M3S4/M4S4: Applied probability: 2005-6 Problems 4: Random Walks

1. Two players, A and B, play a series of independent games, in which A has a probability p of winning and a probability $q=1-p$ of losing. If A begins with $£ j$ and B with $£(a-j)$, show that the match is certain to end eventually.
2. Two players, A and B, play a series of independent games, in which each start with £500. In each game, they toss a fair coin, with A winning $£ 1$ when heads come up and B winning $£ 1$ when tails come up. For how long is the series expected to run?
3. A particle moves according to a simple random walk with

$$
\mathrm{P}(Z=1)=0.8 ; \quad \mathrm{P}(Z=-1)=0.2 .
$$

(a) What is the probability that the particle is more than 10 units from the origin after 25 steps?
(b) Find a range of positions within which the particle will be with probability 0.95 after 100 steps.
4. In an unrestricted random walk starting at the origin, the i th step, Z_{i}, has distribution $\mathrm{P}\left(Z_{i}=2\right)=p$ and $\mathrm{P}\left(Z_{i}=-1\right)=q=1-p$.
(a) Find the mean and variance of Z_{i}.
(b) Hence find the mean and variance of X_{n}, the position of the particle after n steps.
(c) Derive the probability distribution of X_{n}. (Use the binomial distribution method outlined during the lectures)
(d) If $p=1 / 3$, find the values of
(i) $\mathrm{E}\left(X_{20}\right)$,
(ii) $\operatorname{var}\left(X_{20}\right)$,
(iii) $\mathrm{P}\left(X_{20}=0\right), \quad$ (iv) $\mathrm{P}\left(X_{20}=1\right)$.
(e) When $p=1 / 6$, find the approximate value of $\mathrm{P}\left(-70<X_{180}<70\right)$.
5. Given a simple random walk with $p=q=1 / 2$, what is the probability that the first return to the origin occurs at the
(a) $4^{\text {th }}$ step?
(b) $10^{\text {th }}$ step?

