M3S4/M4S4: Applied probability: 2007-8

Solutions 6: Continuous time Markov processes

1. We have,
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Multiply by s’ and sum over j to give
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2. From lectures the differential difference equations for general birth and death process

are given by,

jtpo(t) = —Bopo(t) + vipi(?)

(jtpj(t) = Biopj-a(t) — (B; +vy)pi(t) +vjapia(t)  j>1

(a) When 3, = A, v, =0, we have for j > 0:

jtpj(t) = Apj-1(t) — Ap;(¢).

(b) When 3, = n, v, =0, we have for j > 0:

jtpj(t) = (j — 1)Bp;_1(t) — 38p;(t).
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P(wake during 6t) = [0t + o(dt)
P(sleep during 6t) = vdt + o(dt)

If there are 7 awake then N — i are asleep.

i—i+1 = (N—19)p (one of the (N — i) wake)
i—i—1 = vi (one of the i sleep)
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(b) For the stationary distribution, solve w@Q = 0, from notes, for a general birth and

death process we have
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also, N 7, =1, giving
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(c) For one individual we have

(d) From the Forward Differential Equations:

SP) = POQ
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From pg,(0) = 0 we find ¢ = 5

giving
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same solution as above, except we have p,,,(0) = 1 giving
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(e) From the hint, we have
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5. (a) The Backward Differential Equations are given by,

d
%P(t) = QP(t)

For the linear birth and death process we have
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Pi(t) = wwpi1(8) = i(v + B)py(t) + iBpisij(t) V5 (0> 0)

Multiply by s’ and sum over j to give

aatHZ(S,t) = iVHi_l(S,t) — ’L(l/ + ﬁ)HZ(S,t) + ’iﬁHi+1(5,t) 1> 0.

(b) IL;(s,t) is the pgf of X;(t) — the number of individuals at time ¢ given that X (0) =
1. We can write

7 times

(a colony of size i can be thought of as ¢ colonies of size 1).

So, by standard pgf results, we have

IL(t) = L ()]



(c) When ¢ =1,

gtﬂl(s,t) = vly(s,t) — (v + B)i(s,t) + B [ (s, )]*.

HO(S, t) = poo(t) +p01(t)s +p02<t>82 + ...
=1 (as poo(t) = 1 and py;(t) =0V j).
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Initial condition I1;(s,0) = s gives s = (¢ — 1)/c and
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which agrees with the lecture notes.
Case 3 # v:
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—log(v — By) +1log(l —y) = (B-v)t+c

I1;(s,0) = s = ¢ = —log(v — Bs) + log(1 — s)
So (after some algebral)
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again in accordance with lecture notes.

Hl(S, t) =



