
M3S4/M4S4: Applied probability: 2007-8

Assessed Coursework 1: SOLUTIONS

1. (a) If exactly one event of a Poisson process took place in an interval [0, t] find and

name the distribution of the time at which the event occurred.

Let N(t1, t2) = number of events in [t1, t2]

X = time first event occurred

We have N(t1, t2) ∼ Poisson(λ(t2 − t1)).

P(X < s |N(0, t) = 1) =
P(X < s ∩N(0, t) = 1)
P(N(0, t) = 1)

=
P(N(0, s) = 1 ∩N(s, t) = 0)

P(N(0, t) = 1)

=
P(N(0, s) = 1)P(N(0, t− s) = 0)

P(N(0, t) = 1)

=
λse−λse−λ(t−s)

λte−λt

=
s

t

i.e. X is Uniform[0, t] 2

(b) If X and Y are independent Poisson random variables with means μX and μY

respectively, find the distribution of Z = X + Y .

What is the conditional distribution of X, given that X + Y = z?

We have

ΠZ(s) = ΠX(s)ΠY (s) = e
−μx(1−s)e−μY (1−s)

= e−(μX+μY )(1−s)

So Z ∼ Poisson(μX + μY ). 1

P(X = x |X + Y = z) =
P(X = x ∩X + Y = z)
P(X + Y = z)

=
P(X = x ∩ Y = z − x)

P(Z = z)

=

e−μX (μX)
x

x!
e−μY (μY )

z−x

(z−x)!

e−(μX+μY )(μX+μY )z

z!

=
z!

x!(z − x)!

(
μX

μX + μY

)x (

1−
μX

μX + μY

)z−x

which is Binomial(z, μX/(μX + μY )). 2
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2. Given

Z = X1 + . . .+XN .

Find the mean and variance of Z if Xi ∼ Poisson(μ) (independent) and N ∼ G1(p).

We have ΠX(s) = e
−μ(1−s) and ΠN(s) = ps/(1− qs).

ΠZ(s) = ΠN(ΠX(s))

=
pe−μ(1−s)

1− qe−μ(1−s)

=
p

eμ(1−s) − q
= p(eμ(1−s) − q)−1

Π′Z(s) = pμeμ(1−s)(eμ(1−s) − q)−2

Π′′Z(s) = 2pμ2e2μ(1−s)(eμ(1−s) − q)−3 − pμ2eμ(1−s)(eμ(1−s) − q)−2

E(Z) = Π′Z(1) = pμ(1− q)
−2 =

μ

p

var(Z) = Π′′Z(1) + Π
′
Z(1)− (Π

′
Z(1))

2

=
2μ2p

p3
−
μ2p

p2
+
μ

p
−
μ2

p2

=
2μ2 − μ2p+ μp− μ2

p2

=
μ2 − μ2p+ μp

p2

4

3. In a Poisson process with rate λ, define Pn(t) = P{N(t) = n}, where N(t) is the

number of events which have occurred by time t, and suppose that N(0) = 0.

(a) Using the axioms of the Poisson process and by expressing

P0(t + h) = P{N(t + h) = 0} in terms of the number of events up to time t and

the number between times t and t+ h show that

P′0(t) = −λP0(t).

Hence show that P0(t) = Ke
−λt, and find the value of K.

P0(t+ h) = P{N(t+ h) = 0}

= P{N(t) = 0 ∩N(t+ h)−N(t) = 0}

= P{N(t) = 0)P{N(t+ h)−N(t) = 0}
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= P0(t)(1− λh+ o(h))

⇒
P0(t+ h)− P0(t)

h
= −λP0(t) + P0(t)

o(h)

h

So,

lim
h→0

P0(t+ h)− P0(t)
h

= −λP0(t)

P′0(t) = −λP0(t)

as required.

d

dt
P0(t) = −λP0(t)

∫ 1

P0(t)
dP0(t) =

∫

−λ dt

log(P0(t)) = −λt+K1

P0(t) = Ke−λt

We know that N(0) = 0, so P0(0) = 1, so K = 1. 2

(b) Show that, for n ≥ 1

P′n(t) = −λPn(t) + λPn−1(t).

Hence deduce that P1(t) = λte
−λt.

Pn(t+ h) = P{N(t+ h) = n}

= P{N(t) = n ∩N(t+ h)−N(t) = 0}+

P{N(t) = n− 1 ∩N(t+ h)−N(t) = 1}+

. . .+ P{N(t) = 0 ∩N(t+ h)−N(t) = n}

= Pn(t)(1− λh+ o(h)) + Pn−1(t)(λh+ o(h)) + 0

⇒ lim
h→0

Pn(t+ h)− Pn(t)
h

= −λPn(t) + λPn−1(t)

So,

P′n(t) = −λPn(t) + λPn−1(t)

as required. 2

P′1(t) = −λP1(t) + λP0(t)

= −λP1(t) + λe
−λt

P′1(t) + λP1(t) = λe−λt
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eλtP′1(t) + λe
λtP1(t) = λ

d

dt

(
eλtP1(t)

)
= λ

eλtP1(t) = λt+ c

Now P1(0) = 0⇒ c = 0, so

P1(t) = λte
−λt

as required. 1

(c) Use induction to show that

Pn(t) =
e−λt(λt)n

n!
.

Assume true for n = k − 1, let n = k,

P′k(t) = −λPk(t) + λPk−1(t)

= −λPk(t) + λ
e−λt(λt)k−1

(k − 1)!

eλtP′k(t) + λe
λtPk(t) = λ

(λt)k−1

(k − 1)!

d

dt
eλtPk(t) = λ

(λt)k−1

(k − 1)!

Pk(t) = e−λtλ
λk−1

(k − 1)!
tk

k
+ c =

e−λt(λt)k

k!

c = 0 as Pk(0) = 0.

True for n = 0, 1 and result follows by induction. 2

4. A branching process is called binary fission if the offspring probability distribution

has non-zero probabilities only for 0 or 2 offspring. Given that such a process starts

at generation 0, with a single individual, and that the probability of each individual

producing 0 offspring is p, calculate:

(a) The mean and variance of the size of the population at generation n.

Let q = 1− p,

μ = E(X) = 0× p+ 2× q = 2q

σ2 = E(X2)− μ2 = 4q − 4q2 = 4pq

then we have μn = (2q)
n

Also, using

σ2n =






μn−1σ2
1− μn
1− μ μ 6= 1

nσ2 μ = 1
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giving,

σ2n =






2n+1qnp
1− (2q)n
1− 2q q 6= 1

2

4pqn q = 1
2

2

(b) μ = 2q. Ultimate extinction is certain if μ ≤ 1 i.e. if 2q ≤ 1⇒ p ≥ 1
2
.

If μ > 1 i.e. p < 1
2
the probability of ultimate extinction is given by the smallest

positive solution of θ = Π(θ).

Π(θ) = p+ qθ2

θ = p+ qθ2

qθ2 − θ + p = 0

(θ − 1)(qθ − p) = 0

roots of qθ2 − θ + p are θ = 1 and θ = p/q, If p < 1/2 then p/q < 1 so

P(ultimate extinction) =
p

q

2
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