M3S4/M4S4: Applied probability: 2007-8

Assessed Coursework 1: SOLUTIONS

1. (a) If exactly one event of a Poisson process took place in an interval $[0, t]$ find and name the distribution of the time at which the event occurred.

Let $N\left(t_{1}, t_{2}\right)=$ number of events in $\left[t_{1}, t_{2}\right]$

$$
X=\quad \text { time first event occurred }
$$

We have $N\left(t_{1}, t_{2}\right) \sim \operatorname{Poisson}\left(\lambda\left(t_{2}-t_{1}\right)\right)$.

$$
\begin{aligned}
\mathrm{P}(X<s \mid N(0, t)=1) & =\frac{\mathrm{P}(X<s \cap N(0, t)=1)}{\mathrm{P}(N(0, t)=1)} \\
& =\frac{\mathrm{P}(N(0, s)=1 \cap N(s, t)=0)}{\mathrm{P}(N(0, t)=1)} \\
& =\frac{\mathrm{P}(N(0, s)=1) \mathrm{P}(N(0, t-s)=0)}{\mathrm{P}(N(0, t)=1)} \\
& =\frac{\lambda s e^{-\lambda s} e^{-\lambda(t-s)}}{\lambda t e^{-\lambda t}} \\
& =\frac{s}{t}
\end{aligned}
$$

i.e. X is Uniform $[0, t]$
(b) If X and Y are independent Poisson random variables with means μ_{X} and μ_{Y} respectively, find the distribution of $Z=X+Y$.
What is the conditional distribution of X, given that $X+Y=z$?
We have

$$
\begin{aligned}
\Pi_{Z}(s) & =\Pi_{X}(s) \Pi_{Y}(s)=e^{-\mu_{x}(1-s)} e^{-\mu_{Y}(1-s)} \\
& =e^{-\left(\mu_{X}+\mu_{Y}\right)(1-s)}
\end{aligned}
$$

So $Z \sim \operatorname{Poisson}\left(\mu_{X}+\mu_{Y}\right)$.

$$
\begin{aligned}
\mathrm{P}(X=x \mid X+Y=z) & =\frac{\mathrm{P}(X=x \cap X+Y=z)}{\mathrm{P}(X+Y=z)} \\
& =\frac{\mathrm{P}(X=x \cap Y=z-x)}{\mathrm{P}(Z=z)} \\
& =\frac{\frac{e^{-\mu_{X}\left(\mu_{X}\right)^{x}} \frac{e^{-\mu_{Y}\left(\mu_{Y}\right)^{z-x}}}{(z-x)!}}{\frac{e^{-\left(\mu_{X}+\mu_{Y}\right)\left(\mu_{X}+\mu_{Y}\right)^{z}}}{z!}}}{} \\
& =\frac{z!}{x!(z-x)!}\left(\frac{\mu_{X}}{\mu_{X}+\mu_{Y}}\right)^{x}\left(1-\frac{\mu_{X}}{\mu_{X}+\mu_{Y}}\right)^{z-x}
\end{aligned}
$$

which is $\operatorname{Binomial}\left(z, \mu_{X} /\left(\mu_{X}+\mu_{Y}\right)\right)$.
2. Given

$$
Z=X_{1}+\ldots+X_{N}
$$

Find the mean and variance of Z if $X_{i} \sim \operatorname{Poisson}(\mu)$ (independent) and $N \sim G_{1}(p)$. We have $\Pi_{X}(s)=e^{-\mu(1-s)}$ and $\Pi_{N}(s)=p s /(1-q s)$.

$$
\begin{aligned}
& \Pi_{Z}(s)= \Pi_{N}\left(\Pi_{X}(s)\right) \\
&= \frac{p e^{-\mu(1-s)}}{1-q e^{-\mu(1-s)}} \\
&= \frac{p}{e^{\mu(1-s)}-q}=p\left(e^{\mu(1-s)}-q\right)^{-1} \\
& \begin{aligned}
\Pi_{Z}^{\prime}(s) & =p \mu e^{\mu(1-s)}\left(e^{\mu(1-s)}-q\right)^{-2} \\
\Pi_{Z}^{\prime \prime}(s)= & 2 p \mu^{2} e^{2 \mu(1-s)}\left(e^{\mu(1-s)}-q\right)^{-3}-p \mu^{2} e^{\mu(1-s)}\left(e^{\mu(1-s)}-q\right)^{-2} \\
\mathrm{E}(Z) & =\Pi_{Z}^{\prime}(1)=p \mu(1-q)^{-2}=\frac{\mu}{p} \\
\operatorname{var(Z)} & =\Pi_{Z}^{\prime \prime}(1)+\Pi_{Z}^{\prime}(1)-\left(\Pi_{Z}^{\prime}(1)\right)^{2} \\
& =\frac{2 \mu^{2} p}{p^{3}}-\frac{\mu^{2} p}{p^{2}}+\frac{\mu}{p}-\frac{\mu^{2}}{p^{2}} \\
& =\frac{2 \mu^{2}-\mu^{2} p+\mu p-\mu^{2}}{p^{2}} \\
& =\frac{\mu^{2}-\mu^{2} p+\mu p}{p^{2}}
\end{aligned}
\end{aligned}
$$

3. In a Poisson process with rate λ, define $\mathrm{P}_{n}(t)=\mathrm{P}\{N(t)=n\}$, where $N(t)$ is the number of events which have occurred by time t, and suppose that $N(0)=0$.
(a) Using the axioms of the Poisson process and by expressing
$\mathrm{P}_{0}(t+h)=\mathrm{P}\{N(t+h)=0\}$ in terms of the number of events up to time t and the number between times t and $t+h$ show that

$$
\mathrm{P}_{0}^{\prime}(t)=-\lambda \mathrm{P}_{0}(t) .
$$

Hence show that $\mathrm{P}_{0}(t)=K e^{-\lambda t}$, and find the value of K.

$$
\begin{aligned}
\mathrm{P}_{0}(t+h) & =\mathrm{P}\{N(t+h)=0\} \\
& =\mathrm{P}\{N(t)=0 \cap N(t+h)-N(t)=0\} \\
& =\mathrm{P}\{N(t)=0) \mathrm{P}\{N(t+h)-N(t)=0\}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{P}_{0}(t)(1-\lambda h+o(h)) \\
\Rightarrow \frac{\mathrm{P}_{0}(t+h)-\mathrm{P}_{0}(t)}{h} & =-\lambda \mathrm{P}_{0}(t)+\mathrm{P}_{0}(t) \frac{o(h)}{h}
\end{aligned}
$$

So,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\mathrm{P}_{0}(t+h)-\mathrm{P}_{0}(t)}{h} & =-\lambda \mathrm{P}_{0}(t) \\
\mathrm{P}_{0}^{\prime}(t) & =-\lambda \mathrm{P}_{0}(t)
\end{aligned}
$$

as required.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{P}_{0}(t) & =-\lambda \mathrm{P}_{0}(t) \\
\int \frac{1}{\mathrm{P}_{0}(t)} \mathrm{dP}_{0}(t) & =\int-\lambda \mathrm{d} t \\
\log \left(\mathrm{P}_{0}(t)\right) & =-\lambda t+K_{1} \\
\mathrm{P}_{0}(t) & =K e^{-\lambda t}
\end{aligned}
$$

We know that $N(0)=0$, so $\mathrm{P}_{0}(0)=1$, so $K=1$.
(b) Show that, for $n \geq 1$

$$
\mathrm{P}_{n}^{\prime}(t)=-\lambda \mathrm{P}_{n}(t)+\lambda \mathrm{P}_{n-1}(t)
$$

Hence deduce that $\mathrm{P}_{1}(t)=\lambda t e^{-\lambda t}$.

$$
\begin{aligned}
\mathrm{P}_{n}(t+h)= & \mathrm{P}\{N(t+h)=n\} \\
= & \mathrm{P}\{N(t)=n \cap N(t+h)-N(t)=0\}+ \\
& \mathrm{P}\{N(t)=n-1 \cap N(t+h)-N(t)=1\}+ \\
& \ldots+\mathrm{P}\{N(t)=0 \cap N(t+h)-N(t)=n\} \\
= & \mathrm{P}_{n}(t)(1-\lambda h+o(h))+\mathrm{P}_{n-1}(t)(\lambda h+o(h))+0 \\
\Rightarrow \lim _{h \rightarrow 0} \frac{\mathrm{P}_{n}(t+h)-\mathrm{P}_{n}(t)}{h}= & -\lambda \mathrm{P}_{n}(t)+\lambda \mathrm{P}_{n-1}(t)
\end{aligned}
$$

So,

$$
\mathrm{P}_{n}^{\prime}(t)=-\lambda \mathrm{P}_{n}(t)+\lambda \mathrm{P}_{n-1}(t)
$$

as required.

$$
\begin{aligned}
\mathrm{P}_{1}^{\prime}(t) & =-\lambda \mathrm{P}_{1}(t)+\lambda \mathrm{P}_{0}(t) \\
& =-\lambda \mathrm{P}_{1}(t)+\lambda e^{-\lambda t} \\
\mathrm{P}_{1}^{\prime}(t)+\lambda \mathrm{P}_{1}(t) & =\lambda e^{-\lambda t}
\end{aligned}
$$

$$
\begin{aligned}
e^{\lambda t} \mathrm{P}_{1}^{\prime}(t)+\lambda e^{\lambda t} \mathrm{P}_{1}(t) & =\lambda \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t} \mathrm{P}_{1}(t)\right) & =\lambda \\
e^{\lambda t} \mathrm{P}_{1}(t) & =\lambda t+c
\end{aligned}
$$

Now $P_{1}(0)=0 \Rightarrow c=0$, so

$$
\mathrm{P}_{1}(t)=\lambda t e^{-\lambda t}
$$

as required.
(c) Use induction to show that

$$
\mathrm{P}_{n}(t)=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}
$$

Assume true for $n=k-1$, let $n=k$,

$$
\begin{aligned}
\mathrm{P}_{k}^{\prime}(t) & =-\lambda \mathrm{P}_{k}(t)+\lambda \mathrm{P}_{k-1}(t) \\
& =-\lambda \mathrm{P}_{k}(t)+\lambda \frac{e^{-\lambda t}(\lambda t)^{k-1}}{(k-1)!} \\
e^{\lambda t} \mathrm{P}_{k}^{\prime}(t)+\lambda e^{\lambda t} \mathrm{P}_{k}(t) & =\lambda \frac{(\lambda t)^{k-1}}{(k-1)!} \\
\frac{\mathrm{d}}{\mathrm{~d} t} e^{\lambda t} \mathrm{P}_{k}(t) & =\lambda \frac{(\lambda t)^{k-1}}{(k-1)!} \\
\mathrm{P}_{k}(t) & =e^{-\lambda t} \lambda \frac{\lambda^{k-1}}{(k-1)!} \frac{t^{k}}{k}+c=\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}
\end{aligned}
$$

$c=0$ as $\mathrm{P}_{k}(0)=0$.
True for $n=0,1$ and result follows by induction.
4. A branching process is called binary fission if the offspring probability distribution has non-zero probabilities only for 0 or 2 offspring. Given that such a process starts at generation 0 , with a single individual, and that the probability of each individual producing 0 offspring is p, calculate:
(a) The mean and variance of the size of the population at generation n.

Let $q=1-p$,

$$
\begin{aligned}
\mu & =\mathrm{E}(X)=0 \times p+2 \times q=2 q \\
\sigma^{2} & =\mathrm{E}\left(X^{2}\right)-\mu^{2}=4 q-4 q^{2}=4 p q
\end{aligned}
$$

then we have $\mu_{n}=(2 q)^{n}$
Also, using

$$
\sigma_{n}^{2}= \begin{cases}\mu^{n-1} \sigma^{2} \frac{1-\mu^{n}}{1-\mu} & \mu \neq 1 \\ n \sigma^{2} & \mu=1\end{cases}
$$

giving,

$$
\sigma_{n}^{2}= \begin{cases}2^{n+1} q^{n} p \frac{1-(2 q)^{n}}{1-2 q} & q \neq \frac{1}{2} \\ 4 p q n & q=\frac{1}{2}\end{cases}
$$

(b) $\mu=2 q$. Ultimate extinction is certain if $\mu \leq 1$ i.e. if $2 q \leq 1 \Rightarrow p \geq \frac{1}{2}$.

If $\mu>1$ i.e. $p<\frac{1}{2}$ the probability of ultimate extinction is given by the smallest positive solution of $\theta=\Pi(\theta)$.

$$
\begin{aligned}
\Pi(\theta) & =p+q \theta^{2} \\
\theta & =p+q \theta^{2} \\
q \theta^{2}-\theta+p & =0 \\
(\theta-1)(q \theta-p) & =0
\end{aligned}
$$

roots of $q \theta^{2}-\theta+p$ are $\theta=1$ and $\theta=p / q$, If $p<1 / 2$ then $p / q<1$ so

$$
\mathrm{P}(\text { ultimate extinction })=\frac{p}{q}
$$

