rr+1,... (ﬁsqs)r

4.3 Calculating moments using pgfs

II(s) = i}p(az)sm = E(s%).

Then



Likewise

So

var(X) = E(X?) - E*(X)

!

(1)?
var(X) = I (1) 4+ 1I'(1) — IT'(1)?

= [I'()+EX)] -1

p=I1); o =T"(1)+p—p’

4.4 Distribution of sums of independent rvs

X,Y independent discrete rvs on {0,1,2,...}, let Z =X +Y.

Mz(s) = E(s%) =E(s")

= E(s*)E(s¥) (indep)

= Ix(s)Iy(s)
In general:
If
Z = Z X;
i=1

with X; independent discrete rvs with pgfs I1;(s), i = 1,...,n, then
IIz(s) = II;(s)a(s) ... II,(s).

In particular, if X; are identically distributed with pgf II(s), then
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eg. Q:If X; ~ Gi(p), i =1,...,n (number of trials up to and including the
1st success) are independent, find the pgf of Z = > ;| X, and hence identify the
distribution of Z.

A: Pgf of Gi1(p)

ps
HX(S) = 1 qS'

f6) = (; fsqs)n,

which is the pgf of a negative binomial distribution.

So pgf of 7 is

Intuitively:
Neg. bin. = number trials up to and including nth success
= sum of n sequences of trials each consisting of number of failures
followed by a success.

= sum of n geometrics.

4.5 Distribution of sums of a random number of indepen-

dent rvs

Let
=X +Xo+ ...+ Xy

Nisarvon{0,1,2,...}
X; iid rvs on {0,1,2,...}
(Convention Z = 0 when N = 0).

Iz(s) = i)P(Z = 2)s°
P(Z=2) = i P(Z =z|N =n)P(N =n) (Thm T.P.)
Iz(s) = iP(N:n)iP(Z:ﬂN:n)sz

_ i; P(N = n) [[x(s)]" (since X; iid)

= Iy [Ix(s)]
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If Z is the sum of N independent discrete rvs Xi, Xs,..., Xy, each with range
{0,1,2,...} each having pgf IIx(s) and where N is a rv with range {0,1,2,...} and
pgf IIx(s) then

Iz(s) = Iy [Lx(s)]
and Z has a compound distribution.

e.g. Q: Suppose N ~ Gy(p) and each X; ~ Binomial(1,0) (independent).
Find the distribution of Z = >V | X;.

A:
g
My (s) = 1—ps
[Ix(s) = 1—6+80s
So
B q
W2(s) = T ,a =g+ 09)
q _a/(a+po)

q+pd—phs 1 — (pbs/(q+ pb))
1 —pbd/(q+ pb)
1 —(pf/(q +p0)) s

which is the pgf of Gy (qi—ie) distribution.

Note: even in the cases where Z = Y%, X; does not have a recognisable pgf, we

can still use the resultant pgf to find properties (e.g. moments) of the distribution
of Z.
We have probability generating function (pgf):

Also: moment generating function (mgf):
Ox(t) = E(e™),

Take transformation s = e':

Ix(e") = E(e¥)

the mgf has many properties in common with the pgf but can be used for a wider

class of distributions.
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4.6 Branching processes and pgfs

Recall Z,, = number of individuals at time n (Zy = 1), and X; = number of offspring
of individual 7. We have

ZQZX1+X2+...X21.

So,
Iy(s) = I [y (s)]

e.g. consider the branching process in which

So
M(s) = My(s) = > p(x)s” =7+ gs + ps,

=0

(s) = IL[Mi(s)] =7+ gILi(s) + pILi(s)?
= r+q(r+gs+ps®) +p(r+gs+ps®)?

= r+qr+pr?+(¢* +2pqr)s + (pg + pg® + 2p°r)s® + 2p*qs® + pPs*

Coefficients of s* (z =0,1,2,...,4) give probability Z, = x.
What about the nth generation?

Let
Y; = number offspring of ith member of (n — 1)th generation
Then
Zn=Y1+Ys...+Y, |,
50,
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writing this out explicitly can be complicated.
But sometimes we get lucky: e.g. X ~ Binomial(1,p), then IIx(s) = ¢ + ps.
So,

My(s) = q+plg+ps)=q+pg+p’s

I3(s) = q+plg+plg+ps))

= q+pg+piq+p’s

IL(s) = q+pg+p°q+...+p" 'q+p"s.

(1-p") = q+pg+piqg+...+p" g
IM,(s) = 1—p"+p"s

This is the pgf of a Binomial(1,p™) distribution.

= The distribution of the number of cases in the nth generation is Bernoulli with

parameter p”. i.e:

P(Z,=1) = p"

P(Z,=0) = 1—p"

4.7 Mean and Variance of size of nth generation of a branch-

ing process
mean: Let = E(X) and let u,, = E(Z,).

po= 1I(1)
a(s) = 1 [H(s)]
= I,(s) = I, [T(s)] I (s)
IL,,(1)

/ !

(1) = IC,_, (L)1 (1)

n—1

/ !

= 1L, (DIT(1)

SO f = flp1fh = Pt = ... = "
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Note: as n — oo
00 w>1

0 pw<l
so, at first sight, it looks as if the generation size will either increase unbound-

edly (if p > 1) or die out (if p < 1) - slightly more complicated....

variance: Let 0 = var(X) and let 02 = var(Z,).

! ! !

II,(s) = 1I

" 1"

I, (s)

"

[T(s)] T (5)* + IT,,_y [TI(s)] IT" (5) (1)

n—1

!

Now II(1) = 1,11 (1) = p, IT" (1) = 02 — pu + p.

"

(
Also, since 02 =11, (1) + p, — p2, we have

IL,(1) = o —pu"+p™

and 1L, (1) = oh — " +p" 2

n

" "

(1) = II

"

(DIT'(1)? + IL,; (DI (1)

op =+t = (ony = W T T T (0% — et )

n—1

=02 = p2o |+ lo?

Leading to

op ="M+ p+ 4

So, we have

n— 1—pm
s ) H 102ﬁ% p#1

no? p=1

4.8 Total number of individuals
Let T,, be the total number up to and including generation n. Then
E(T,) = E(Zv+Z1+2Z>...+ Z,)
= 1+E(Z)+E(Z)+...+E(Z,)
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= l+p+p®+...+u"
/Jn+1_1

Tn—1 p#1

n+1 pw=1

%9 uw=>1
lim E(T,,) =
n—oo
I—p

4.9 Probability of ultimate extinction

Necessary that P(X = 0) = p(0) # 0.

Let 6,, = P(nth generation contains 0 individuals)

= P(extinction occurs by nth generation)

0, = P(Z, = 0) = IL,(0)

Now P(extinct by nth generation) = P(extinct by (n — 1)th) + P(extinct at nth).
So, 0,, = 0,,_1 + P(extinct at nth)
= en Z enfl-

Now,

0, is a non-decreasing sequence that is bounded above by 1 (it is a probability),
hence, by the monotone convergence theorem lim,, ., 6, = 6* exists and 6* < 1.

Now lim,, 00 0, = II(lim,, 00 0,—1), SO O* satisfies
0 =11(0), 6€]l0,1].

Consider
I(0) = > p(z)6*
=0

I1(0) = p(0) (> 0), and II(1) = 1, also II'(1) > 0 and for § > 0,11 (f) > 0, so
I1(0) is a convex increasing function for 6 € [0, 1] and so solutions of § = II() are

determined by slope of T1(6) at § = 1, i.e. by IT'(1) = p.
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So,

1. If p < 1 there is one solution at * = 1.

= extinction is certain.

2. If p > 1 there are two solutions: #* < 1 and 6* = 1, as 6, is increasing, we
want the smaller solution.

= extinction is NOT certain.

3. If p = 1 solution is 6* = 1.

= extinction is certain.

Note: mean size of nth generation is p”. So if extinction does not occur the size

will increase without bound.

Summary:
P(ultimate extinction of branching process) = smallest positive solution of 6 = I1(6)

1. 4 <1= 6*=1= ultimate extinction certain.

2. p>1= 6" < 1= ultimate extinction not certain
e.g.

X ~ Binomial(3,p); 0 =T1(0) = 0= (q+pb)>

ie.

0% + 3p°q0* + (3pg®> — 1)0 + ¢* = 0. (2)
Now E(X) =pu =3pie pu>1whenp>1/3, and

P(extinction) = smallest solution of § = I1(9).

Since we know 6 = 1 is a solution, we can factorise (2):

(0 = 1)(@°0* + (3p*q +p")0 — ¢°) =0
e.g. if p=1/2 (i.e p > 1/3 satisfied), we know that 6* satisfies

02440 -1=0 = 0 =+5-2=0.236.
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4.10 Generalizations of simple branching process

1: k individuals in generation 0

Let
Z,, = number individuals in nth generation descended from ¢th ancestor

Sp =T, + Ty + - ..+ T,

Then,

2: Immigration: W, immigrants arrive at nth generation and start to reproduce.

Let pgf for number of immigrants be ¥(s).

Z" = size of nth generation (n =0,1,2,...) with pgf IT* (s)
Zy =1
Z: = Wi+ 7,
ITi(s) = W(s)I(s)
Zi = Wat Zo

[(s) = W(s)(TL(s)),

as IT;(II(s)) is the pgf of the number of offspring of the Z; members of gener-
ation 1, each of these has offspring according to a distribution with pgf I1(s).

In general
() = W), T(s)]
= W(s)W[II(s)]IT%_,[II[II(s)]]
(n—1)II's

= W(s)P[I(s)]... WIII... [[(s)].. ] TI[II[II. . . [TL(s)] ... ]

nlIl's

e.g. Suppose that the number of offspring, X, has a Bernoulli distribution and the

number of immigrants has a Poisson distribution.

1. Derive the pgf of size of nth generation IT*(s) and
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2. investigate its behaviour as n — oo.

A: 1. X ~ Binomial(l,p), W, ~ Poisson(u), n=1,2,...

II(s) = g+ ps U(s) = e 079,
So,
I(s) = e (q+ps)
M5(s) = W(s)I;(TL(s))
= g+ ps)
= e "1 (g + p(g + ps))e TP
_ e—u(l-i-p)(l—S)(l o p2 —i—p23)

M3(s) = W(s)I(TL(s))

IT* (5) — e_ﬂ(l_s)(1+p+P2+~-~+P”71)(1 o pn +pns)

= 6_“(1_8)(1_1)")/(1_1))(1 — pn + pns)

2. Asn—o00,p" >0 (0<p<1),so0
IT (s) — e #179/0=P) a5 5 0.
This is the pgf of a Poisson distribution with parameter /(1 — p).

e Without immigration a branching process either becomes extinct of increases

unboundedly.

e With immigration there is also the possibility that there is a limiting distri-

bution for generation size.

31



5 Random Walks

Consider a particle at some position on a line, moving with the following transition

probabilities:
— with prob p it moves 1 unit to the right.
— with prob ¢ it moves 1 unit to the left.

— with prob r it stays where it is.

Position at time n is given by,

X, =21 +...+ 2, Z,=1{ _1
0

A random process {X,;n =0,1,2,...} is a random walk if, for n > 1
X, =Z1+...2,

where {Z;}, i = 1,2,... is a sequence of iid rvs. If the only possible values for Z;

are —1,0 + 1 then the process is a simple random walk

5.1 Random walks with barriers

Absorbing barriers

Flip fair coin: p =q = %,7‘ = 0.

H — you win £1, T — you lose £1.

Let Z,, = amount you win on nth flip.

Then X,, = total amount you've won up to and including nth flip.

BUT, say you decide to stop playing if you lose £50 = State space = {—50,—49, ...}
and —50 is an absorbing barrier (once entered cannot be left).

Reflecting barriers

A particle moves on a line between points a and b (integers with b > a), with the

following transition probabilities:

P(X,=2+1| X, =1)=
P(Xn:m_l‘Xn_lsz‘):

a<xz<b

Wi~ Wl
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PX,=a+1|X,-1=0a) = 1

P(X,=b—1|X,1=0b) = 1

a and b are reflecting barriers.

Can also have
PX,=a+1|X, 1=a) = p

PX,=a|Xpn.1=a) = 1—p

and similar for b.

Note: random walks satisfy the Markov property.

i.e. the distribution of X, is determined by the value of X,,_; (earlier history gives
no extra info.)

A stochastic process in discrete time which has the Markov property is a Markov Chain.

X arandom walk = X a Markov chain

X a Markov chain # X a random walk

Since the Z; in a random walk are iid, the transition probabilities are independent

of current position, i.e.

P(X,=a+1|X,1=0a)=P(X,=b+1]|X,_1=b).

5.2 Gambler’s ruin

Two players A and B.
A starts with £, B with £(a — j).
Play a series of indep. games until one or other is ruined.

Z; = amount A wins in ¢th game = £1.
P(Zi=1)=p P(Zi=-1)=1-p=
After n games A has X,, = X,,_1 + Z,,
0< X,1 <a.

Stopif X,_1=0 A loses

or X,.1=a A wins.
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Random walk with state space {0,1,...,a} and absorbing barriers at 0 and a.

What is the probability that A loses?

Let R; = event A is ruined if he starts with £j

¢ = P(R;) g@=1 ¢,=0.

For 0 < j < a,
P(R;) = P(R;|W)P(W) + P(R; | W)P(W),

where W = event that A wins first bet.
Now P(W) =p, P(W) = q.

P(R;|W) = P(Rj11) = gj+1

because, if he wins first bet he has £(j + 1).
So,

¢G=q¢+P+q¢-19 j=1,...,(a—1) RECURRENCE RELATION

To solve this, try g, = cz®

cx! = pc:z:j oy qcxj -1
T = ps°+q AUXILIARY/CHARACTERISTIC EQUATIONS
0 = pz>—z+gq
0 = (pr—g)(z—1)

=z = q/p z=1
General solutions:

case 1: If the roots are distinct (p # q)
J
q
g = () + Ca.
p
case 2: If the roots are equal (p = ¢ = 1)
g =c1+cj

Particular solutions: using boundary conditions gy = 1, g, = 0 gives
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case 1: p#q
Go =1+ o Qo = C1 (q) + co.
b
Giving,
(¢/p) — (a/p)°
q; = check!
! 1—(g/p) ( )

case 2: p=q =5
o = C1 ga = C1 T aCy
So,
%:1—%
i.e. If A begins with £4, the probability that A is ruined is
(a/p)’ —(a/p)* p#q

1—(q/p)*

49 = :
-4 p=a=;

5.2.1 B with unlimited resources

e.g. casino

Case 1: p #q, '
_ (a/p) = (a/p)*

BT (g/p)

(a) p>q Asa— oo, ¢ — (q/p).

(b) p<q Asa— oo, '
(p/@)*7 —1

U=l —1 .

case 2: p=gq=1/2.
Asa—o00, ¢gi=1—j/a—1

So: If B has unlimited resources, A’s probability of ultimate ruin when beginning
with £7 is

1 P<q

(a/p  p>q
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5.2.2 Expected duration

Let X= duration when A starts with £7.
Let E(X) = D;.
Let Y = A’s winnings on first bet. So,

PY=+1)=p P(Y =-1)=g¢q.

E(X) = Ey[BE(X]|Y)]
= Y BEX|Y =yPY =y)
y
= EX|Y=1p+EX|Y =-1)q
Now
EX|Y=1) = 1+ D
EX|Y=-1) = 1+D;,
Hence, for 0 < j < a
Dj = (1+Dju)p+(1+Dj1)g
Dj = ij+1 + qu_l +1

—second-order, non-homogeneous recurrence relation - so, add a particular solution

to the general solution of the corresponding homogeneous recurrence relation.

case 1: p # g (one player has advantage)
General solution for
Dj =pDj1 +qDj.
As before D; = ¢1 + ¢2(q/p).
Now find a particular solution for D; = pD; 1 +¢D;_1+1, try D; = j/(¢—p):

' + 1 -1
oo Gt aG-1)
q—p g—p  q¢-p
j = pitq

So general solution to non-homogeneous problem is:

j .
q J
Di=c+c| =] + .
7o 2<p> (a—p)
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Find ¢; and ¢y from boundary conditions:

OZDO = (1 +C2
O:Da = C1+Cg<q> +aj62l1—<q>‘|: a .
p q—p p q—p

2 = G pi-(a/p)

—a

AT Gni=(a/p)]
case 2: p =q.
General solution for
Dj =pDju1 +qDj-1.
As before D; = ¢1 + ¢pj. A particular solution is D; = —j2.

So general solution to non-homogeneous problem is:
Dj=ci+caj -2
Find ¢; and ¢y from boundary conditions:
0=Dy=c¢; 0=D,=—-a’>4+0+coa=¢; =0,c = a.

So,
Dj = j(a —j).

Note: this may not match your intuition.
e.g. One player starts with £1000 and the other with £1. They each place £1
bets on a fair coin, until one or other is ruined. What is the expected duration
of the game?
We have

a=1001, 7 =1, p:q:;

Expected duration

D; = j(a—j) =1(1001 — 1) = 1000 games!
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5.3 Unrestricted random walks

(one without barriers)

Various questions of interest:
e what is the probability of return to the origin?
e is eventual return certain?

e how far from the origin is the particle likely to be after n steps?

Let R = event that particle eventually returns to the origin.
A = event that the first step is to the right.
A = event that the first step is to the left.

P(A)=p P(A)=q¢=1-p

P(R) =P(R|A)P(A) + P(R|A)P(4)

Now: event R|A is the event of eventual ruin when a gambler with a starting

amount of £1 is playing against a casino with unlimited funds, so

<
P(R| A) = b=
a/p  pP>4q
Similarly,
1 >
P(R|4) - p=i
p/le p<gq

(by replacing p with ¢).
So
p<q: P(R)=2p; p=q: P(R)=1;, p>q: P(R)=2q.

i.e. return to the origin is certain only when p = q.

p = q: the random walk is symmetric and in this case it is recurrent — return to

origin is certain.

p # q: return is not certain. There is a non-zero probability it will never return —

the random walk is transient.
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Note: same arguments apply to every state
= all states are either recurrent or transient,

= the random walk is recurrent or transient.

5.4 Distribution of X, — the position after n steps

Suppose it has made x steps to the right and y to the left.
Then x +y=mn,s0 X, =z —y=2x —n.

So n even = X, even

n odd = X, odd

In particular P(X,, = k) = 0 if n and k are not either both even or both odd.
Let

W,, = number positive steps in first n steps

Then W,, ~ Binomial(n,p).

n
P Xn — k _ (n+k)/2 (n—k)/2
Il (A

X, is sum of n iid rvs, Z;, so use CLT to see large n behaviour:

CLT: X, is approx. N(E(X,,), var(X,,)) large n.

=
3
|

Y E(Z) =) [1xp+(=1)xq =n(p-aq)
var(X,) = > var(Z;)
= Y [E(2}) - EX(2)]
= n[(Ixp+1xq) —(p—q)
= 4dnpq.
So,

e If p > ¢ the particle drifts to the right as n increases.

e this drift is faster, the larger p.

39



e the variance increases with n.

e the variance is smaller the larger is p.

5.5 Return Probabilities

Recall, probability of return of a SRW (simple random walk) with p + ¢ =1 is 1 if
symmetric (p = q), < 1 otherwise (p # q).

When does the return occur? Let,

fn = P(first return occurs at n)

= P(X,=0and X, #0for 0 <r <n)
u, = P(some return occurs at n)

~ P(X,=0)

Since X =0: ug =1
Define fy = 0 for convenience.
We also have f; =u; = P(X; =0).

We have already found wu,,:

(7:}2) pV2¢M?  n even
0 n odd

Let

R = Event: return eventually occurs, f = P(R)

R, = Event: first return is at n, f, = P(R,,)

Then f=fi+ fo+...+ fu+

To decide if a RW is recurrent or not we could find the f,. Easier to find a relation-
ship between f,, and w,,.

Let
F(s) = > fas" apglif 3 f, = 1: true if recurrent
U(s) = Y u,s" not a pgf because Y u, # 1 in general.
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For any random walk

Uy = f1
up = fiur + fo = fous + fiur + foue

us = fous + fiuz + four + fauo.

In general,
Un = fotn + firtlp—1+ ...+ fuorur + faug n > 1
Now,
F(s)U(s) = (Z frsr> D ugs?
r=0 q=0
= Z(foun + flun—l +...+ fnUO)Sn
n=0
= Z u,s"” from 3 and fyug =0
n=1
= Z UpS" — Ug
n=0
= U(s) — 1.
That is
1
U(s)=14+ F(s)U(s); F(s)=1- 0(s) U(s) #0

Let s > 1togive X fo=1—1/> u,,
So: Y f, =1iff Y u, =

= a RW is recurrent iff sum of return probabilities is oco.
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