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Universal Fluctuations in Correlated Systems
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The probability density function (PDF) of a global measure in a large class of highly correlated sys-
tems has been suggested to be of the same functional form. Here, we identify the analytical form of the
PDF of one such measure, the order parameter in the low temperature phase of the 2D XY model. We
demonstrate that this function describes the fluctuations of global quantities in other correlated equilib-
rium and nonequilibrium systems. These include a coupled rotor model, Ising and percolation models,
models of forest fires, sandpiles, avalanches, and granular media in a self-organized critical state. We
discuss the relationship with both Gaussian and extremal statistics.
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Self-similarity is an important feature of the natural
world. It arises in strongly correlated many body systems
when fluctuations over all scales from a microscopic length
a to a diverging correlation length j lead to the appear-
ance of “anomalous dimension” [1] and fractal properties.
However, even in an ideal world, the divergence of j must
ultimately be cut off by a macroscopic length L, allow-
ing the definition of a range of scales between a and L,
over which the anomalous behavior can occur. Such sys-
tems are found, for example, in critical phenomena, in self-
organized criticality [2,3], or in turbulent flow problems.
By analogy with fluid mechanics we shall call these finite-
size critical systems “inertial systems” and the range of
scales between a and L the “inertial range.” One of the
anomalous statistical properties of inertial systems is that,
whatever their size, they can never be divided into meso-
scopic regions that are statistically independent. As a result
they do not satisfy the basic criterion of the central limit
theorem and one should not necessarily expect global, or
spatially averaged quantities to have Gaussian fluctuations
about the mean value. In Ref. [4] (BHP) it was demon-
strated that two of these systems, a model of finite size
critical behavior and a steady state in a closed turbulent
flow experiment, share the same non-Gaussian probability
density function (PDF) for fluctuations of global quanti-
ties. Consequently it was proposed that these two sys-
tems—so utterly dissimilar in regard to their microscopic
details—share the same statistics simply because they are
critical. If this is the case, one should then be able to de-
scribe turbulence as a finite-size critical phenomenon, with
an effective “universality class.” As, however, turbulence
and the magnetic model are very unlikely to share the same
universality class, it was implied that the differences that
separate critical phenomena into universality classes rep-
resent at most a minor perturbation on the functional form
of the PDF. In this paper, to test this proposition, we deter-
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mine the functional form of the BHP fluctuation spectrum
and show that it indeed applies to a large class of inertial
systems [5].

The magnetic model studied by BHP, the spin-wave
limit to the two dimensional XY model, is defined by the
harmonic Hamiltonian
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where J is the near neighbor exchange constant for an-
gular variables ui that occupy a square lattice with peri-
odic boundary conditions. The magnetization is defined
as m � 1�N

P
i cos�ui 2 u�, where u is the instantaneous

mean orientation. This model is critical at all temperatures
and for an infinite system has algebraic correlations on all
length scales. In the finite system the lattice constant a and
the system sizes L � a

p
N define a natural inertial range.

The model can be diagonalized in Fourier space, which
makes it very convenient for analytical work. The PDF of
the magnetization P�m� can be expressed as the Fourier
transform of a sum over its moments. In Ref. [6] it was
shown that the moments vary as mn ~ gn�g2�2�2n�2sn,
where s2 is the variance and the gk�k � 2, 3, 4, . . .� are
sums related to the lattice Green function in Fourier space
G�q�: gk �

P
q G�q�k�Nk . The fact that mn ~ m

n
1 means

that a change of N or T is equivalent to a linear transfor-
mation of the variate m; hence, the PDF can be expressed
in a universal form. As shown in [6] the moment series
can be resummed to give the following expression, exact
to leading order in N :
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Here y � �m 2 �m���s and �m� is the mean of the dis-
tribution. Including only g2 in (2) would give a Gaussian
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PDF with variance s2. However, the terms for k . 2 can-
not be neglected and P� y� � sP� y� is a non-Gaussian,
universal function, independent of both the size of the sys-
tem and the temperature [7]. Without loss of generality one
can make the quadratic approximation m � 1 2

P
i�ui 2

u�2�2N , which allows us to transform Eq. (2) to a form
suitable for numerical integration [8]:
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[The trace Tr of any function of G is defined as the sum for
q fi 0 of the same function of G�q�.] In order to make an
accurate test of this expression we have performed a high
resolution molecular dynamics simulation of P�m�. Fig-
ure 1 compares the integrated Equation (3) with data for a
system of 1024 classical rotors integrated over 108 molecu-
lar dynamics time steps in the low temperature phase. The
agreement is globally excellent, particularly in the wings
of the distribution and along the exponential tail for fluc-
tuations below the mean.

The asymptotic values of P� y� are related to the saddle
points of the integrand in (3). We find

P� y� ~ j yj exp

µ
p

2
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; for y ø 0 , (4)

P� y� ~ exp
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where b � 8p
p

g2�2 � 1.105 and s � 0.745. These
forms give the correct asymptotic gradients of the molecu-
lar dynamics data on logarithmic and double logarithmic
scales. The asymptotic forms are an accurate approxi-
mation to Eq. (2) for large j yj; however, deviations from

FIG. 1. The PDF P� y� as found from a numerical Fourier
transform of Eq. (3) (long-dashed line), from Eq. (6) (solid line),
and by molecular dynamics simulation of a system of N � 1024
classical rotors (dotted line).
the asymptotes are important over most of the physical
range of y, which is typically limited to logj yj 	 O�1�.
Equations (4) and (5) serve as a guide to finding a good
approximation to the functional form of P� y� in this
range. To do this, we observe that the factor of y in (4)
can be regarded as a constant in this regime, which along
with (4) and (5) immediately suggests the form

P� y� � K�ex2ex

�a; x � b� y 2 s�, a � p�2 .

(6)

This function must obey the three conditions of unit area,
zero mean, and unit variance, which fixes b, s, and K
to values slightly different from those found analytically:
b � 0.938, s � 0.374, K � 2.14. An alternative ap-
proach is to choose the parameters in the generalized
function Kea�b� y2s�2eb� y2s�� such that the first four Fourier
coefficients match Eq. (2). In this case we find a � 1.58,
K � 2.16, b � 0.934, s � 0.373, in satisfying agreement
with the previous estimates. The ratios of the higher order
Fourier coefficients differ from unity only very slowly,
showing that Eq. (6) is an accurate approximation to
P� y�. This is directly confirmed by plotting Eq. (6)
versus the molecular dynamics and exact results in Fig. 1,
where the fit is seen to be of extremely high precision.

We now test the idea that the BHP fluctuation spectrum
of the form of Eq. (6) is exhibited by many types of inertial
system. Figure 2 shows the numerically simulated PDF
of global quantities in several equilibrium and nonequi-
librium models. The equilibrium models include the 2D
Ising model at a temperature T��N� just below the critical
temperature and a 2D site percolation model on a square
lattice for a site occupation probability P��N� just above
the percolation transition. The numerical results refer to
the fluctuations of the absolute value of the magnetization
and the fluctuations in the size of the spanning cluster,
respectively. The nonequilibrium models are of the type
that when driven slowly enter a scale-free or critical steady
state defined as self-organized criticality (SOC) [2,3]. Here
the global quantity is essentially a dissipation rate that
fluctuates about a well defined mean value in the steady
state. Details of the individual SOC models are as follows.
(i) The autoigniting forest fire model [9] consists of “trees”
planted at random on the vacant sites of a square lattice
with probability p. In each time step the age Ti of a tree
on site i is incremented by one unit. When Ti � Tmax the
tree ignites and Ti is reset to zero. Trees can also catch
fire by being nearest neighbor to a site on fire. The en-
ergy, or wood stored in a tree, is proportional to T , and the
figure shows the PDF of the total energy dissipated in fires
at each time step. (ii) In the Bak-Tang-Wiesenfeld (BTW)
sandpile model [10] a dynamical variable Ei is defined on
lattice site i. The model is driven by adding units of the E
field to randomly selected sites. When Ei . Emax the site
variable is decreased by Emax and the E variable of the
z neighbor sites is increased by Emax�z. One or more of
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the neighbor sites may then aquire an E value larger than
Emax and an avalanche is induced. The PDF shown refers
to the fluctuations in the instantaneous number of relaxing
sites. (iii) In the Sneppen depinning model [11] an inter-
face moves through a static random field of pinning forces.
The site along the interface that experiences the smallest
pinning force is moved one unit ahead. If the local slope
si exceeds 1, then the neighboring sites are moved one unit
ahead until all si # 1. We call such a sequence of updates
a microavalanche and calculate the PDF of the sum of ar-
eas covered by the progressing interface during an integral
time scale T dependent on system size. (iv) The model
for granular media is a “Tetris-like” 2D lattice gas ensem-
ble of anisotropic particles settling under gravity in a finite
box [12]. Because of the geometrical frustration, the total
mass varies from one realization of the filling process to
another. The PDF for fluctuations in bulk density of the
particles is shown.

Referring to Fig. 2, the data sets for all models fall close
to the BHP form, Eq. (6). In the equilibrium models (lower
curves) the self-similarity is expected at the system-size
dependent critical temperature T��N� or percolation proba-
bility P��N� only. The PDF for the 2D Ising model, for
example, is temperature dependent, but makes a close ap-
proach to the BHP form around T��N�. We believe that
the remaining deviations for fluctuations above the mean
are due to the limited inertial range for the system sizes
studied. For the nonequilibrium systems (upper curves)
the data sets also show some deviation. This may simply
be due to poor statistics, as deviations on either side of the
mean are related by the constraints of normalization. In
this respect, we note that extremely good statistics were
required to get a satisfactory fit to Eq. (6) for the 2D XY

FIG. 2. Fluctuation spectra in equilibrium systems (lower
curves): Ising (±), percolation (�). The central curve (�)
corresponds to the fluctuation spectrum of the correlated
extremal process—see text. The upper curves are the PDFs for
the autoigniting forest fire model (3), the Sneppen depinning
model (1), the granular media model (�), and the BTW
sandpile model (�). The lines are Eq. (6). For clarity, the sets
of curves are shifted downwards by 1.5 in log units.
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model, while for more limited data sets systematic devia-
tions occurred.

Nevertheless it is clear that, to leading order, Eq. (6)
correctly gives the behavior of the global fluctuation spec-
trum in all these systems, independently of the details of
the each example. We propose that this is a consequence
of the systems sharing the properties of finite size, strong
correlations, and self-similarity.

To clarify this proposition, we return to our calculation
on the 2D XY model. One can see explicitly that the
BHP spectrum occurs through appearance of anomalous
dimension and contributions on all length scales of the in-
ertial range. The magnetization can be written, within the
quadratic approximation, m � 1 2 Sqmq, where the mqs
are the amplitudes from the individual spin-wave modes.
These are statistically independent positive variates with
PDF

P�mq� �

s
bq2a2N

4p
m21�2

q exp�2bNq2a2mq� , (7)

whose mean and standard deviation therefore scale with
q22. The “softest” modes have wave vector q � 2p�L
and hence, by themselves, make contributions of O�1� to
m, while the modes on the zone boundary with q � p�a
have only microscopic amplitude. The moments of
P�m� are determined by the mean magnetization. This
is proportional to the integral over all contributions:
	

Rp�a
2p�L q22n�q� dq, where n�q� 	 qd21 is the density of

states. In one dimension the integral depends only on the
lower limit 2p�L and only the soft modes count, while in
three dimensions only the upper limit p�a is important
and the multitude of modes near the zone boundary domi-
nate the sum. In two dimensions, however, both limits of
the integral are required and a detailed calculation gives
�m� � 1 2 h�2 log�CL�a�, with C � 1.87 [8] and criti-
cal exponent h � T�2pJ . The relevance of fluctuations
over all length scales of the zone therefore leads to the
“anomalous” term log�L�a� and it ensures that the system
cannot be cut into statistically independent parts.

The spin-wave approximation to the XY model is exactly
equivalent to the Edwards-Wilkinson model of a growing
interface in steady state [13], with the square of the inter-
face width w equal to the sum over the amplitudes mq:
w2 �

P
q mq. The fluctuations in the width of the inter-

face have been studied by Foltin et al. [14] for the 1D case
and by Rácz and Plischke [15] for the 2D interface. The
BHP spectrum is found for the critical two dimensional
case only and our calculation can be considered the com-
pletion of the study in Ref. [15].

The functional form of Eq. (6) suggests a relationship
to Gumbel’s first asymptote [16] for extreme value sta-
tistics, which have recently been discussed in relation to
turbulence in one dimension [17]. The form (6) but with
a taking integer values, where a � 1, 2, 3, . . . would cor-
respond to the PDF for the first, second, third, . . . largest of
the N random numbers. However, the exponent a � p�2
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suggests, as we have argued, that the fluctuations in m are
not dominated by single independent variables. Rather, the
analytic derivation of Eq. (6) shows that if extreme value
statistics are involved they must be related to the statistics
of some emergent coherent collective excitation of the sys-
tem. This is borne out in the simulations of the Ising model
and of all the SOC models studied. In the Ising model, it is
found that both the full magnetization and the contribution
to the magnetization from the largest connected cluster of
parallel spins give the same PDF, within numerical error.
For the Sneppen model the PDF of the sum over avalanches
and that of the largest avalanche during the integral time
T are both found to be of the BHP form, even though
these quantities are not related by a simple scale. If the
avalanches appearing during time T were uncorrelated one
would expect that the PDF for the largest avalanche would
be Gumbel’s asymptote with a � 1. The modification to-
wards our form indicates therefore that there are correla-
tions between events during the period T . To test this idea,
we have studied the PDF of the extreme values taken from
sets of linearly correlated variables. The process consists
of generating a vector �x � � x1, . . . , xN �, where xi are all
independent and exponentially distributed. The maximum
signal is obtained as jmax � max
j1, . . . , jN �, where the
vector �j � M �x and M is an N 3 N matrix with ran-
dom but fixed elements. The resulting spectrum, shown in
Fig. 2, is found to be very close to the BHP spectrum.

In conclusion, our results infer that the non-Gaussian
PDF of a global quantity in a critical system is a con-
sequence of finite-size, strong correlations and self-
similarity and is independent of universality class to
leading order. Clearly many more studies of this point are
required. Nonlinearity does not appear to be an essential
feature, over and above the necessity, in a closed system,
to couple the elementary degrees of freedom. Indeed, if
nonlinearity were essential, it would seem impossible that
the linear spin-wave theory could capture the fluctuations
in the turbulence experiment [4]. Rácz and Plischke [15]
have studied a series of linear and nonlinear models for
growing interfaces. All show anisotropic PDFs for the
interface width, with long tails in qualitative agreement
with our data. It would very interesting to examine these
models in detail to see how the strength of the nonlinearity
affects the form of the fluctuations.

Finally, it seems that a relationship exists between the
BHP curve and extremal statistics. Although we have
shown that the BHP behavior is not simply due to extreme
values of the statistically independent degrees of freedom
of the 2D XY model, extreme values do appear to domi-
nate the real space coherent structures that are excited in
the critical (Ising model) or self-organized critical (Snep-
pen model) state.
Our findings thus establish a completely new and gen-
eral consequence of self-similarity and they open the door
to numerous studies that could lead to a unified global
description of aspects of equilibrium and nonequilibrium
behavior.
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