M3S4/M4S4: Applied probability: 2005-6 Problems 4: Random Walks

- 1. Two players, A and B, play a series of independent games, in which A has a probability p of winning and a probability q = 1 p of losing. If A begins with $\pounds j$ and B with $\pounds (a j)$, show that the match is certain to end eventually.
- 2. Two players, A and B, play a series of independent games, in which each start with £500. In each game, they toss a fair coin, with A winning £1 when heads come up and B winning £1 when tails come up. For how long is the series expected to run?
- 3. A particle moves according to a simple random walk with

$$P(Z = 1) = 0.8;$$
 $P(Z = -1) = 0.2.$

- (a) What is the probability that the particle is more than 10 units from the origin after 25 steps?
- (b) Find a range of positions within which the particle will be with probability 0.95 after 100 steps.
- 4. In an unrestricted random walk starting at the origin, the *i*th step, Z_i , has distribution $P(Z_i = 2) = p$ and $P(Z_i = -1) = q = 1 - p$.
 - (a) Find the mean and variance of Z_i .
 - (b) Hence find the mean and variance of X_n , the position of the particle after n steps.
 - (c) Derive the probability distribution of X_n . (Use the binomial distribution method outlined during the lectures)
 - (d) If p = 1/3, find the values of (i) $E(X_{20})$, (ii) $var(X_{20})$, (iii) $P(X_{20} = 0)$, (iv) $P(X_{20} = 1)$.
 - (e) When p = 1/6, find the approximate value of $P(-70 < X_{180} < 70)$.
- 5. Given a simple random walk with p = q = 1/2, what is the probability that the first return to the origin occurs at the
 - (a) 4^{th} step?
 - (b) 10^{th} step?