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Abstract

In this paper we discuss a general multidimensional linear convex stochastic control problem
with nondifferentiable objective function, control constraints, and random coefficients. We formu-
late an equivalent dual problem, prove the dual stochastic maximum principle and the relation of
the optimal control, optimal state, and adjoint processes between primal and dual problems, and
illustrate the usefulness of the dual approach with some examples.
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1 Introduction

There has been extensive research in both stochastic control and convex optimization, see, for
example, books [9, 16, 24] for stochastic control and [2, 8, 19] for convex optimization for excellent
exposition in theory, computation, and application. Linear convex (LC) stochastic control has the
state process satisfying a controlled linear stochastic differential equation (SDE) and the objective
function being convex in state and control variables. Due to the nature of convexity, any optimal
solution is a global solution. LC stochastic control covers many applications, for example, aggregate
production and work-force planning [13], stochastic inventory control [3], consumption-investment
problem [5], reinforcement learning [10], etc.

If the objective function is a quadratic function and the control set is the whole space, then
the optimal control is an affine function of the state variable and its form can be determined by the
solution of some fully-coupled linear forward backward SDE (FBSDE) and stochastic Riccati equation
(SRE), see [21, 24]. There are many extensions with additional constraints and other conditions, for
example, [11] introduces the extended SRE and provides the explicit characterization of the optimal
control of a stochastic linear quadratic (LQ) control problem with random coefficients and cone control
constraints and scalar state variable. [12] derives the stochastic maximum principle (SMP) for LQ
problem with nonconvex control domain.

There are many references in the literature on solving LC problems. For example, [3] identifies some
specific LC problems whose solution can be obtained by solving appropriate equivalent deterministic
optimal control. [4] uses conjugate functions for LC problem. [5] derives the SMP for LC problem
with multidimensional state process and control constraints. [7] studies a discrete-time LC problem
with scalar control and describes explicit solutions for suitable Bellman equations.

The standard methods for stochastic control can be used to characterize the optimal control and
state processes for LC problems, in the form of the Hamilton-Jacobi-Bellman (HJB) equation for
models with deterministic coefficients or the FBSDE and the maximum condition, but it is in general
difficult to solve these equations in the presence of control constraints and non-quadratic objective
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functions. The HJB equation is a fully-nonlinear multidimensional partial differential equation (PDE)
and the FBSDE is a fully-coupled nonlinear FBSDE. Since LC problems are convex, one may use the
ideas and methodologies developed for convex optimization to solve them. One approach is to convert
the dynamic model into a static convex optimization in some abstract space, then derive the dual
problem and establish the relations of primal and dual optimal solutions, and finally convert the results
back to the dynamic model. The main advantage of solving a static convex optimization problem is
that all known results for conjugate duality in [19] can be applied, but it is highly difficult to solve
an infinite-dimensional constrained convex optimization problem, see [14] for details.

The model setting of this paper is largely the same as that of [5] without the condition that the
running objective function is continuously differentiable in control variables, whereas [5] includes an
additional state constraint. The SMP in [5] still holds and can be proved essentially in the same way.
[14, 20] are close to our paper in the sense of dual control formulation and relation of primal and
dual optimal solutions. [14] discusses the quadratic risk minimization of a controlled wealth process
(a scalar stochastic process in mathematical finance), formulates the dual problem, and proves the
existence of dual solution for a mean-variance problem. [20] studies a deterministic LC control problem
without control constraints in the framework of duality for calculus of variations problems and proves
some regularity properties of value function and optimal control.

The main contribution of this paper is to solve the LC stochastic control problem via the convex
duality theory and derive the relation of the primal and dual optimal solutions, which has not been
discussed in [5, 14, 20] nor anywhere else in the literature, to the best knowledge of the authors.
Instead of converting the LC problem into an abstract convex optimization as in [14], we use the
supermartingale approach as in [15] that gives the necessary and sufficient optimality conditions for
a scalar LQ problem with control constraints. One complication is that the dual running objective
function may be nondifferentiable and the resulting backward SDE (BSDE) for the dual adjoint
process is not well defined in the usual BSDE sense. We need to transform the dual problem with
some new dual control variable to resolve the issue.

The usefulness of the dual formulation is highlighted with some examples, including ones with non-
smooth running cost and bounded/unbounded control constraint set and random coefficients, where
the primal problem is difficult to solve using the standard well-known methods such as maximizing
the Hamiltonian function and solving the FBSDE or finding the value function via the HJB equation.
The presence of nondifferentiability or control constraint makes the standard methods difficult and
ineffective. In contrast the dual problem of these examples can be solved and the primal optimal
solution can be constructed via the primal-dual relation.

The paper is organized as follows: Section 2 states the model, the SMP (Theorem 1), and the
dual problem. Section 3 discusses the transformed dual problem, the dual SMP (Theorem 2), and
the primal-dual relation (Theorems 3 and 4). Section 4 solves some examples. Section 5 concludes.
Appendix gives the proof of Theorem 2.

2 Primal and Dual Problems

We assume a complete probability space (Ω,F ,F, P ), where F := {Ft}t∈[0,T ] is the P -augmentation

of the natural filtration {FWt }t∈[0,T ] generated by d-dimensional independent standard Brownian mo-
tions {(W1(t), . . . ,Wd(t))}t∈[0,T ]. Denote by Rn×m the space of n × m matrices, Rn the space of

n-dimensional vectors, M> the transpose of matrix M , tr(M) the trace of a square matrix M , |M | =√
tr(M>M) the Frobenius norm of matrix M , P(0, T ;Rn) the set of Rn-valued progressively measur-

able processes on [0, T ]×Ω,H(0, T ;Rn) the set of processes x in P(0, T ;Rn) such that E[
∫ T

0 |x(t)|2dt] <
∞, and S(0, T ;Rn) the set of processes x in P(0, T ;Rn) such that E[sup0≤t≤T |x(t)|2] <∞.

Define the set of admissible controls by

A := {u ∈ H(0, T ;Rm) : u(t) ∈ K for t ∈ [0, T ], a.e.} ,

where K ⊆ Rm is a nonempty closed convex set.
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Given any u ∈ A, consider the state process X satisfying the following SDE:{
dX(t) = [A(t)X(t) +B(t)u(t)] dt+

∑d
i=1 [Ci(t)X(t) +Di(t)u(t)] dWi(t),

X(0) = x0 ∈ Rn,
(1)

where processes A,Ci : Ω × [0, T ] → Rn×n and B,Di : Ω × [0, T ] → Rn×m, i = 1, . . . , d, are F-
progressively measurable and uniformly bounded. The pair (X,u) is admissible if X is a solution to
SDE (1) with control u ∈ A.

Consider the functional J : A → R, defined by

J(u) := E

[∫ T

0
f(t,X(t), u(t))dt+ g(X(T ))

]
, (2)

where f : Ω× [0, T ]×Rn×Rm → R and g : Ω×Rn → R are measurable functions, f is F-progressively
measurable for fixed (x, u), convex in (x, u), C1 in x, continuous in u, and g is FT -measurable for
fixed x, convex and C1 in x. f, g are sufficiently general to cover many common objective functions
such as quadratic functions, discounted cost functions with f(t, x, u) = e−rtf̃(x, u), etc. We denote by
fx(t, x, u) the partial derivative of f with respect to x and use similar notations for other derivatives.

The optimization problem is the following:

Minimize J(u) subject to (X,u) admissible. (3)

An admissible pair (X̂, û) is optimal if J(û) ≤ J(u) for all u ∈ A. To shorten notations, we will omit
time variable t in expressions in the rest of the paper if no confusion may be caused, for example,
write A instead of A(t),

∫ T
0 f(t,X, u)dt instead of

∫ T
0 f(t,X(t), u(t))dt.

The problem (3) is studied in [5] which proves the SMP and applies the results to the consumption-
investment problem and the square-integrable controls.

We need the following assumption:

Assumption 1. Let (X̂, û) be an admissible pair satisfying E[
∫ T

0 |fx(t, X̂, û)|2dt] <∞ and E[|gx(X̂(T ))|2] <

∞. There exist Z ∈ P(0, T ;R) and an FT -measurable random variable Z̃ satisfying E[
∫ T

0 |Z(t)|dt] <
∞, E[|Z̃|] <∞ such that for any admissible pair (X,u) and ε ∈ (0, 1],

Z(t) ≥ f(t, X̂ + εX, û+ εu)− f(t, X̂, û)

ε
,

Z̃ ≥ g(X̂(T ) + εX(T ))− g(X̂(T ))

ε

for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ].

A sufficient condition for Assumption 1 to hold is that f, g are C1 in x, u and their derivatives
have linear growth, that is, |fx(t, x, u)| + |fu(t, x, u)| ≤ C(1 + |x| + |u|) and |gx(x)| ≤ C(1 + |x|) for
all t, x, u and some constant C, which covers quadratic functions.

The Hamiltonian H : Ω× [0, T ]× Rn × Rm × Rn × Rnd → R is defined by

H(t, x, u, p1, q1) := x>A>p1 + u>B>p1 +
d∑
i=1

x>C>i q1,i +

d∑
i=1

u>D>i q1,i − f(t, x, u), (4)

where p1 ∈ Rn and q1 := (q1,1, . . . , q1,d) and q1,i ∈ Rn.
The next theorem states the SMP for problem (3), see [5, Theorem 1.5].

Theorem 1. Let û ∈ A and Assumption 1 hold. Then û is optimal for problem (3) if and only if the
solution (X̂, p̂1, q̂1) of the FBSDE

dX̂ = [AX̂ +Bû]dt+
∑d

i=1[CiX̂ +Diû]dWi,

X̂(0) = x0,

dp̂1 = −[A>p̂1 +
∑d

i=1C
>
i q̂1,i − fx(t, X̂, û)]dt+

∑d
i=1 q̂1,idWi,

p̂1(T ) = −gx(X̂(T )),

(5)
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satisfies the condition

H(t, X̂(t), û(t), p̂1(t), q̂1(t)) = max
u∈K

H(t, X̂(t), u, p̂1(t), q̂1(t)), (6)

for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. Moreover, if fu exists, then (6) is equivalent to

[û− u]>[B>p̂1 +
d∑
i=1

D>i q̂1,i − fu(t, X̂, û)] ≥ 0, ∀u ∈ K.

The processes p̂1 ∈ S(0, T ;Rn) and q̂1,i ∈ H(0, T ;Rn), i = 1, . . . , d, satisfy a BSDE, called the
adjoint equation associated with the admissible pair (X̂, û). The proof of Theorem 1 is standard and
therefore omitted.

Remrk 1. In [5] f is assumed to be C1 in u as well as in x, which simplifies Assumption 1 with partial
derivatives instead of difference quotient, but they are all used in the proofs to ensure the monotone
convergence theorem can be applied, while the key ideas and proofs are largely the same, see [5] and
[15] for details. Since f is continuous, but not necessarily C1 in u, we need to use subdifferential in
convex analysis to characterize the optimal solution, instead of simple gradient if f is C1 in u, see
examples in Section 4. In [5] there is a state constraint X(t) ∈ V as well as control constraint u(t) ∈ U
for all t ∈ [0, T ]. For X satisfying a linear SDE (1), one cannot in general ensure X(t) ∈ V for all t,
additional conditions are needed for admissible controls u, see (77), (79) etc. in [5]. In contrast,
we assume f, g are well-defined on the whole space and there is no constraint on state process X,
so we do not need additional conditions. One drawback of our model is that we cannot deal with the
investment-consumption model discussed in [5] as utility functions are only defined on the positive real
line, not the whole space, and do not satisfy our assumptions. However, the key objective of our paper
is different from that of [5]: we aim to solve the primal problem indirectly with the dual approach when
it is too difficult or complicated to solve it directly with the primal SMP, see examples in Section 4
where the dual method is used to find the optimal solution, which would otherwise be highly difficult
or impossible if one works directly with the primal problem.

We now formulate the dual problem. Since X is driven by Brownian motions Wi, i = 1, . . . , d, as
well as control process u, the dual process Y should satisfy the following SDE:

dY = α̃dt+

d∑
i=1

βidWi

with the initial condition Y (0) = y, where α̃, βi ∈ H(0, T ;Rn) and y ∈ Rn are to be determined. Since
X satisfies SDE (1), using Ito’s lemma, we have

d(X>Y ) = [X>(A>Y + α̃+
d∑
i=1

C>i βi) + u>(B>Y +

d∑
i=1

D>i βi)]dt+

d∑
i=1

[X>βi +Y >(CiX +Diu)]dWi.

Let α = A>Y + α̃+
∑d

i=1C
>
i βi. Then the dual process Y satisfies the following SDE:

dY = [α−A>Y −
d∑
i=1

C>i βi]dt+
d∑
i=1

βidWi (7)

with Y (0) = y, where α, βi ∈ H(0, T ;Rn) and y ∈ Rn are to be determined. There is a unique
solution Y to SDE (7) for given (y, α, β1, . . . , βd). We call (α, β1, . . . , βd) the admissible dual control
and (Y, α, β1, . . . , βd) the admissible dual pair. Since

d(X>Y ) = [X>α+ u>β]dt+
d∑
i=1

[X>βi + Y >(CiX +Diu)]dWi,
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where

β = B>Y +

d∑
i=1

D>i βi, (8)

the process X>(t)Y (t) −
∫ t

0

[
X>α+ u>β

]
ds is a local martingale, and a supermartingale if it is

bounded below by an integrable process, which gives

E

[
X(T )>Y (T )−

∫ T

0
(X>α+ u>β)ds

]
≤ x>0 y. (9)

The problem (3) can be written equivalently as

sup
u
E

[
−
∫ T

0
f̃(t,X, u)dt− g(X(T ))

]
,

where f̃(t, x, u) = f(t, x, u) + ΨK(u) and ΨK(u) = 0 if u ∈ K and +∞ otherwise.
Define dual functions φ : Ω× [0, T ]× Rn × Rm → R by

φ(t, α, β) := sup
x,u

{
x>α+ u>β − f̃(t, x, u)

}
(10)

and h : Ω× Rn → R by

h(y) := sup
x

{
−x>y − g(x)

}
. (11)

We have φ and h are proper closed convex functions [2, Proposition 1.1.6, Proposition 1.6.1].
Combining (9), (10), and (11) yields the following inequality

sup
u
E

[
−
∫ T

0
f̃(t,X, u)dt− g(X(T ))

]
≤ inf

y,α,β1,...,βd

{
x>0 y + E

[∫ T

0
φ(t, α, β)dt+ h(Y (T ))

]}
. (12)

The dual control problem is defined by

inf
y,α,β1,...,βd

{
x>0 y + E

[∫ T

0
φ(t, α, β)dt+ h(Y (T ))

]}
, (13)

where Y satisfies SDE (7) and β is given by (8). We can solve (13) in two steps: first, for fixed y,
solve a stochastic control problem:

V (y) := inf
α,β1,...,βd

E

[∫ T

0
φ(t, α,B>Y +

d∑
i=1

D>i βi)dt+ h(Y (T ))

]
,

and, second, solve a finite dimensional optimization problem:

inf
y

{
x>0 y + V (y)

}
. (14)

Remrk 2. If inequality (12) holds as an equality, then there is no duality gap and solving the dual
problem is equivalent to solving the primal problem. The dual problem can be more difficult as well as
easier than the primal one. No matter the dual problem can be solved or not, it would always provide
useful information on the bounds of the value function. From (12), we have a lower bound

inf
u
E

[∫ T

0
f̃(t,X, u)dt+ g(X(T ))

]
≥ −

(
x>0 y + E

[∫ T

0
φ(t, α, β)dt+ h(Y (T ))

])
as well as an obvious upper bound

inf
u
E

[∫ T

0
f̃(t,X, u)dt+ g(X(T ))

]
≤ E

[∫ T

0
f̃(t,X, u)dt+ g(X(T ))

]
for all admissible controls u and y, α, β1, . . . βd. If one can make the gap between the lower and upper
bounds sufficiently small, then one has found a good approximation to the value function and the
optimal control. Note that it would be impossible to get the lower bound without the dual formulation,
see [15, 25] for detailed discussions and applications in mathematical finance.

5



The Hamiltonian H̃ : Ω× [0, T ]×Rn ×Rn ×Rnd ×Rn ×Rnd → R for the dual problem is defined
by

H̃(t, y, α, β1, . . . , βd, p2, q2) := p>2 (α−A>y −
d∑
i=1

C>i βi) +
d∑
i=1

q>2,iβi − φ(t, α,B>y +
d∑
i=1

D>i βi), (15)

where p2 ∈ Rn and q2 := (q2,1, . . . , q2,d) and q2,i ∈ Rn.
To state the SMP for the dual problem, we need a similar assumption to that of the primal

problem.

Assumption 2. Let (Ŷ , α̂, β̂1, . . . , β̂d) be a given admissible dual pair. There exist Z ∈ P(0, T ;R)

and an FT -measurable random variable Z̃ satisfying E[
∫ T

0 |Z(t)|dt] < ∞, E[|Z̃|] < ∞ such that for
any admissible dual pair (Y, α, β1, . . . , βd),

Z(t) ≥ φ(t, α̂+ εα, β̂ + εβ)− φ(t, α̂, β̂)

ε
,

Z̃ ≥ h(Ŷ (T ) + εY (T ))− h(Ŷ (T ))

ε

for (P⊗Leb)-a.e. (ω, t) ∈ Ω×[0, T ] and ε ∈ (0, 1]. Furthermore, h is C1 and satisfies E[|hy(Y (T ))|2] <
∞.

A sufficient condition for Assumption 2 to hold is that φ, h are C1 and |φα(t, α, β)|+ |φβ(t, α, β)| ≤
C(1 + |α|+ |β|) and |hy(y)| ≤ C(1 + |y|) for all t, α, β, y and some constant C.

Remrk 3. Assumptions 1 and 2 are equivalent and can be derived from each other if we impose some
additional conditions. For example, if f, g are C2 with bounded second derivatives and K is the whole
space and (

fxx fxu
fux fuu

)
(t, x, u) ≥ cIn+m, gxx(x) ≥ cIn

for all t, x, u and some positive constant c, where In, In+m are identity matrices, then both Assumptions
1 and 2 are satisfied. It is easy to see Assumption 1 holds as bounded second derivatives imply first
order derivatives have linear growth. To see Assumption 2 holds, note that by definition, h(y) =
−x̄>y − g(x̄), where x̄ is the maximum point of −x>y − g(x) over all x and satisfies the equation
−y − gx(x̄) = 0, which gives hy(y) = −x̄. Furthermore, we have −In − gxx(x̄)∂x̄∂y = 0, combining with

gxx(x) ≥ cIn for all x, we have ∂x̄
∂y = −gxx(x̄)−1, a strictly negative definite matrix with bounded norm,

which implies hy has linear growth. The linear growth property of φα, φβ can be proved similarly. For
general functions f, g and set K, it is less clear if Assumptions 1 and 2 are equivalent, but they are
clearly related as φ, f and h, g are conjugate functions to each other.

If φ is C1 in β, and under Assumption 2, then the adjoint equation associated with the dual
problem is given by

dp2 = −H̃y(t, Y, α, β1, . . . , βd, p2, q2)dt+
∑d

i=1 q2,idWi,

= [Ap2 +Bφβ(t, α,B>Y +
∑d

i=1D
>
i βi)]dt+

∑d
i=1 q2,idWi,

p2(T ) = −hy(Y (T )).

(16)

We can characterize the dual optimal control (α̂, β̂1, . . . , β̂d) with SDE (7) and BSDE (16) and the
maximum condition

H̃(t, Ŷ (t), α̂(t), β̂1(t), . . . , β̂d(t), p̂2(t), q̂2(t)) = max
α,β1,...,βd

H̃(t, Ŷ (t), α, β1, . . . , βd, p̂2(t), q̂2(t))

and ŷ is determined from (14).
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Remrk 4. If f, g in (2) are strictly convex quadratic functions and K is the whole space, then φ, h
are also strictly convex quadratic functions. The optimal primal and dual controls can be expressed as
affine functions of their corresponding state and adjoint processes, and the primal and dual FBSDEs
can be simplified to fully coupled linear FBSDEs with random coefficients and the relation of their
solutions can be explicitly specified, see [23] for details on solvability of linear FBSDEs. If all coeffi-
cients of the model are deterministic, then these linear FBSDEs can be further reduced to equivalent
Riccati ordinary differential equations and their solutions can be recovered from each other.

3 Transformed Dual Problem and Primal-Dual Relation

The BSDE (16) for the dual problem requires φ to be differentiable in β. If that condition is
not satisfied, then (16) is not well defined in the usual sense of BSDEs. One may try to extend
the definition of BSDE and replace the derivative with a set-valued mapping as commonly used in
deterministic nonsmooth control and optimization, see [6, 22], and also [1] for some recent work on
set-valued BSDE, but this is far beyond the scope of this paper. We instead to focus on solving the
dual problem with a transformation method for nonsmooth function φ.

The key reason we need φ to be differentiable in β is that β defined in (8) depends on Y and the
adjoint equation (16) involves the differentiation of the dual Hamiltonian H̃ in (15) with respect to
state variable y. If we can change β to a control variable, independent of Y , then the differentiability
issue of φ would disappear. This simple idea leads us to reformulate the dual problem to an equivalent
one with different dual controls.

We replace one of dual controls βi by β and need a condition on Di(t) ∈ Rn×m to do that. Without
loss of generality, we choose i = d and assume the following condition:

Assumption 3. n ≤ m, rank(Dd(t)) = n, and D†d(t) := D>d (t)(Dd(t)D
>
d (t))−1 is uniformly bounded

for 0 ≤ t ≤ T .

D†d ∈ Rm×n is the Moore-Penrose inverse of Dd and satisfies DdD
†
d = In. From (8), we then obtain

βd = (D†d)
>(β −B>Y −

d−1∑
i=1

D>i βi). (17)

Using (7) and (17), the dual process Y satisfies the following SDE:
dY = [α−A>Y −

∑d−1
i=1 C

>
i βi − C>d (D†d)

>(β −B>Y −
∑d−1

i=1 D
>
i βi)]dt

+
∑d−1

i=1 βidWi + (D†d)
>(β −B>Y −

∑d−1
i=1 D

>
i βi)dWd,

Y (0) = y.

(18)

Due to Assumption 3 and the uniform boundedness of the primal state coefficients, there exists a
unique solution Y ∈ S(0, T ;Rn), see [24, Theorem 1.6.16]. The dual problem (13) is equivalent to

Minimize Ψ̃(y, α, β1, . . . , βd−1, β) := x>0 y + E
[∫ T

0 φ(t, α, β)dt+ h(Y (T ))
]
. (19)

The adjoint equation associated with (y, α, β1, . . . , βd−1, β) and Y in (18) is given by{
dp2 = [(A−BD†dCd)p2 +BD†dq2,d]dt+

∑d
i=1 q2,idWi,

p2(T ) = −hy(Y (T )).

Due to Assumption 2 and the uniform boundedness of the primal state coefficients, there exists a
unique solution p2 ∈ S(0, T ;Rn), q2,i ∈ H(0, T ;Rn), i = 1, . . . , d, see [24, Theorem 7.2.2].

The next theorem states the SMP for the transformed dual problem (19).
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Theorem 2. Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be admissible dual controls. Then (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is
optimal for the dual problem (19) if and only if the solution (Ŷ , p̂2, q̂2) of the FBSDE

dŶ = [α̂−A>Ŷ −
∑d−1

i=1 C
>
i β̂i − C>d (D†d)

>(β̂ −B>Ŷ −
∑d−1

i=1 D
>
i β̂i)]dt

+
∑d−1

i=1 β̂idWi + (D†d)
>(β̂ −B>Ŷ −

∑d−1
i=1 D

>
i β̂i)dWd,

Ŷ (0) = ŷ,

dp̂2 = [(A−BD†dCd)p̂2 +BD†dq̂2,d]dt+
∑d

i=1 q̂2,idWi,

p̂2(T ) = −hy(Ŷ (T ))

(20)

satisfies the conditions
p̂2(0) = x0,

(p̂2, D
†
dq̂2,d −D†dCdp̂2) ∈ ∂φ(t, α̂, β̂),

D†dq̂2,d −D†dCdp̂2 ∈ K,
DiD

†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d = 0, ∀i = 1, . . . , d− 1,

(21)

for (P ⊗Leb)-a.e. (ω, t) ∈ Ω× [0, T ], where ∂φ(t, α̂, β̂) is the subdifferential of φ(t, ·, ·) at (α̂(t), β̂(t)).

Proof. See Appendix.

We next state the results on primal-dual relation. We first make the following assumption:

Assumption 4. The function gx(ω, ·) : Rn → Rn is a bijection for any ω such that z = −gx(x) if
and only if x = −hy(z); that is, the inverse function of −gx is −hy.

We can recover the primal optimal solution from that of the dual problem.

Theorem 3. Suppose (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem (19). Let (Ŷ , p̂2, q̂2) be
the associated state and adjoint processes in Theorem 2. Define

û(t) := D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t), t ∈ [0, T ]. (22)

Then û is the optimal control for the primal problem (3). For t ∈ [0, T ], the optimal state and
associated adjoint processes satisfy

X̂(t) = p̂2(t),

p̂1(t) = Ŷ (t),

q̂1,i(t) = β̂i(t), ∀i = 1, . . . , d− 1,

q̂1,d(t) = (D†d)
>(t)(β̂(t)−B>(t)Ŷ (t)−

∑d−1
i=1 D

>
i (t)β̂i(t)).

(23)

Proof. Suppose that (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem. By Theorem 2, the process
(Ŷ , p̂2, q̂2) solves FBSDE (20) and satisfies conditions (21).

Define û(t) and (X̂(t), p̂1(t), q̂1(t)) as in (22) and (23), respectively. From Theorem 2 and conditions
(21),

û(t) = D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t) ∈ K, P -a.s.

and

(X̂(t), û(t)) = (p̂2(t), D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t)) ∈ ∂φ(t, α̂(t), β̂(t)),

which is equivalent to

(α̂(t), β̂(t)) ∈ ∂f̃(t, X̂(t), û(t)).
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Since f̃(t, x, u) = f(t, x, u) + ΨK(u) and f is C1 in x, we have

α̂ = fx(t, X̂, û), β̂ ∈ ∂uf(t, X̂, û) +NK(û) (24)

for (P ⊗Leb)-a.e. (ω, t) ∈ Ω× [0, T ], where ∂uf(t, X̂, û) is the subdifferential of f with respect to u at
(t, X̂(t), û(t)) and NK(û(t)) = {p ∈ Rm : p>(u− û(t)) ≤ 0,∀u ∈ K} is the normal cone of K at û(t).

Using the last condition in (21) and (22) yields

q̂2,i = DiD
†
dq̂2,d −DiD

†
dCdp̂2 + Cip̂2 = Diû+ Cip̂2. (25)

Combining (22), (23), (24), and (25) yields

dX̂ = dp̂2

= [(A−BD†dCd)p̂2 +BD†dq̂2,d]dt+

d∑
i=1

q̂2,idWi

= [AX̂ +Bû]dt+
d∑
i=1

[CiX̂ +Diû]dWi

and

dp̂1 = dŶ

= [α̂−A>Ŷ −
d−1∑
i=1

C>i β̂i − C>d (D†d)
>(β̂ −B>Ŷ −

d−1∑
i=1

D>i β̂i)]dt

+
d−1∑
i=1

β̂idWi + (D†d)
>(β̂ −B>Ŷ −

d−1∑
i=1

D>i β̂i)dWd

= [fx(t, X̂, û)−A>p̂1 −
d∑
i=1

C>i q̂1,i]dt+

d∑
i=1

q̂1,idWi.

We check if the initial condition X̂(0) = x0 and terminal condition p̂1(T ) = −gx(X̂(T )) are satisfied.
From the first condition in (21), p̂2(0) = x0. Since the inverse function of −gx is −hy via Assumption
4, then

−hy(Ŷ (T )) = p̂2(T ) = X̂(T ),

which implies that Ŷ (T ) = −gx(X̂(T )). Hence, (X̂, p̂1, q̂1) solves the primal FBSDE (5).
Combining (23) and (24) yields

B>p̂1 +

d∑
i=1

D>i q̂1,i = B>Ŷ +

d−1∑
i=1

D>i β̂i +D>d q̂1,d = β̂ ∈ ∂uf̃(t, X̂, û),

for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ], that is,

0 ∈ −(B>p̂1 +
d∑
i=1

D>i q̂1,i) + ∂uf(t, X̂, û) +NK(û),

which shows û is the minimum point of −H(t, X̂, u, p̂1, q̂1) over u ∈ K. Hence, condition (6) is
satisfied. Using Theorem 1, û is optimal for the primal problem.

We can also recover the dual optimal solution from that of the primal problem.
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Theorem 4. Suppose that û ∈ A is optimal for the primal problem (3). Let (X̂, p̂1, q̂1) be the
associated state and adjoint processes in Theorem 1. Define

ŷ = p̂1(0),

α̂(t) = fx(t, X̂(t), û(t)),

β̂i(t) = q̂1,i(t), ∀i = 1, . . . , d− 1,

β̂(t) = B>(t)p̂1(t) +
∑d

i=1D
>
i (t)q̂1,i(t).

(26)

Then (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is the optimal control of the dual problem (19). For t ∈ [0, T ], the optimal
dual state process and associated adjoint processes satisfy

Ŷ (t) = p̂1(t),

p̂2(t) = X̂(t),

q̂2,i(t) = Di(t)û(t) + Ci(t)X̂(t), ∀i = 1, . . . , d− 1,

D†d(t)q̂2,d(t) = û(t) +D†d(t)Cd(t)X̂(t).

(27)

Proof. Suppose that û ∈ A is optimal for the primal problem. By Theorem 1, the process (X̂, p̂1, q̂1)
solves the primal FBSDE (5) and satisfies condition (6).

Define (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) and (Ŷ , p̂2, q̂2) as in (26) and (27), respectively. Then,

dŶ = dp̂1

= −[A>p̂1 +
d∑
i=1

C>i q̂1,i − fx(t, X̂, û)]dt+
d∑
i=1

q̂1,idWi

= −[A>Ŷ +
d−1∑
i=1

C>i β̂i + C>d (D†d)
>(β̂ −B>Ŷ −

d−1∑
i=1

D>i β̂i)− α̂]dt

+

d−1∑
i=1

β̂idWi + (D†d)
>(β̂ −B>Ŷ −

d−1∑
i=1

D>i β̂i)dWd

and

dp̂2 = dX̂

= [AX̂ +Bû]dt+

d∑
i=1

[CiX̂ +Diû]dWi

= [Ap̂2 −BD†dCdp̂2 +BD†dq̂2,d]dt+
d∑
i=1

q̂2,idWi.

We check if the initial condition Ŷ (0) = ŷ and terminal condition p̂2(T ) = −hy(Ŷ (T )) are satisfied.
From the first definition in (26), ŷ = p̂1(0). Since −gx(X̂(T )) = p̂1(T ) = Ŷ (T ), then from Assumption
4, X̂(T ) = −hy(Ŷ (T )). Hence, (Ŷ , p̂2, q̂2) solves the dual FBSDE (20).

From (27),

p̂2(0) = X̂(0) = x0

and

D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t) = û(t) ∈ K,

which are the first two conditions of (21). Using condition (6), the concavity of H defined in (4) and
(26), we have,

0 ∈ ∂u(−H(t, X̂, u, p̂1, q̂1)) = −(B>p̂1 +

d∑
i=1

D>i q̂1,i) + ∂uf̃(t, X̂, û),
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which implies that β̂ ∈ ∂uf̃(X̂(t), û(t)). Consequently, from the second definition in (26),

(α̂(t), β̂(t)) ∈ ∂f̃(t, X̂(t), û(t)),

which, due to f̃ being a proper closed convex function, is equivalent to

(p̂2(t), D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t)) ∈ ∂φ(t, α̂(t), β̂(t)),

the third condition of (21). The fourth condition of (21) is immediate from the definition of q̂2,i(t)
and q̂2,d(t) in (27).

4 Examples

In this section, we construct some multidimensional examples to show that solving the primal
problem via its dual formulation is easier than solving it directly. Each example has at least one of
the following features: control constraint, nonsmooth running cost, and random coefficients.

Assume 2 ≤ n < m, d = 1, rank(D(t)) = n, the Moore-Penrose inverse of D(t) is given by
D†(t) = D(t)>(D(t)D(t)>)−1, B,D,D† are uniformly bounded processes, and X satisfies the SDE{

dX = [AX +Bu] dt+ [CX +Du] dW, t ∈ [0, T ]

X(0) = x0 ∈ Rn,
(28)

where A = −1
2BD

†(D†)>B>, C = −(D†)>B>, u(t) ∈ K, a closed convex set in Rm. Consider the
following problem

Minimize J(u) := E

[∫ T

0
f(u(t))dt+

1

2
X(T )>X(T )

]
. (29)

We suppress the time variable t from now on for simplicity of notation. This is a special case of model
(1) with Cd = C, Dd = D, D†d = D†, Wd = W , g(x) = 1

2x
>x, and f is a convex function.

We assume the following condition for the coefficients of SDE (28):

Assumption 5. The matrix B satisfies B −BD†D 6= 0.

Remrk 5. Assumption 5 implies that B 6= D as otherwise B − BD†D = 0 from the property of the
Moore-Penrose inverse. Since D has full row rank n, then DD† = In. We also know that D†D 6= Im,
which can be easily proved as follows: Since n < m, the columns of D are linearly dependent and there
exists a nonzero vector z ∈ Rm such that Dz = 0. Now assume D†D = Im, then z = D†Dz = 0, a
contradiction, therefore, D†D 6= Im.

We may attempt several methods to solve (29). The first one is to solve (29) directly via the cost
functional. Using Itô’s formula to X>X yields

d[X>X] = [2X>(B −BD†D)u+ u>D>Du]dt+ martingale.

Hence,

J(u) =
1

2
x>0 x0 + E

[∫ T

0
[f(u) +X>(B −BD†D)u+

1

2
u>D>Du]dt

]
.

The second one is to use the SMP and maximize the Hamiltonian over u ∈ K. Write q1 := q1,d.
The Hamiltonian H : Ω× [0, T ]× Rn × Rm × Rn × Rn → R for the primal problem is given by

H(ω, t, x, u, p1, q1) := [Ax+Bu]>p1 + [Cx+Du]>q1 − f(u), (30)

where (p1, q1) satisfies the adjoint equation, given by{
dp1 = −[A>p1 + C>q1]dt+ q1dW,

p1(T ) = −X(T ).
(31)
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The control û ∈ K is optimal if and only if

H(t, X̂, û, p1, q1) = max
u∈K

H(t, X̂, u, p1, q1). (32)

The third one is to apply the dynamic programming principle when all coefficients are determin-
istic. Define the value function v as

v(t, x) = inf
u∈A[t,T ]

E

[∫ T

t
f(u(s))ds+

1

2
X(T )>X(T )

∣∣∣X(t) = x

]
, (t, x) ∈ [0, T )× Rn,

where A[t, T ] := {u ∈ H(t, T ;Rm) : u(s) ∈ K for s ∈ [t, T ], a.e.}. The HJB equation is given by{
vt(t, x) + infu∈K

{
vx(t, x)>(Ax+Bu) + 1

2(Cx+Du)>vxx(t, x)(Cx+Du) + f(u)
}

= 0,

v(T, x) = g(x).
(33)

The fourth one is to solve the reformulated dual problem (19). The dual functions φ(t, α, β) and
h(y), defined in (10) and (11), are given by

φ(t, α, β) = sup
x,u∈K

{
x>α+ u>β − f(u)

}
,

and

h(y) = sup
x

{
−x>y − 1

2
x>x

}
=

1

2
y>y.

Since there are no constraints on the state process and the running cost is free of the state variable,
then the function φ(t, α, β) = +∞ if α 6= 0. To make the dual objective function finite, we must have
α = 0. We then write

φ(β) := φ(t, 0, β) = sup
u

{
u>β − f̃(u)

}
.

The dual state process Y satisfies the SDE (see (18)){
dY =

[
−A>Y − C>(D†)>(β −B>Y )

]
dt+ (D†)>[β −B>Y ]dW,

Y (0) = y,
(34)

and the dual problem is defined by (see (19))

Minimize Ψ̃(y, β) = x>0 y + E

[∫ T

0
φ(β(t))dt+

1

2
Y (T )>Y (T )

]
.

Using Itô’s formula to Y >Y yields

d[Y >Y ] = β>D†(D†)>βdt+ martingale.

The dual objective function Ψ̃ can then be written as

Ψ̃(y, β) = x>0 y +
1

2
y>y + E

[∫ T

0
(φ(β) +

1

2
β>D†(D†)>β)dt

]
. (35)

We next discuss different forms of f and K and show the usefulness of the dual formulation in
finding the optimal solutions. Denote by u = (u1, . . . , um)> ∈ Rm and y+ = max(0, y).
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4.1 Zero running cost and control constraint

Assume f(u) = 0 and K = [−1, 1]m. There is no running cost but there is a bounded control
constraint set.

We first use the cost functional method. Combining n < m, D†D 6= Im, and Assumption 5 implies
that we cannot immediately infer that the minimum of the cost functional J in (29) can be attained
at u = 0 due to the presence of the cross term.

We next use the primal SMP method. Since f = 0, the Hamiltonian H is a linear function of
u. From K = [−1, 1]m and (32), the optimal control û = sgn(B>p1 + D>q1), a bang-bang control.
Substituting û into SDE (28) and BSDE (31), we then need to solve a fully coupled nonlinear FBSDE.
Moreover, if B>p1 + D>q1 = 0, then the Hamiltonian H is free of u and does not provide any
information for the form of û.

We then use the HJB method. However, solving the PDE (33) with an ansatz solution is difficult
since it is multidimensional and there is a control constraint. The ansatz method may work if the
control does not have any constraint. In the presence of the running cost function f that is not
quadratic, the ansatz method is still difficult even if there is no control constraint.

We now try the dual method. The dual function φ has the following form

φ(β) = sup
u∈[−1,1]m

{u>β} =
m∑
i=1

sup
ui∈[−1,1]

{uiβi} =
m∑
i=1

|βi|.

Note that h, φ satisfy Assumption 2. The minimum of the dual objective function Ψ̃ in (35) is clearly
attained uniquely at y = −x0 and β = 0. Hence, (ŷ, β̂) = (−x0, 0) is the dual optimal control. By
Theorem 2, the solution (Ŷ , p̂2, q̂2) to the following dual FBSDE

dŶ = −1
2BD

†(D†)>B>Ŷ dt− (D†)>B>Ŷ dW,

Ŷ (0) = ŷ,

dp̂2 = [1
2BD

†(D†)>B>p̂2 +BD†q̂2]dt+ q̂2dW,

p̂2(T ) = −Ŷ (T ),

(36)

satisfies the conditions {
p̂2(0) = x0,

D†q̂2 +D†(D†)>B>p̂2 ∈ ∂φ(0) = [−1, 1]m.
(37)

The solution to the SDE in (36) is given by (see [24, Theorem 1.6.14])

Ŷ (t) = Φ1(t)ŷ = −Φ1(t)x0,

where Φ1(t) ∈ Rn×n is the unique solution of the following matrix-valued SDE{
dΦ1 = −1

2BD
†(D†)>B>Φ1dt− (D†)>B>Φ1dW,

Φ1(0) = In.
(38)

Define Φ2(t) ∈ Rn×n that satisfies{
dΦ2 = [1

2BD
†(D†)>B>Φ2 + (BD†)2Φ2]dt+BD†Φ2dW,

Φ2(0) = In.

Since the primal state coefficients are uniformly bounded, then Φ1,Φ2 ∈ S(0, T ;Rn×n). The solution
to the BSDE in (36) is given by (see [24, Theorem 7.2.2])

p̂2(t) = −Φ2(t)E[Φ>1 (T )Ŷ (T )|Ft] = Φ2(t)E[Φ>1 (T )Φ1(T )|Ft]x0.

Using Itô’s formula to Φ>1 Φ1 yields

d[Φ>1 Φ1] = −[Φ>1 (D†)>B>Φ1 + Φ>1 BD
†Φ1]dW.
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Since Φ1 ∈ S(0, T ;Rn) and B and D† are uniformly bounded, then

E

[
(

∫ T

0

∣∣∣Φ>1 (D†)>B>Φ1 + Φ>1 BD
†Φ1

∣∣∣2 ds) 1
2

]
<∞.

By the BDG inequality, ∫ t

0
[Φ>1 (D†)>B>Φ1 + Φ>1 BD

†Φ1]dW (s), 0 ≤ t ≤ T

is a uniformly integrable martingale, so Φ>1 Φ1 is a martingale. Using Itô’s formula to Φ>1 Φ2 yields
d[Φ>1 Φ2] = 0, therefore, Φ>1 (t)Φ2(t) = Φ>1 (0)Φ2(0) = In and Φ2(t) = [Φ>1 (t)]−1 for all t ∈ [0, T ], P -a.s.
We then obtain

p̂2(t) = Φ2(t)Φ>1 (t)Φ1(t)x0 = Φ1(t)x0,

which implies that p̂2 satisfies the following SDE{
dp̂2 = −1

2BD
†(D†)>B>p̂2dt− (D†)>B>p̂2dW,

p̂2(0) = x0.

Note that the initial condition p̂2(0) = x0 is exactly the first condition in (37). Comparing the
dynamics above with that of the BSDE in (36), we have q̂2 = −(D†)>B>p̂2. Hence,

D†q̂2 +D†(D†)>B>p̂2 = 0 ∈ [−1, 1]m,

which satisfies the second condition in (37). By Theorem 3, the optimal control for the primal problem
is given by

û = D†q̂2 +D†(D†)>B>p̂2 = 0

and the corresponding state process X̂ = p̂2, that is, X̂(t) = Φ1(t)x0 for t ∈ [0, T ].

Remrk 6. Suppose n < m and B = D. This does not satisfy Assumption 5. We can immediately
infer that the minimum of the cost functional (29) can be attained at û = 0. The corresponding primal
state process satisfies {

dX̂ = −1
2X̂dt− X̂dW,

X̂(0) = x0.

One can easily check with Itô’s formula that the solution is X̂(t) = exp(−t −W (t))x0. Solving the
primal problem via the dual problem also yields the same solution.

Remrk 7. Suppose n = m and B 6= kD, k ∈ R. Since D is a square matrix with full row rank, we have
D is nonsingular and D† = D−1. This does not satisfy Assumption 5 since B(Im −D†D) = 0. We
can also immediately infer that the optimal control of the primal problem is û = 0. The corresponding
primal state process is then{

dX̂ = −1
2BD

†(D†)>B>X̂dt− (D†)>B>X̂dW,

X̂(0) = x0,

or equivalently, X̂(t) = Φ1(t)x0, which is the same solution obtained via the dual problem.
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4.2 Nonsmooth running cost and no control constraint

Assume f(u) =
∑m

i=1[(ui−1)++(−ui−1)+] and K = Rm. The running cost is a convex nonsmooth
function and there are no control constraints.

Similar to the example in Section 4.1, the first method does not work since we cannot immediately
infer that the minimum of the cost functional J can be attained at u = 0.

From (32), the optimal control û ∈ Rm satisfies

max
u∈Rm

H(t, X̂, u, p1, q1) = [−1

2
BD†(D†)>B>X̂ +Bû]>p1 + [−(D†)>B>X̂ +Dû]>q1 − f(û).

Since H is not differentiable in u everywhere, the usual gradient method to find the maximum point
does not work here. For each i = 1, . . . ,m, three cases should be dealt with: ui < −1, ui ∈ [−1, 1],
and ui > 1. This implies that the maximization of the Hamiltonian via a combinatorial approach
deals with 3m cases in total.

Although there are no constraints imposed on the control variable, solving the PDE (33) using an
ansatz would still be difficult since it is multidimensional and the last term inside the infimum is not
differentiable with respect to u.

We now solve the primal problem via its dual problem. Function φ has the following form:

φ(β) = sup
u
{u>β − f(u)} =

m∑
i=1

sup
ui

{
uiβi − (ui − 1)+ − (−ui − 1)+

}
.

Write θi = {uiβi − (ui − 1)+ − (−ui − 1)+}. We deal with three cases.
Case I: Suppose −1 ≤ ui ≤ 1. Then,

sup
−1≤ui≤1

θi = sup
−1≤ui≤1

{uiβi} = |βi|.

Case II: Suppose ui > 1. Then,

sup
ui>1

θi = sup
ui>1
{ui(βi − 1) + 1} =

{
0, if βi ≤ 1,

∞, otherwise.

Case III: Suppose ui < −1. Then,

sup
ui<−1

θi = sup
ui<−1

{ui(βi + 1) + 1} =

{
0, if βi ≥ −1,

∞, otherwise.

Taking the maximum over all cases yields

sup
ui
θi =

{
|βi|, if −1 ≤ βi ≤ 1,

∞, otherwise.
= |βi|+ Ψ[−1,1](βi).

Therefore,

φ(β) =

m∑
i=1

[
|βi|+ Ψ[−1,1](βi)

]
.

The function φ satisfies Assumption 2. The dual function Ψ̃ can then be written as

Ψ̃(y, β) = x>0 y +
1

2
y>y +

1

2
E

[∫ T

0
[β>D†(D†)>β + 2

m∑
i=1

(|βi|+ Ψ[−1,1](βi))]dt

]
.

Similar to the example in Section 4.1, (ŷ, β̂) = (−x0, 0) is the dual optimal control, the primal optimal
control is û = 0 with the corresponding state process X̂(t) = Φ1(t)x0.
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4.3 Random coefficients

Assume the same state process (28), but with the following specifications:

B(t) = sinW (t)

[
1 1 1
1 1 1

]
and D(t) =

1

3

[
2 −1 1
−1 2 1

]
.

This implies that B is random, D is deterministic, and

D† =

1 0
0 1
1 1

 and B(Im −D†D) =
1

3
sinW (t)

[
1 1 −1
1 1 −1

]
.

Although sinW (t) = 0 for all W (t) = kπ, k ∈ R, the set on which B(Im − D†D) = 0 has measure
zero. Hence, Assumption 5 is satisfied. We can then rewrite the SDE (28) as{

dX(t) = [−4J sin2W (t)X(t) +B(t)u(t)]dt+ [−2J sinW (t)X(t) +D(t)u(t)] dW (t),

X(0) = x0 ∈ R2,

where J is the 2× 2 matrix of ones. Assume f(u) = 0 and K = [−1, 1]3. The corresponding solution
(Ŷ , p̂2, q̂2) to the dual optimal control (ŷ, β̂) = (−x0, 0) satisfies the FBSDE (36). The solution to the
SDE in (36) is given by Ŷ (t) = Φ3(t)ŷ, where Φ3 is the 2× 2 fundamental matrix satisfying{

dΦ3(t) = −4J sin2W (t)Φ3(t)dt− 2J sinW (t)Φ3(t)dW (t)

Φ3(0) = I2.
(39)

Due to the randomness in both coefficients, we cannot use the result in [17, page 101] where we
immediately obtain an explicit solution to the above SDE. However, the condition of having constant
and commuting coefficients is not a necessary condition. Write

Φ̂3(t) := exp(−2JZ(t)) =

∞∑
k=0

1

k!
(−2J)kZ(t)k,

where {
dZ(t) = 4 sin2W (t)dt+ sinW (t)dW (t),

Z(0) = 0.

We can further simplify the infinite series by diagonalisation of matrix J. The eigenvalues of J are 0 and
2 with respective eigenvectors v1 = (1,−1)> and v2 = (1, 1)>. We can decompose J as J = PDP−1,
where

P =

[
1 1
−1 1

]
, D =

[
0 0
0 2

]
, P−1 =

1

2

[
1 −1
1 1

]
.

Hence,

Φ̂3(t) =
∞∑
k=0

1

k!
(−2Z(t))kPDkP−1 = P

[
0 0

0 e−4Z(t)

]
P−1 =

1

2
e−4Z(t)J.

We want to show that Φ̂3 is the solution of (39). Using Itô’s formula to Φ̂3 yields

dΦ̂3(t) =
1

2
J[e−4Z(t)(−4dZ(t)) +

1

2
e−4Z(t)(16 sin2W (t))dt]

= Φ̂3(t)
[
−4 sin2W (t)dt− 2 sinW (t)dW (t)

]
,

which proves that Φ̂3 is indeed the solution of (39). We obtain û = 0 and X̂(t) = Φ3(t)x0.
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4.4 Nonsmooth running cost and control constraint

In all previous examples, we have the optimal control û = 0. We now construct an example with
nonzero optimal control û. Assume that the state process X satisfies (28) with A = −1

2BD
†(D†)>B>,

C = −(D†)>B> and K = [−1, 1]m. Choose a vector κ ∈ Rm satisfying |(D†)>κ| > ‖(D†)>‖|e|, where
e ∈ Rm is a vector with all components equal to 1 and ‖(D†)>‖ is the matrix norm of (D†)>. (The
existence of such a κ is guaranteed, for example, we may choose κ = λe with λ a sufficiently large
number.) The objective function is given by

J(u) := E

[∫ T

0
f(u(t))dt+

1

2
X(T )>X(T ) +X0(T )>X(T )

]
, (40)

where f(u) =
∑m

i=1 |ui| and X0 is the solution of the linear SDE

dX0 = [AX0 + C>(D†)>κ]dt+ [CX0 − (D†)>κ]dW

with the initial condition X0(0) = 0. The solution X0 is given by

X0(t) = Φ1(t)

∫ t

0
Φ1(s)−1(C> + C)(D†)>κ)ds− Φ1(t)

∫ t

0
Φ1(s)−1(D†)>κdW (s), 0 ≤ t ≤ T,

and Φ1(t) is the n×n matrix solution of SDE (38) at time t, see [24, Theorem 1.6.14]. Since X0(T ) is
a random variable, the terminal cost function g(x) = 1

2x
>x+X0(T )>x is not a deterministic function

and the HJB approach is not applicable unless one considers a new state variable Y := (X,X0), the
resulting HJB equation might not be solvable due to the dimension, even though X0 is not controlled.
We may use the SMP to solve the problem. The adjoint equation is given by{

dp1 = −[A>p1 + C>q1]dt+ q1dW,

p1(T ) = −(X(T ) +X0(T )).
(41)

The optimal control û(t) is the maximum point of H(t,X(t), u, p(t), q(t)) over u ∈ K, where H is
the Hamiltonian function, defined by (30). We need to solve a constrained optimization problem
to find û(t) that depends on X(t), p(t), q(t) but has no closed-form expression in the presence of
nondifferentiable function f and constraint set K. SDE (28), BSDE (41), and the maximum condition
(32) form a fully coupled nonlinear FBSDE, highly difficult to solve and inconceivable to ansatz the
optimal control û.

We now try to solve the problem with the dual method. Simple calculus shows that the dual
functions of f and g are given by

φ(β) =
m∑
i=1

[(βi − 1)+ + (−βi − 1)+]

and

h(y) =
1

2
(y +X0(T ))>(y +X0(T )).

The dual state process Y satisfies SDE (34) and the dual problem is given by

Minimize Ψ̃(y, β) = x>0 y + E

[∫ T

0
φ(β(t))dt+ h(Y (T ))

]
.

Define Ȳ (t) = Y (t) +X0(t) for t ∈ [0, T ]. Then Ȳ satisfies SDE

dȲ = [−1

2
BD†(D†)>B>Ȳ +BD†(D†)>(β − κ)]dt+ [−(D†)>B>Ȳ + (D†)>(β − κ)]dW.

Using Itô’s formula to Ȳ >Ȳ yields

d[Ȳ >Ȳ ] = (β − κ)>D†(D†)>(β − κ)dt+ martingale.
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Noting that h(Y (T )) = 1
2 Ȳ (T )>Ȳ (T ), we can write the dual objective function equivalently as

Ψ̃(y, β) = x>0 y +
1

2
y>y + E

[∫ T

0
(φ(β) +

1

2
(β − κ)>D†(D†)>(β − κ))dt

]
.

The dual optimal solution is given by ŷ = −x0 and β̂(t) that is the minimum point of the convex
function φ(β) + 1

2(β − κ)>D†(D†)>(β − κ) over β ∈ Rm for t ∈ [0, T ]. A necessary and sufficient

optimality condition for β̂(t) is
0 ∈ ∂φ(β̂) +D†(D†)>(β̂ − κ),

where ∂φ(β̂) is the subdifferential of φ at β̂, given by

∂φ(β̂) =
m∏
i=1

∂[(β̂i − 1)+ + (−β̂i − 1)+]

and

∂[(β̂i − 1)+ + (−β̂i − 1)+] =



{−1}, β̂i < −1

[−1, 0], β̂i = −1

{0}, β̂i ∈ (−1, 1)

[0, 1], β̂i = 1

{1}, β̂i > 1.

We now show D†(D†)>(β̂ − κ) 6= 0. Assume the contrary, that is, D†(D†)>(β̂ − κ) = 0, then
0 ∈ ∂φ(β̂), which implies |β̂i| ≤ 1 for i = 1, . . . ,m. On the other hand, from DD† = In, we
have (D†)>(β̂ − κ) = 0, that is, (D†)>β̂ = (D†)>κ, which implies |(D†)>β̂| = |(D†)>κ|, however,
|(D†)>β̂| ≤ ‖(D†)>‖|β̂| ≤ ‖(D†)>‖|e| and |(D†)>κ| > ‖(D†)>‖|e| by the choice of κ. This is a
contradiction, therefore, we must have D†(D†)>(β̂ − κ) 6= 0.

From Theorem 2, the solution (Ŷ , p̂2, q̂2) of the FBSDE
dŶ = [−1

2BD
†(D†)>B>Ŷ +BD†(D†)>β̂]dt+ [−(D†)>B>Ŷ + (D†)>β̂]dW,

Ŷ (0) = ŷ,

dp̂2 = [1
2BD

†(D†)>B>p̂2 +BD†q̂2]dt+ q̂2dW,

p̂2(T ) = −(Ŷ (T ) +X0(T ))

(42)

satisfies the conditions 
p̂2(0) = x0,

D†q̂2 +D†(D†)>B>p̂2 ∈ ∂φ(β̂),

D†q̂2 +D†(D†)>B>p̂2 ∈ K.

Similar to the derivation of solution to FBSDE (36), we have

p̂2(t) = −Φ2(t)E[Φ>1 (T )(Ŷ (T ) +X0(T ))|Ft].

Using Itô’s formula, we can check that Φ>1 (t)(Ŷ (t) +X0(t)) is a martingale and get

p̂2(t) = −Φ2(t)Φ>1 (t)(Ŷ (t) +X0(t)) = −(Ŷ (t) +X0(t)), t ∈ [0, T ].

Here we have used Φ2(t) = [Φ>1 (t)]−1. Therefore,

dp̂2 = −dŶ − dX0

= [−1

2
BD†(D†)>B>p̂2 −BD†(D†)>(β̂ − κ)]dt+ [−(D†)>B>p̂2 − (D†)>(β̂ − κ)]dW.
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Comparing the diffusion coefficient of the above equation with that of BSDE in (42), we must have

q̂2 = −(D†)>B>p̂2 − (D†)>(β̂ − κ).

From Theorem 3, the optimal control for the primal problem is given by

û(t) = D†q̂2(t) +D†(D†)>B>p̂2(t) = −D†(D†)>(β̂ − κ),

which is nonzero for all t ∈ [0, T ].

Remrk 8. Since û(t) ∈ ∂φ(β̂(t)), components of optimal control û(t) take values in the set {−1, 0, 1},
depending on the dual optimal control β̂(t). There is no closed form solution β̂ for the dual problem,
however, it is much easier to solve the dual problem than to solve the primal problem. The reason is
that finding the dual optimal control β̂ is independent of the dual state and adjoint processes Ŷ , p̂2, q̂2,
a standard finite dimensional convex optimization problem, which is in sharp contrast to finding the
primal optimal control û directly from the primal problem as û depends on the primal state and adjoint
processes X̂, p̂1, q̂1 and one has to solve a fully coupled nonlinear FBSDE, a highly difficult infinite
dimensional problem, not to mention there is no closed form solution û(t) in terms of X̂, p̂1, q̂1.
This example illustrates the usefulness of the dual formulation in solving the primal problem. We
thank the anonymous reviewer whose suggestion of finding a nonzero optimal control motivated us in
constructing this nontrivial example.

5 Conclusions

In this paper we have discussed a general multidimensional linear convex stochastic control prob-
lem with nondifferentiable objective function, control constraints, and random coefficients. We have
formulated an equivalent dual problem, proved the dual stochastic maximum principle and the rela-
tion of the optimal control, optimal state, and adjoint processes between primal and dual problems,
and illustrated the usefulness of the dual approach with some examples. There remain many open
questions, for example, the duality theory for Markov modulated LC problems with control and ter-
minal state constraints, pathwise state constraints as in [5] and other more general frameworks. We
leave these and other questions for future research.

Acknowledgments. The authors are grateful to two anonymous reviewers whose comments and
suggestions have helped to improve the paper of the previous versions. This research was supported
in part by the EPSRC (UK) grant (EP/V008331/1).

Appendix: Proof of Theorem 2

The proof follows the same idea of the proof of [15, Theorem 7] with some changes due to mul-
tidimensional transformed dual problem and general convex function g. For the convenience of the
reader, we give a full a proof here.

Proof. Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be optimal for the dual problem (19) with (Ŷ , p̂2, q̂2) satisfying FB-
SDE (2), and (y, α, β1, . . . , βd−1, β) be any admissible dual control with associated process Y . Using
Itô’s formula to p̂2(t)>Y (t) and simplifying the resulting expression, we have

d(p̂>2 Y ) = [p̂>2 α+ (D†dq̂2,d −D†dCdp̂2)>β +

d−1∑
i=1

(DiD
†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d)

>βi]dt

+

d−1∑
i=1

p̂>2 βidWi + p̂>2 (D†d)
>(β −B>Y −

d−1∑
i=1

D>i βi)dWd +

d∑
i=1

Y >q̂2,idWi.

Since p̂2 ∈ S(0, T ;Rn), q̂2,i ∈ H(0, T ;Rn), βi ∈ H(0, T ;Rn), then for each i = 1, . . . , d, we obtain

E

[
(

∫ T

0
[|p̂>2 βi|2 + |Y >q̂2,i|2]ds)

1
2

]
<∞,
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which implies that

d−1∑
i=1

∫ t

0
p̂>2 βidWi +

∫ t

0
p̂>2 (D†d)

>(β −B>Y −
d−1∑
i=1

D>i βi)dWd +
d∑
i=1

∫ t

0
Y >q̂2,idWi

is a true martingale on [0, T ]. Taking expectation yields

E[p̂2(T )>Y (T )]− p̂2(0)>y

= E

[∫ T

0
[p̂>2 α+ (D†dq̂2,d −D†dCdp̂2)>β +

d−1∑
i=1

(DiD
†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d)

>βi]dt

]
. (43)

For ε > 0, define (yε, αε, βε1, . . . , β
ε
d−1, β

ε) by

(yε, αε, βε1, . . . , β
ε
d−1, β

ε) := (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) + ε(y, α, β1, . . . , βd−1, β).

Then by the linearity of the dual SDE (18),

Y ε(t) := Y (yε,αε,βε1,...,β
ε
d−1,β

ε)(t) = Ŷ (t) + εY (t).

Since (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal, then

1

ε
[Ψ̃(yε, αε, βε1, . . . , β

ε
d−1, β

ε)− Ψ̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)] ≥ 0.

Since h is C1 in y, then

lim
ε↓0

h(Y ε(T ))− h(Ŷ (T ))

ε
= hy(Ŷ (T ))>Y (T ).

By convexity of h, 1
ε [h(Y ε(T ))− h(Ŷ (T ))] is a nondecreasing function of ε. Hence, by Assumption 2

and the monotone convergence theorem,

lim
ε↓0

1

ε
E[h(Y ε(T ))− h(Ŷ (T ))] = E[hy(Ŷ (T ))>Y (T )] = E[−p̂2(T )>Y (T )].

Noting that x>0 y
ε − x>0 ŷ = εx>0 y, then from (19),

0 ≤ 1

ε
[Ψ̃(yε, αε, βε1, . . . , β

ε
d−1, β

ε)− Ψ̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)]

=
1

ε

{
εx>0 y + E

[∫ T

0
[φ(t, αε(t), βε(t))− φ(t, α̂(t), β̂(t))]dt+ [h(Y ε(T ))− h(Ŷ (T ))]

]}
. (44)

Combining (43) and (44) and letting ε ↓ 0 yield

0 ≤ y> (x0 − p̂2(0))

+ lim
ε↓0

E

[∫ T

0
[g̃(t, ε)− (p̂>2 α+ (D†dq̂2,d −D†dCdp̂2)>β +

d−1∑
i=1

(DiD
†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d)

>βi)]dt

]
,

where

g̃(ω, t, ε) :=
1

ε
[φ(t, αε(t), βε(t))− φ(t, α̂(t), β̂(t))].

Letting α(t) = β1(t) = · · · = βd−1(t) = 0 and β(t) = 0 for t ∈ [0, T ] yields

y> (x0 − p̂2(0)) ≥ 0 ∀y ∈ Rn,

which implies that x0 = p̂2(0).
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Recall that the function f and the set K are both convex. According to [18, Theorem 26.3], φ has
a directional derivative at (α̂, β̂) in any direction (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. By the convexity
of φ, g̃(ω, t, ε) is a nondecreasing function of ε. Using Assumption 2 and the monotone convergence
theorem then yields

0 ≤ E
[∫ T

0
[φo(t, α̂, β̂;α, β)

−(p̂>2 α+ (D†dq̂2,d −D†dCdp̂2)>β +

d−1∑
i=1

(DiD
†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d)

>βi)]dt

]
,

where

φo(ω, t, α̂, β̂;α, β) := lim
ε↓0

φ(t, α̂+ εα, β̂ + εβ)− φ(t, α̂, β̂)

ε
.

For (α, β1, . . . , βd−1, β) ∈ Rdn+m, define

B(α,β1,...,βd−1,β)

:= {(ω, t) ∈ Ω× [0, T ] : φo(t, α̂, β̂;α, β)

− (p̂>2 α+ (D†dq̂2,d −D†dCdp̂2)>β +
d−1∑
i=1

(DiD
†
dCdp̂2 − Cip̂2 + q̂2,i −DiD

†
dq̂2,d)

>βi) < 0}.

It can be shown that B(α,β1,...,βd−1,β)
t ∈ Ft for t ∈ [0, T ] and (P ⊗ Leb)(B(α,β1,...,βd−1,β)) = 0 for all

(α, β1, . . . , βd−1, β) ∈ Rdn+m. Since Rdn+m is separable, we have

0 ≤ φo(α̂, β̂;α, β)− p̂>2 α− [D†dq̂2,d −D†dCdp̂2]>β −
d−1∑
i=1

[(DiD
†
dCd − Ci)p̂2 + q̂2,i −DiD

†
dq̂2,d]

>βi,

for all (α, β1, . . . , βd−1, β) ∈ Rdn+m, (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. Therefore, we have

(DiD
†
dCd − Ci)p̂2 + q̂2,i −DiD

†
dq̂2,d = 0, i = 1, . . . , d− 1,

and

0 ≤ φo(α̂, β̂;α, β)− p̂>2 α− [D†dq̂2,d −D†dCdp̂2]>β, ∀(α, β) ∈ Rn+m,

which implies

(p̂2, D
†
dq̂2,d −D†dCdp̂2) ∈ ∂φ(α̂, β̂). (45)

Since φ is a proper closed convex function, by [2, Proposition 5.4.3], (45) is equivalent to

(α̂, β̂) ∈ ∂f̃(p̂2, D
†
dq̂2,d −D†dCdp̂2).

According to [18, Theorem 23.5], x>α̂(t) + u>β̂(t) − f̃(t, x, u) achieves its supremum at (x, u) =

(p̂2, D
†
dq̂2,d −D†dCdp̂2) for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. Thus, it must be the case that

D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t) ∈ K,

for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. This completes the proof for the necessary condition.
We now prove the sufficient condition. Let (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) be an admissible control to the

dual problem with processes (Ŷ , p̂2, q̂2) satisfying the FBSDE (20) and conditions (21). Define the
Hamiltonian function H : Ω× [0, T ]× Rn × Rm → R as

H(ω, t, α, β) := p̂>2 (t)α+ [D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t)]>β − φ(t, α, β). (46)
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Using the second condition in (21), the Hamiltonian H achieves its supremum at (α̂, β̂). Then, by [6,
Proposition 2.3.2],

(0, 0) ∈ ∂(−H)(α̂(t), β̂(t)) (47)

for (P ⊗ Leb)-a.e. (ω, t) ∈ Ω× [0, T ]. Given any admissible control (y, α, β1, . . . , βd−1, β), define

y̆ = y − ŷ, ᾰ = α− α̂, β̆ = β − β̂, β̆i = βi − β̂i.

Let Y and Y̆ be the associated state processes satisfying SDE (18). Since h is convex, then by [2,
Proposition 1.1.7(a)],

h(Y (T ))− h(Ŷ (T )) ≥ hy(Ŷ (T ))>(Y (T )− Ŷ (T )) = −p̂2(T )>Y̆ (T ).

Noting that x>0 y − x>0 ŷ = x>0 y̆, then

Ψ̃(y, α, β1, . . . , βd−1, β)− Ψ̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂)

≥ x>0 y̆ − E[Y̆ (T )>p̂2(T )] + E

[∫ T

0
[φ(t, α(t), β(t))− φ(t, α̂(t), β̂(t))]dt

]
.

Moreover, using the fourth condition in (21), we have

E[p̂2(T )>Y̆ (T )] = p̂2(0)>y̆ + E

[∫ T

0
[p̂>2 ᾰ+ [D†dq̂2,d −D†dCdp̂2]>β̆]dt

]
.

Hence, since x0 = p̂2(0),

Ψ̃(y, α, β1, . . . , βd−1, β)− Ψ̃(α̂, β̂1, . . . , β̂d−1, β̂)

≥ −E
[∫ T

0
[p̂>2 (t)ᾰ(t) + [D†d(t)q̂2,d(t)−D†d(t)Cd(t)p̂2(t)]>β̆(t)− φ(t, α(t), β(t)) + φ(t, α̂(t), β̂(t))]dt

]
= −E

[∫ T

0
[H(t, α(t), β(t))−H(t, α̂(t), β̂(t))]dt

]
.

Using (47) yields

Ψ̃(y, α, β1, . . . , βd−1, β)− Ψ̃(ŷ, α̂, β̂1, . . . , β̂d−1, β̂) ≥ 0.

We have proved (ŷ, α̂, β̂1, . . . , β̂d−1, β̂) is optimal for the dual problem.
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