
4 Branching Processes

Organise by generations: Discrete time.

If P(no offspring) 6= 0 there is a probability that the process will die out.

Let X = number of offspring of an individual

p(x) = P(X = x) = “offspring prob. function”

Assume:

(i) p same for all individuals

(ii) individuals reproduce independently

(iii) process starts with a single individual at time 0.

Assumptions (i) and (ii) define the Galton-Watson discrete time branching pro-

cess.

Two random variables of interest:

Zn = number of individuals at time n (Z0 = 1 by (iii))

Tn = total number born up to and including generation n

e.g.

p(0) = r p(1) = q p(z) = p

What is the probability that the second generation will contain 0 or 1 member?

P(Z2 = 0) = P(Z1 = 0) + P(Z1 = 1)× P(Z2 = 0 |Z1 = 1) + P(Z1 = 2)× P(Z2 = 0 |Z1 = 2)

= r + qr + pr2

P(Z1 = 1) = P(Z1 = 1)× P(Z2 = 1 |Z1 = 1) + P(Z1 = 2)× P(Z2 = 1 |Z1 = 2)

= q2 + p(rq + qr) = q2 + 2pqr.

Note: things can be complicated because

Z2 = X1 +X2 + . . . XZ1

with Z1 a random variable.
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4.1 Revision: Probability generating functions

Suppose a discrete random variable X takes values in {0, 1, 2, . . .} and has proba-

bility function p(x).

Then p.g.f. is

ΠX(s) = E(s
X) =

∞∑

x=0

p(x)sx

Note: Π(0) = p(0)

Π(1) =
∑
p(x) = 1

pgf uniquely determines the distribution and vice versa.

4.2 Some important pgfs

Distribution pdf Range pgf

Bernoulli(p) pxq1−x 0, 1 q + ps

Binomial(n, p)
(
n
x

)
pxqn−x 0, 1, 2, . . . , n (q + ps)n

Poisson(μ) e−μμx

x!
0, 1, 2 . . . e−μ(1−s)

Geometric,G1(p) qx−1p 1, 2, . . . ps
1−qs

Negative Binomial
(
x−1
r−1

)
qx−rpr r, r + 1, . . .

(
ps
1−qs

)r

4.3 Calculating moments using pgfs

Π(s) =
∞∑

x=0

p(x)sx = E(sX).

Then

Π
′
(s) = E(XsX−1)

Π
′
(1) = E(X)

21



Likewise

Π
′′
(s) = E

[
X(X − 1)sX−2

]

Π
′′
(1) = E [X(X − 1)] = E(X2)− E(X).

So

var(X) = E(X2)− E2(X)

=
[
Π
′′
(1) + E(X)

]
− Π

′
(1)2

var(X) = Π
′′
(1) + Π

′
(1)− Π

′
(1)2

μ = Π
′
(1); σ2 = Π

′′
(1) + μ− μ2

4.4 Distribution of sums of independent rvs

X,Y independent discrete rvs on {0, 1, 2, . . .}, let Z = X + Y .

ΠZ(s) = E(sZ) = E(sX+Y )

= E(sX)E(sY ) (indep)

= ΠX(s)ΠY (s)

In general:

If

Z =
n∑

i=1

Xi

with Xi independent discrete rvs with pgfs Πi(s), i = 1, . . . , n, then

ΠZ(s) = Π1(s)Π2(s) . . .Πn(s).

In particular, if Xi are identically distributed with pgf Π(s), then

ΠZ(s) = [Π(s)]
n
.
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e.g. Q: If Xi ∼ G1(p), i = 1, . . . , n (number of trials up to and including the

1st success) are independent, find the pgf of Z =
∑n
i=1Xi, and hence identify the

distribution of Z.

A: Pgf of G1(p)

ΠX(s) =
ps

1− qs
.

So pgf of Z is

ΠZ(s) =

(
ps

1− qs

)n

,

which is the pgf of a negative binomial distribution.

Intuitively:

Neg. bin. = number trials up to and including nth success

= sum of n sequences of trials each consisting of number of failures

followed by a success.

= sum of n geometrics.

4.5 Distribution of sums of a random number of indepen-

dent rvs

Let

Z = X1 +X2 + . . .+XN

N is a rv on {0, 1, 2, . . .}

Xi iid rvs on {0, 1, 2, . . .}

(Convention Z = 0 when N = 0).

ΠZ(s) =
∞∑

z=0

P(Z = z)sz

P(Z = z) =
∞∑

n=0

P(Z = z |N = n)P(N = n) (Thm T.P.)

ΠZ(s) =
∞∑

n=0

P(N = n)
∞∑

z=0

P(Z = z |N = n)sz

=
∞∑

n=0

P(N = n) [ΠX(s)]
n (since Xi iid)

= ΠN [ΠX(s)]
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If Z is the sum of N independent discrete rvs X1, X2, . . . , XN , each with range

{0, 1, 2, . . .} each having pgf ΠX(s) and where N is a rv with range {0, 1, 2, . . .} and

pgf ΠN(s) then

ΠZ(s) = ΠN [ΠX(s)]

and Z has a compound distribution.

e.g. Q: Suppose N ∼ G0(p) and each Xi ∼ Binomial(1, θ) (independent).

Find the distribution of Z =
∑N
i=1Xi.

A:

ΠN(s) =
q

1− ps
ΠX(s) = 1− θ + θs

So

ΠZ(s) =
q

1− p(1− θ + θs)

=
q

q + pθ − pθs
=

q/(q + pθ)

1− (pθs/(q + pθ))

=
1− pθ/(q + pθ)
1− (pθ/(q + pθ)) s

which is the pgf of G0
(
pθ
q+pθ

)
distribution.

Note: even in the cases where Z =
∑N
i=1Xi does not have a recognisable pgf, we

can still use the resultant pgf to find properties (e.g. moments) of the distribution

of Z.

We have probability generating function (pgf):

ΠX(s) = E(s
X).

Also: moment generating function (mgf):

ΦX(t) = E(e
tX),

Take transformation s = et:

ΠX(e
t) = E(etX)

the mgf has many properties in common with the pgf but can be used for a wider

class of distributions.
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4.6 Branching processes and pgfs

Recall Zn = number of individuals at time n (Z0 = 1), and Xi = number of offspring

of individual i. We have

Z2 = X1 +X2 + . . . XZ1 .

So,

Π2(s) = Π1 [Π1(s)]

e.g. consider the branching process in which

p(0) = r p(1) = q p(2) = p.

So

Π(s) = Π1(s) =
2∑

x=0

p(x)sx = r + qs+ ps2,

and

Π2(s) = Π1 [Π1(s)] = r + qΠ1(s) + pΠ1(s)
2

= r + q(r + qs+ ps2) + p(r + qs+ ps2)2

= r + qr + pr2 + (q2 + 2pqr)s+ (pq + pq2 + 2p2r)s2 + 2p2qs3 + p3s4

Coefficients of sx (x = 0, 1, 2, . . . , 4) give probability Z2 = x.

What about the nth generation?

Let

Yi = number offspring of ith member of (n− 1)th generation

Then

Zn = Y1 + Y2 . . .+ YZn−1 ,

so,

Πn(s) = Πn−1 [Π(s)]

= Πn−2 [Π [Π(s)]]

=
...

= Π[Π[. . . [Π
︸ ︷︷ ︸

n

(s)] . . .]
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writing this out explicitly can be complicated.

But sometimes we get lucky: e.g. X ∼ Binomial(1, p), then ΠX(s) = q + ps.

So,

Π2(s) = q + p(q + ps) = q + pq + p2s

Π3(s) = q + p(q + p(q + ps))

= q + pq + p2q + p3s

...

Πn(s) = q + pq + p2q + . . .+ pn−1q + pns.

Now Πn(1) = 1, so

(1− pn) = q + pq + p2q + . . .+ pn−1q

Πn(s) = 1− pn + pns

This is the pgf of a Binomial(1, pn) distribution.

⇒ The distribution of the number of cases in the nth generation is Bernoulli with

parameter pn. i.e:

P(Zn = 1) = pn

P(Zn = 0) = 1− pn.

4.7 Mean and Variance of size of nth generation of a branch-

ing process

mean: Let μ = E(X) and let μn = E(Zn).

μ = Π
′
(1)

Πn(s) = Πn−1 [Π(s)]

⇒ Π
′

n(s) = Π
′

n−1 [Π(s)] Π
′
(s)

Π
′

n(1) = Π
′

n−1 [Π(1)] Π
′
(1)

= Π
′

n−1(1)Π
′
(1)

so μ = μn−1μ = μn−2μ
2 = . . . = μn.
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Note: as n→∞

μn = μ
n →






∞ μ > 1

1 μ = 1

0 μ < 1

so, at first sight, it looks as if the generation size will either increase unbound-

edly (if μ > 1) or die out (if μ < 1) - slightly more complicated....

variance: Let σ2 = var(X) and let σ2n = var(Zn).

Π
′

n(s) = Π
′

n−1 [Π(s)] Π
′
(s)

Π
′′

n(s) = Π
′′

n−1 [Π(s)] Π
′
(s)2 +Π

′

n−1 [Π(s)] Π
′′
(s) (1)

Now Π(1) = 1,Π
′
(1) = μ,Π

′′
(1) = σ2 − μ+ μ2.

Also, since σ2n = Π
′′

n(1) + μn − μ
2
n, we have

Π
′′

n(1) = σ2n − μ
n + μ2n

and Π
′′

n−1(1) = σ2n−1 − μ
n−1 + μ2n−2.

From (1),

Π
′′

n(1) = Π
′′

n−1(1)Π
′
(1)2 +Π

′

n−1(1)Π
′′
(1)

σ2n − μ
n + μ2n = (σ2n−1 − μ

n−1 + μ2n−2)μ2 + μn−1(σ2 − μ+ μ2)

⇒ σ2n = μ2σ2n−1 + μ
n−1σ2

Leading to

σ2n = μ
n−1σ2(1 + μ+ μ2 + . . .+ μn−1)

So, we have

σ2n =






μn−1σ2
1− μn
1− μ μ 6= 1

nσ2 μ = 1

4.8 Total number of individuals

Let Tn be the total number up to and including generation n. Then

E(Tn) = E(Z0 + Z1 + Z2 . . .+ Zn)

= 1 + E(Z1) + E(Z2) + . . .+ E(Zn)
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= 1 + μ+ μ2 + . . .+ μn

=






μn+1 − 1
μ− 1 μ 6= 1

n+ 1 μ = 1

lim
n→∞

E(Tn) =






∞ μ ≥ 1

1
1− μ μ < 1

4.9 Probability of ultimate extinction

Necessary that P(X = 0) = p(0) 6= 0.

Let θn = P(nth generation contains 0 individuals)

= P(extinction occurs by nth generation)

θn = P(Zn = 0) = Πn(0)

Now P(extinct by nth generation) = P(extinct by (n− 1)th) + P(extinct at nth).

So, θn = θn−1 + P(extinct at nth)

⇒ θn ≥ θn−1.

Now,

Πn(s) = Π [Πn−1(s)]

Πn(0) = Π [Πn−1(0)]

θn = Π(θn−1).

θn is a non-decreasing sequence that is bounded above by 1 (it is a probability),

hence, by the monotone convergence theorem limn→∞ θn = θ
∗ exists and θ∗ ≤ 1.

Now limn→∞ θn = Π(limn→∞ θn−1), so θ
∗ satisfies

θ = Π(θ), θ ∈ [0, 1].

Consider

Π(θ) =
∞∑

x=0

p(x)θx

Π(0) = p(0) (> 0), and Π(1) = 1, also Π
′
(1) > 0 and for θ > 0,Π

′′
(θ) > 0, so

Π(θ) is a convex increasing function for θ ∈ [0, 1] and so solutions of θ = Π(θ) are

determined by slope of Π(θ) at θ = 1, i.e. by Π
′
(1) = μ.
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So,

1. If μ < 1 there is one solution at θ∗ = 1.

⇒ extinction is certain.

2. If μ > 1 there are two solutions: θ∗ < 1 and θ∗ = 1, as θn is increasing, we

want the smaller solution.

⇒ extinction is NOT certain.

3. If μ = 1 solution is θ∗ = 1.

⇒ extinction is certain.

Note: mean size of nth generation is μn. So if extinction does not occur the size

will increase without bound.

Summary:

P(ultimate extinction of branching process) = smallest positive solution of θ = Π(θ)

1. μ ≤ 1⇒ θ∗ = 1⇒ ultimate extinction certain.

2. μ > 1⇒ θ∗ < 1⇒ ultimate extinction not certain
e.g.

X ∼ Binomial(3, p); θ = Π(θ) ⇒ θ = (q + pθ)3.

i.e.

p3θ3 + 3p2qθ2 + (3pq2 − 1)θ + q3 = 0. (2)

Now E(X) = μ = 3p i.e. μ > 1 when p > 1/3, and

P(extinction) = smallest solution of θ = Π(θ).

Since we know θ = 1 is a solution, we can factorise (2):

(θ − 1)(p3θ2 + (3p2q + p3)θ − q3) = 0

e.g. if p = 1/2 (i.e p > 1/3 satisfied), we know that θ∗ satisfies

θ2 + 4θ − 1 = 0 ⇒ θ∗ =
√
5− 2 = 0.236.
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4.10 Generalizations of simple branching process

1: k individuals in generation 0

Let

Zni = number individuals in nth generation descended from ith ancestor

Sn = Zn1 + Zn2 + . . .+ Znk

Then,

ΠSn = [Πn(s)]
k
.

2: Immigration: Wn immigrants arrive at nth generation and start to reproduce.

Let pgf for number of immigrants be Ψ(s).

Z∗n = size of nth generation (n = 0, 1, 2, . . .) with pgf Π∗n(s)

Z∗0 = 1

Z∗1 = W1 + Z1

Π∗1(s) = Ψ(s)Π(s)

Z∗2 = W2 + Z2

Π∗2(s) = Ψ(s)Π∗1(Π(s)),

as Π∗1(Π(s)) is the pgf of the number of offspring of the Z
∗
1 members of gener-

ation 1, each of these has offspring according to a distribution with pgf Π(s).

In general

Π∗n(s) = Ψ(s)Π∗n−1[Π(s)]

= Ψ(s)Ψ[Π(s)]Π∗n−2[Π[Π(s)]]

= . . .

= Ψ(s)Ψ[Π(s)] . . .Ψ[

(n−1) Π′s
︷ ︸︸ ︷
Π[Π[. . . [Π(s)] . . .] Π[Π[Π . . . [Π(s)]

︸ ︷︷ ︸
n Π′s

. . .]

e.g. Suppose that the number of offspring, X, has a Bernoulli distribution and the

number of immigrants has a Poisson distribution.

1. Derive the pgf of size of nth generation Π∗n(s) and
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2. investigate its behaviour as n→∞.

A: 1. X ∼ Binomial(1, p), Wn ∼ Poisson(μ), n = 1, 2, . . .

Π(s) = q + ps Ψ(s) = e−μ(1−s).

So,

Π∗1(s) = e−μ(1−s)(q + ps)

Π∗2(s) = Ψ(s)Π∗1(Π(s))

= e−μ(1−s)Π∗1(q + ps)

= e−μ(1−s)(q + p(q + ps))e−μ(1−q−ps)

= e−μ(1+p)(1−s)(1− p2 + p2s)

Π∗3(s) = Ψ(s)Π∗2(Π(s))

= e−μ(1−s)(1+p+p
2)(1− p3 + p3s)

=
...

Π∗n(s) = e−μ(1−s)(1+p+p
2+...+pn−1)(1− pn + pns)

= e−μ(1−s)(1−p
n)/(1−p)(1− pn + pns).

2. As n→∞, pn → 0 (0 < p < 1), so

Π∗n(s)→ e
−μ(1−s)/(1−p) as n→∞.

This is the pgf of a Poisson distribution with parameter μ/(1− p).

• Without immigration a branching process either becomes extinct of increases

unboundedly.

• With immigration there is also the possibility that there is a limiting distri-

bution for generation size.
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5 Random Walks

Consider a particle at some position on a line, moving with the following transition

probabilities:

– with prob p it moves 1 unit to the right.

– with prob q it moves 1 unit to the left.

– with prob r it stays where it is.

Position at time n is given by,

Xn = Z1 + . . .+ Zn Zn =






+1

−1

0

A random process {Xn;n = 0, 1, 2, . . .} is a random walk if, for n ≥ 1

Xn = Z1 + . . . Zn

where {Zi}, i = 1, 2, . . . is a sequence of iid rvs. If the only possible values for Zi

are −1, 0 + 1 then the process is a simple random walk

5.1 Random walks with barriers

Absorbing barriers

Flip fair coin: p = q = 1
2
, r = 0.

H → you win $1, T → you lose $1.

Let Zn = amount you win on nth flip.

Then Xn = total amount you’ve won up to and including nth flip.

BUT, say you decide to stop playing if you lose $50⇒ State space = {−50,−49, . . .}

and −50 is an absorbing barrier (once entered cannot be left).

Reflecting barriers

A particle moves on a line between points a and b (integers with b > a), with the

following transition probabilities:

P(Xn = x+ 1 |Xn−1 = x) = 2
3

P(Xn = x− 1 |Xn−1 = x) = 1
3





a < x < b

32



P(Xn = a+ 1 |Xn−1 = a) = 1

P(Xn = b− 1 |Xn−1 = b) = 1

a and b are reflecting barriers.

Can also have

P(Xn = a+ 1 |Xn−1 = a) = p

P(Xn = a |Xn−1 = a) = 1− p

and similar for b.

Note: random walks satisfy the Markov property.

i.e. the distribution of Xn is determined by the value of Xn−1 (earlier history gives

no extra info.)

A stochastic process in discrete time which has the Markov property is a Markov Chain.

X a random walk ⇒ X a Markov chain

X a Markov chain 6⇒ X a random walk

Since the Zi in a random walk are iid, the transition probabilities are independent

of current position, i.e.

P(Xn = a+ 1 |Xn−1 = a) = P(Xn = b+ 1 |Xn−1 = b).

5.2 Gambler’s ruin

Two players A and B.

A starts with $j, B with $(a− j).

Play a series of indep. games until one or other is ruined.

Zi = amount A wins in ith game = ±1.

P(Zi = 1) = p P(Zi = −1) = 1− p = q.

After n games A has Xn = Xn−1 + Zn,

0 < Xn−1 < a.

Stop if Xn−1 = 0 A loses

or Xn−1 = a A wins.
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Random walk with state space {0, 1, . . . , a} and absorbing barriers at 0 and a.

What is the probability that A loses?

Let Rj = event A is ruined if he starts with $j

qj = P(Rj) q0 = 1 qn = 0.

For 0 < j < a,

P(Rj) = P(Rj |W )P(W ) + P(Rj |W )P(W ),

where W = event that A wins first bet.

Now P(W ) = p, P(W ) = q.

P(Rj |W ) = P(Rj+1) = qj+1

because, if he wins first bet he has $(j + 1).

So,

qj = qj+1p+ qj−1q j = 1, . . . , (a− 1) RECURRENCE RELATION

To solve this, try qk = cx
k

cxj = pcxj+1 + qcxj−1

x = ps2 + q AUXILIARY/CHARACTERISTIC EQUATIONS

0 = px2 − x+ q

0 = (px− q)(x− 1)

⇒ x = q/p x = 1

General solutions:

case 1: If the roots are distinct (p 6= q)

qj = c1

(
q

p

)j

+ c2.

case 2: If the roots are equal (p = q = 1
2
)

qj = c1 + c2j.

Particular solutions: using boundary conditions q0 = 1, qa = 0 gives
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case 1: p 6= q

q0 = c1 + c2 qa = c1

(
q

p

)a

+ c2.

Giving,

qj =
(q/p)j − (q/p)a

1− (q/p)a
(check!)

case 2: p = q = 1
2

q0 = c1 qa = c1 + ac2

So,

qj = 1−
j

a

i.e. If A begins with $j, the probability that A is ruined is

qj =






(q/p)j−(q/p)a

1−(q/p)a p 6= q

1− j
a

p = q = 1
2

5.2.1 B with unlimited resources

e.g. casino

Case 1: p 6= q,

qj =
(q/p)j − (q/p)a

1− (q/p)a
.

(a) p > q: As a→∞, qj → (q/p)j.

(b) p < q: As a→∞,

qj =
(p/q)a−j − 1
(p/q)a − 1

→ 1.

case 2: p = q = 1/2.

As a→∞, qj = 1− j/a→ 1.

So: If B has unlimited resources, A’s probability of ultimate ruin when beginning

with $j is

qj =






1 p ≤ q

(q/p)j p > q
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5.2.2 Expected duration

Let X= duration when A starts with $j.

Let E(X) = Dj.

Let Y = A’s winnings on first bet. So,

P(Y = +1) = p P(Y = −1) = q.

E(X) = EY [E(X |Y )]

=
∑

y

E(X |Y = y)P(Y = y)

= E(X |Y = 1)p+ E(X |Y = −1)q

Now

E(X |Y = 1) = 1 +Dj+1

E(X |Y = −1) = 1 +Dj−1

Hence, for 0 < j < a

Dj = (1 +Dj+1)p+ (1 +Dj−1)q

Dj = pDj+1 + qDj−1 + 1

–second-order, non-homogeneous recurrence relation - so, add a particular solution

to the general solution of the corresponding homogeneous recurrence relation.

case 1: p 6= q (one player has advantage)

General solution for

Dj = pDj+1 + qDj−1.

As before Dj = c1 + c2(q/p)
j.

Now find a particular solution for Dj = pDj+1+qDj−1+1, try Dj = j/(q−p):

j

q − p
=
p(j + 1)

q − p
+
q(j − 1)
q − p

+ 1

j = pj + qj

So general solution to non-homogeneous problem is:

Dj = c1 + c2

(
q

p

)j

+
j

(q − p)
.
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Find c1 and c2 from boundary conditions:

0 = D0 = c1 + c2

0 = Da = c1 + c2

(
q

p

)a

+
a

q − p
⇒ c2

[

1−

(
q

p

)a]

=
a

q − p
.






c2 =
a

(q−p)[1−(q/p)a]

c1 =
−a

(q−p)[1−(q/p)a]

case 2: p = q.

General solution for

Dj = pDj+1 + qDj−1.

As before Dj = c1 + c2j. A particular solution is Dj = −j2.

So general solution to non-homogeneous problem is:

Dj = c1 + c2j − j
2.

Find c1 and c2 from boundary conditions:

0 = D0 = c1 0 = Da = −a
2 + 0 + c2a⇒ c1 = 0, c2 = a.

So,

Dj = j(a− j).

Note: this may not match your intuition.

e.g. One player starts with $1000 and the other with $1. They each place $1

bets on a fair coin, until one or other is ruined. What is the expected duration

of the game?

We have

a = 1001, j = 1, p = q =
1

2

Expected duration

Dj = j(a− j) = 1(1001− 1) = 1000 games!
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5.3 Unrestricted random walks

(one without barriers)

Various questions of interest:

• what is the probability of return to the origin?

• is eventual return certain?

• how far from the origin is the particle likely to be after n steps?

Let R = event that particle eventually returns to the origin.

A = event that the first step is to the right.

A = event that the first step is to the left.

P(A) = p P(A) = q = 1− p

P(R) = P(R |A)P(A) + P(R |A)P(A)

Now: event R |A is the event of eventual ruin when a gambler with a starting

amount of $1 is playing against a casino with unlimited funds, so

P(R |A) =






1 p ≤ q

q/p p > q

Similarly,

P(R |A) =






1 p ≥ q

p/q p < q

(by replacing p with q).

So

p < q : P(R) = 2p; p = q : P(R) = 1; p > q : P(R) = 2q.

i.e. return to the origin is certain only when p = q.

p = q: the random walk is symmetric and in this case it is recurrent – return to

origin is certain.

p 6= q: return is not certain. There is a non-zero probability it will never return –

the random walk is transient.
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Note: same arguments apply to every state

⇒ all states are either recurrent or transient,

⇒ the random walk is recurrent or transient.

5.4 Distribution of Xn – the position after n steps

Suppose it has made x steps to the right and y to the left.

Then x+ y = n, so Xn = x− y = 2x− n.

So n even ⇒ Xn even

n odd ⇒ Xn odd

In particular P(Xn = k) = 0 if n and k are not either both even or both odd.

Let

Wn = number positive steps in first n steps

Then Wn ∼ Binomial(n, p).

P(Wn = x) =

(
n

x

)

pxqn−x 0 ≤ x ≤ n

P(Xn = 2x− n) =

(
n

x

)

pxqn−x

P(Xn = k) =

(
n

(n+ k)/2

)

p(n+k)/2q(n−k)/2

Xn is sum of n iid rvs, Zi, so use CLT to see large n behaviour:

CLT: Xn is approx. N(E(Xn), var(Xn)) large n.

E(Xn) =
∑
E(Zi) =

∑
[1× p+ (−1)× q] = n(p− q).

var(Xn) =
∑
var(Zi)

=
∑[
E(Z2i )− E

2(Zi)
]

= n[(1× p+ 1× q)− (p− q)2]

= 4npq.

So,

• If p > q the particle drifts to the right as n increases.

• this drift is faster, the larger p.
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• the variance increases with n.

• the variance is smaller the larger is p.

5.5 Return Probabilities

Recall, probability of return of a SRW (simple random walk) with p + q = 1 is 1 if

symmetric (p = q), < 1 otherwise (p 6= q).

When does the return occur? Let,

fn = P(first return occurs at n)

= P(Xn = 0 and Xr 6= 0 for 0 < r < n)

un = P(some return occurs at n)

= P(Xn = 0)

Since X0 = 0: u0 = 1

Define f0 = 0 for convenience.

We also have f1 = u1 = P(X1 = 0).

We have already found un:

un = P(Xn = 0) =






(
n
n/2

)
pn/2qn/2 n even

0 n odd

Let

R = Event: return eventually occurs, f = P(R)

Rn = Event: first return is at n, fn = P(Rn)

Then f = f1 + f2 + . . .+ fn + . . ..

To decide if a RW is recurrent or not we could find the fn. Easier to find a relation-

ship between fn and un.

Let

F (s) =
∞∑

n=0

fns
n a pgf if

∑
fn = 1: true if recurrent

U(s) =
∞∑

n=0

uns
n not a pgf because

∑
un 6= 1 in general.
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For any random walk

u1 = f1

u2 = f1u1 + f2 = f0u2 + f1u1 + f2u0

u3 = f0u3 + f1u2 + f2u1 + f3u0.

In general,

un = f0un + f1un−1 + . . .+ fn−1u1 + fnu0 n ≥ 1. (3)

Now,

F (s)U(s) =

(
∞∑

r=0

frs
r

)


∞∑

q=0

uqs
q





=
∞∑

n=0

(f0un + f1un−1 + . . .+ fnu0)s
n

=
∞∑

n=1

uns
n from 3 and f0u0 = 0

=
∞∑

n=0

uns
n − u0

= U(s)− 1.

That is

U(s) = 1 + F (s)U(s); F (s) = 1−
1

U(s)
, U(s) 6= 0.

Let s→ 1 to give
∑
fn = 1− 1/

∑
un,

So:
∑
fn = 1 iff

∑
un =∞

⇒ a RW is recurrent iff sum of return probabilities is ∞.
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