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1. Poisson Process

2. Branching Processes

3. Random Walks

4. Discrete time Markov Chains

5. Continuous time Markov processes – Birth, Death and Immigration
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1 Poisson Process

Recall the Bernoulli process: sequence of independent Bernoulli trials, same p.

Poisson Process: continuous time analogue.

AXIOMS:

I P(exactly 1 event in a time interval of length δt) = λδt+ o(δt)

II P(two or more events in a time interval of length δt) = o(δt)

III Occurrence of events after time t is independent of events before time t

number of events by time t = X(t) ∼ Poisson(λt).

Distribution of time, T , between (k − 1)th and kth ⇒ P(T ≤ t) = 1− e−λt.

⇒ T ∼ Exponential(λ).

Stationary: distribution of number of events in (u, u + t] is same as distribution

in (0, t] for all t, u > 0.

Non-homogeneous Poisson: λ = λ(t),

⇒ Number of events in (0, t] = X(t) ∼ Poisson(
∫ t
0 λ(t) dt).

Compound Poisson: Each Poisson event associated with Y “occurrences”, Y a

random variable.

E(X) = EY [E(X |Y )]

Doubly Stochastic: λ(t) is a random variable.

Deterministic model: number of events in interval of length t+δt is approximated

by expected value - formulate differential equation for D(t) – number of events

in (0, t] in deterministic approximation.

Mean Time Function: μ(t) = E(X(t)).

Variance Time Function: σ2(t) = var(X(t)).

Index of Dispersion: I(t) = σ2(t)
μ(t)
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2 Branching Processes

Organise by generations: Discrete time.

If P(no offspring) 6= 0 there is a probability that the process will die out.

Let X = number of offspring of an individual

p(x) = P(X = x) = “offspring prob. function”

Galton-Watson process:

(i) p same for all individuals

(ii) individuals reproduce independently

Define:

Zn = number of individuals at time n (start with Z0 = 1)

Tn = total number born up to and including generation n

Probability generating functions:

The p.g.f. is

ΠX(s) = E(s
X) =

∞∑

x=0

p(x)sx

Note: Π(0) = p(0)

Π(1) =
∑
p(x) = 1

E(X) = μ = Π
′
(1); var(X) = σ2 = Π

′′
(1) + μ− μ2

Sums of a random number of rvs

Z = X1 +X2 + . . .+XN

i.e. Z is the sum of N independent discrete rvs X1, X2, . . . , XN . If Xi has range

{0, 1, 2, . . .} and pgf ΠX(s), N is a rv with range {0, 1, 2, . . .} and pgf ΠN(s) then

ΠZ(s) = ΠN [ΠX(s)]

and Z has a compound distribution.
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For nth generation, we have

Zn = X1 +X2 . . .+XZn−1 ,

where Xi is the number born to the ith member of generation n− 1. so,

Πn(s) = Πn−1 [Π(s)]

where Πn(s) is the pgf of Zn and Π(s) is the offspring pgf.

Given E(X) = μ and var(X) = σ2, use pgfs to derive:

E(Zn) = μn = μ
n

var(Zn) = σ2n =






μn−1σ2
1− μn
1− μ μ 6= 1

nσ2 μ = 1

Probability of ultimate extinction, θ∗

Must have P(X = 0) = p(0) 6= 0.

1. μ ≤ 1⇒ θ∗ = 1⇒ ultimate extinction certain.

2. μ > 1⇒ θ∗ < 1⇒ ultimate extinction not certain

θ∗ = smallest positive solution of θ = Π(θ)

Hint: remember θ = 1 is always a solution.
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3 Random Walks

Consider a particle at some position on a line, moving with the following transition

probabilities:

– with prob p it moves 1 unit to the right.

– with prob q it moves 1 unit to the left.

– with prob r it stays where it is.

Position at time n is given by,

Xn = Z1 + . . .+ Zn Zn =






+1

−1

0

random walks satisfy the Markov property.

i.e. the distribution of Xn is determined by the value of Xn−1

Looked at reflecting and absorbing barriers.

Gambler’s ruin

Two players A and B.

A starts with $j, B with $(a− j).

Play a series of indep. games until one or other is ruined.

Zi = amount A wins in ith game = ±1.

P(Zi = 1) = p P(Zi = −1) = 1− p = q.

Stop if Xn−1 = 0 (A ruined) or Xn−1 = a : (A wins and B ruined).
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Unrestricted RW with p+ q = 1

– recurrence (persistence) i.e. return to origin certain

– transience i.e. pos prob of never returning

Position after n steps

– use binomial link to find exact distribution

– CLT for large n

– find mean/variance then Xn ∼ N(E(Xn), var(Xn)) approx.

Return Probabilities

fn = P(FIRST return at n)

un = P(some return at n)

F (s) =
∞∑

0

fns
n U(s) =

∞∑

0

uns
n U(s) = 1 + F (s)U(s)

RW recurrent iff
∑
un =∞,

∑
fn = 1.

Probability of ultimate ruin

Define: Rj = event A loses if he starts with $j, W = event A wins first game.

TRICK: condition on first game

P(Rj) = P(Rj |W )P(W ) + P(Rj | W̄ )P(W̄ )

form recurrence relation (difference equation)and solve to calculate qj = P(Rj), use

same trick to calculate expected duration of game.
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4 Markov Chains

P(Xn+1 = j |Xn = i and A) = P(Xn+1 = j |Xn i) = pij

where A is any event depending only on {Xn−1, Xn−2, . . . , X0}

TRANSITION MATRIX P with element pij and
∑
j pij = 1 ∀i

n-step transition P (n)

Chapman-Kolmogorov equations:

p
(m+n)
ij =

∑

k

p
(m)
ik p

(n)
kj

⇒ P (n) = P n

Sometimes MCs converge to an equilibrium distribution

π = (π1, . . . , πs); π = πP ; πj ≥ 0 ∀ j;
∑
πj = 1

Communicating Classes

i↔ j for all states in a class (there is a path of non-zero probability from i to j and

back).

closed class – impossible to leave

one class – irreducible

Every Markov Chain with a finite state space has a unique stationary distribution

unless the chain has two or more closed communicating classes.

Periodicity

The periodicity of state i is defined as

gcd{n ≥ 1 : p(n)ii > 0}.

All states in the same c.c. are either:

– aperiodic (period 1)

– periodic with same period
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MC which is:

– irreducible

– finite state space

– aperiodic

Then p
(n)
ij → πj, j = 1, . . . , s as n→∞

where π is the unique stationary distribution, which is also limiting.

Return probabilities and return times c.f RWs

mean first return time μi:

NULL RECURRENT: infinite mean recurrence time

POSITIVE RECURRENT: finite mean recurrence time

For a recurrent, irreducible, aperiodic MC:

lim
n→∞

=
1

μi
= πi
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5 Continuous time Markov Chains

X(t) is the state of the chain at time t. Transition matrix P (t) with elements pij(t)

where

pij(t) = P(X(t) = j |X(0) = i)

Define

qij =
d

dt
pij(t)

∣
∣
∣
∣
∣
t=0

pij(δt) =






1 + δtqii + o(δt) i = j

δtqij + o(δt) i 6= j

Description of process:

remains in state i for a period exponentially distributed with mean −1/qii, and then

jumps to another state. The state is j ( 6= i) with probability −qij/qii....

Forward and Backward Equations

d

dt
P (t) = P (t)Q ⇒

d

dt
pij(t) =

∑

k

pik(t)qkj ∀i, j (FORWARD EQNS)

d

dt
P (t) = QP (t) ⇒

d

dt
pij(t) =

∑

k

qikpkj(t) ∀i, j (BACKWARD EQNS)

Stationary Distribution

π = πP (t) or πQ = 0;
∑

j

πj = 1, πj ≥ 0 ∀j

For an irreducible process π is unique if it exists and if it does exist then the process

is positive persistent.
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