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Abstract

Foias, Holm and Titi [C. Foias, D.D. Holm, E.S. Titi, The three dimensional viscous Camassa–Holm equations and their relation to the
Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations 14 (2002) 1–35] have settled the problem of existence and
uniqueness for the 3D LANS-α equations on periodic box [0, L]

3. There still remains the problem, first introduced by Doering and Foias
[C.R. Doering, C. Foias, Energy dissipation in body-forced turbulence, J. Fluid Mech. 467 (2002) 289–306] for the Navier–Stokes equations,
of obtaining estimates in terms of the Reynolds number Re, whose character depends on the fluid response, as opposed to the Grashof number,
whose character depends on the forcing. Re is defined as Re = U`/ν where U is a bounded spatio-temporally averaged Navier–Stokes velocity
field and ` the characteristic scale of the forcing. It is found that the inverse Kolmogorov length is estimated by `λ−1

k ≤ c (`/α)1/4 Re5/8.
Moreover, the estimate of Foias, Holm and Titi for the fractal dimension of the global attractor, in terms of Re, comes out to be

dF (A) ≤ c
VαV 1/2

`

(L2λ1)9/8
Re9/4

where Vα =

(
L/(`α)1/2

)3
and V` = (L/`)3. It is also shown that there exists a series of time-averaged inverse squared length scales whose

members,
〈
κ2

n,0

〉
, are estimated as (n ≥ 1)

`2
〈
κ2

n,0

〉
≤ cn,αV

n−1
n

α Re
11
4 −

7
4n (ln Re)

1
n + c1 Re(ln Re).

The upper bound on the first member of the hierarchy
〈
κ2

1,0

〉
coincides with the inverse squared Taylor micro-scale to within log-corrections.
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1. Introduction

1.1. Background to the LANS-α model

Turbulence is a state of continual unrest, which arises as
a fluid’s response to forcing by stirring, for example, or by
flowing along a wall. The scaling properties of turbulence
are characterized by two dimensionless numbers. These are

∗ Corresponding author. Tel.: +44 207 594 8504.
E-mail address: j.d.gibbon@ic.ac.uk (J.D. Gibbon).

0167-2789/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2006.06.012
the Grashof number Gr , which measures forcing, and the
Reynolds number Re which characterizes the fluid’s response
to the forcing. The turbulent response to forcing produces
strong fluctuations in the fluid motion whose statistics obey
power law spectra extending over a large range of length scales
and timescales [1,2]. This fluctuating multi-scale response
is the hallmark of turbulence. Turbulence researchers often
characterize the development of the multi-scale response as
a “cascade” of kinetic energy rushing downward from the
larger fluid motions due to forcing to the smaller and smaller
circulations of eddies, sheets, and tubes of vorticity. In
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stretching themselves into finer and finer shapes, these vortical
structures comprise the “sinews” of turbulence.

Characteristic features of turbulence – its distribution of
eddy sizes, shapes, speeds, vorticity, circulation and viscous
dissipation – may all be captured by using the exact
Navier–Stokes equations. These correctly predict how the
cascade of turbulent kinetic energy and vorticity accelerates
and how the sinews of turbulence stretch themselves into finer
and finer scales, until their motions reach only a few molecular
mean free paths, where they may finally be dissipated by
viscosity into heat: for more details, see [2–7]. However, the
fidelity of the Navier–Stokes equations in capturing the cascade
of turbulence is also the cause of serious problems in direct
numerical simulations of turbulence.

Based on Landau’s heuristic idea that the number of active
degrees of freedom required to simulate the turbulent cascade in
high-Reynolds-number flows increases as Re9/4, it is clear that
this geometric rate of increase quickly outstrips the numerical
resolution capabilities of even the largest computer. To make
turbulence computable, scientists have developed various
approximate models that halt the cascade into smaller, faster
eddies. In most models, this effect is accomplished by causing
the eddies below a certain size to dissipate computationally
into heat. This dissipative imperative causes errors, however,
because it damps out the variability (known as intermittency)
in the larger-scale flow, which is caused by the myriad of small
scales of motion interacting nonlinearly together in the fields
of the larger motions. Thus, computational turbulence closure
models based on enhancing viscous dissipation over its physical
Navier–Stokes value run the risk of producing unrealistically
low variability.

Perhaps surprisingly, one of the first clues in understanding
how to develop turbulence closure models without enhancing
viscous dissipation came from the great mathematical analyst
Leray [8] who showed how to regularize the Navier–Stokes
equations by modifying their nonlinearity to the well-known
form

vt + u · ∇v + ∇ p = ν∆v + f (x), div v = 0, (1.1)

with v = 0 on the boundary. Here ν is the (constant)
kinematic viscosity coefficient, f (x) is the prescribed external
force and u = Gδ ∗ v is a filtered version of the
regularized velocity v . The filtering operation is defined by
Gδ ∗v =

∫
Gδ(x, y)v(y) d 3 y for a symmetric kernel Gδ(x, y)

of characteristic width δ. The Navier–Stokes equations for v are
recovered in the limit as δ → 0, so that u → v . For a review
of the Leray regularization of the Navier–Stokes equations, see
Gallavotti [9].

One of the points made in [9] is that the Leray regularization
of the Navier–Stokes equations no longer satisfies the Kelvin
circulation theorem, since for these equations

d
dt

∮
Γ (u)

v · dx =

∮
Γ (u)

(
vt + u · ∇v + ∇uT

· v
)

· dx

6=

∮
Γ (u)

(ν∆v + f ) · dx. (1.2)
Remarkably, combining the process of Lagrangian averaging
with Taylor’s hypothesis (that fluctuations have such low power
that they may be regarded as being carried along by the
mean flow) leads to a regularized set of equations which
answers the challenge of [9] to produce a regularization of the
Navier–Stokes equations which do possess a Kelvin circulation
theorem. These regularized equations comprise the LANS-
α model1

vt + u · ∇v + ∇uT
· v + ∇ P = ν∆v + f (x), div u = 0,

(1.3)

where P = p−
1
2∇

(
|u|

2
+ α2

|∇u|
2
)
. An equivalent alternative

formulation is to rewrite (1.3) as

vt − u × curl v = ν∆v − ∇ p̃ + f (x) (1.4)

where p̃ = P + u · v . Usually, α is taken as a constant with
dimension of length and the filtering relation u = Gα ∗ v for
the advection velocity in the LANS-α model is specified as

v ≡ u − α2∆u. (1.5)

Some remarks are in order here:

1. The filtering kernel Gα for the LANS-α model thus turns
out to be the Green’s function for the Helmholtz operator
(1 − α2∆).

2. As expected, the LANS-α motion equation satisfies the
Kelvin circulation theorem:
d
dt

∮
Γ (u)

v · dx =

∮
Γ (u)

(
vt + u · ∇v + ∇uT

· v
)

· dx

=

∮
Γ (u)

(ν∆v + f ) · dx. (1.6)

The circulation theorem tells us that the rate of change of
circulation of momentum per unit mass v around a closed
material loop Γ (u) moving with velocity u = Gα ∗ v is due
to the integral around that loop of the tangential component
of the sum over forces (viscous and external) acting on the
fluid.

3. This statement of the circulation theorem is also a mnemonic
for deriving other regularized turbulence models of LANS-α
type by specifying a different filtering kernel Gα [10].

We have seen that the LANS-α model can be immediately
derived from its circulation theorem. However, the approach
used historically in Chen et al. [11] and Holm and Titi [12] for
deriving the closed Eulerian form (1.3) of the LANS-α motion
equation was based on the combination of two other earlier
results. First, the Lagrangian-averaged variational principle of
Gjaja and Holm [13] was applied for deriving the inviscid
averaged nonlinear fluid equations, obtained by averaging
Hamilton’s principle for fluids over the rapid phase of their
small turbulent circulations at fixed Lagrangian coordinate: this

1 LANS is an acronym standing for “Lagrangian-averaged Navier–Stokes”
while alpha (α) is the coherence length of the Lagrangian statistics; this term
will be used hereafter.
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step had its own precedent in earlier work on Lagrangian-
averaged fluid equations by Andrews and McIntyre [14].
Second, the Euler–Poincaré theory for continuum mechanics of
Holm et al. [15] was used for handling the Eulerian form of the
resulting Lagrangian-averaged fluid variational principle. This
second step determined the relationships among the momentum
per unit mass v , the Lagrangian-averaged velocity of the
fluid u and the Lagrangian fluctuation statistics. Next, Taylor’s
hypothesis of frozen-in turbulence circulations was invoked
for closing the Eulerian system of Lagrangian-averaged fluid
equations, by obtaining the explicit relation v ≡ u − α2∆u.
Finally, Navier–Stokes Eulerian viscous dissipation was added,
so that viscosity would cause diffusion of the newly defined
Lagrangian-average momentum and monotonic decrease of its
total Lagrangian-averaged energy.

At this point, one may regard the LANS-α model as
an alternative regularization of the Navier–Stokes equations
and re-examine its properties from the viewpoint of Leray’s
analysis: in fact the problem of existence and uniqueness
for the LANS-α equations has already been settled by
Foias et al. [16]. In addition, the same ideas which restore
Kelvin’s circulation theorem to Leray’s regularization of the
Navier–Stokes equations also turn out to provide a basis for
deriving candidate equations for Large Eddy Simulations (LES)
of turbulence. Conversely, other proposed LES models of
turbulence may lead to likely candidates for application of
Leray’s analysis. In this way, the classical Leray analysis of
the Navier–Stokes equations finds itself a new role in the study
of the analytical properties of turbulence models. Indeed, the
Leray model itself was recently found to be a viable candidate
for LES computational modeling of turbulence [10,17].

1.2. Estimates in terms of Reynolds number

Motivated by the Navier–Stokes equations, in an early and
progressive paper Ruelle [18] discussed how ideas in dynamical
systems might be extended to the infinite dimensional case
by counting the number of positive characteristic exponents.
Certain general finiteness assumptions were made about the
nature of the Navier–Stokes equations without formally using
the concept of a global attractor. These ideas were taken to
another level by Constantin and Foias [19], who used the idea
of a global attractor A for a partial differential equation to
determine the number of growing Lyapunov exponents and
thence, through a rigorous generalization of the Kaplan–Yorke
formula, they were able to get formal upper bounds on dL(A),
the Lyapunov dimension of A, which itself bounds above
dF (A) and dH (A). Importantly these bounds depend only
upon time-averages and thus only on the long-time dynamics
on A; see also [20]. When applied to the two-dimensional
Navier–Stokes equations, for which a global attractor exists,
these methods gave good, sharp estimates to within logarithmic
corrections [21] when used in conjunction with an L∞ estimate
of Constantin [22]. The development of the key features of
these ideas can be found in [3,23], including the role played by
the inequalities of Lieb and Thirring [24]. Apart from the two-
dimensional Navier–Stokes equations, several important partial
differential equations possess a global attractor, such as the two-
dimensional complex Ginzburg–Landau equation and the one-
dimensional Kuramoto–Sivashinky equation. Unfortunately,
the three-dimensional Navier–Stokes equations are not among
them; the key element is the lack of a proof of existence and
uniqueness without which the existence of a global attractor
remains open.

In settling the question of existence and uniqueness for
the LANS-α equations, Foias et al. [16] were able to use the
machinery developed for global attractors to find estimates for
the dimension of its global attractor A (and other important
quantities) in terms of the Grashof number Gr , which is a
dimensionless control parameter dependent only on the ratio
of the forcing to the viscosity ν. Therefore, as a regularization
of the three-dimensional Navier–Stokes equations with many
similar features to its parent, the LANS-α equations possess
this extra key property. What remains to be proved, however,
is whether the estimates in [16] can be evaluated in terms of
the Reynolds number, whose character depends on the fluid
response to the forcing, and which is intrinsically a property
of Navier–Stokes solutions. The advantage of this further step
lies in the fact that the engineering and physics communities
express their ideas about turbulence in terms of the Reynolds
number. It also allows us to make direct comparisons between
estimates for the two equations where they exist (see Table 1).

For simplicity the LANS-α equations (1.3), or their
alternative form in (1.4), will be considered on a periodic
domain [0, L]

3
per with forcing f (x) taken to be L2-bounded of

narrow-band type2 with a single length-scale ` (see [30–32])

‖∇
nf‖2 ≈ `−n

‖f‖2. (1.7)

With frms = L−d/2
‖f‖2, where ‖f‖2

2 =
∫
Ω |f |2 dV , the

standard definition of the Grashof number in d dimensions is

Gr =
`3 frms

ν2 . (1.8)

Analytical estimates in Navier–Stokes theory have traditionally
been expressed in terms of Gr [3,4,25–29] but these are difficult
to compare with the results of Kolmogorov scaling theories
which are expressed in terms of Reynolds number [2]. A good
definition of this is

Re =
U`

ν
U 2

= L−d
〈
‖u‖

2
2

〉
(1.9)

where 〈·〉 is the long-time average

〈g(·)〉 = lim
t→∞

1
t

∫ t

0
g(τ ) dτ. (1.10)

Doering and Foias [30] addressed this problem recently and
have shown that in the limit Gr → ∞, solutions of the d-
dimensional Navier–Stokes equations

ut + u · ∇u + ∇ p = ν∆u + f (x), div v = 0 (1.11)

2 The restriction to narrow-band forcing can be relaxed at the cost of more
parameters in the problem.
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Table 1
Comparison of various time-average bounds for the Navier–Stokes and LANS-α equations with constants omitted

Time-average NS LANS-α Equation number

`λ−1
k Re3/4 Re3/4 (1.15)

`λ−1
k (improved) Unknown (`/α)1/4 Re5/8 (2.8)

α2`ν−2 〈H2〉 Unknown V` Re3 (2.6)

dF (A) Unknown VαV 1/2
`

(L2λ1)−9/8 Re9/4 (3.6)

`2
〈
κ2

n,0

〉
Unknown Vα ReΛn (ln Re)

1
n (5.4)

`2
〈
κ2

1,0

〉
Re(ln Re) Re(ln Re) (5.5)

`2ν−2
〈
‖u‖

2
∞

〉
Unknown Vα Re11/4 (5.6)

α`ν−1 〈‖∇u‖∞〉 Unknown V 1/4
α V 1/2

`
Re35/16 (5.7)

`
〈
κn,0

〉
V` Re3−5/2n(ln Re)

1
n V 1/2

α ReΛn/2(ln Re)
1

2n (5.4)

Note that in the cases where there is no known equivalent upper bound for the Navier–Stokes equations, the LANS-α upper bounds blow up as α → 0: Λn is
defined in (1.23). Lines 5–8 are a summary of the results of Theorem 2 in Section 5. The Navier–Stokes estimate for `

〈
κn,0

〉
on the last line is there for comparative

purposes and is taken from [31,32].
must satisfy3

Gr ≤ c (Re2
+ Re). (1.12)

Using the relation in (1.12), Doering and Gibbon [31,32]
have re-expressed some 3D Navier–Stokes estimates in terms
of Re (see Table 1). The problem, however, is less simple than
substituting (1.12) into standard results, although this works
well enough for pointwise estimates [16]. Time averages are
more subtle and exploit how the average velocity U within
Re is related to

〈
‖u‖

2
2

〉
. As an illustration, let us consider the

Navier–Stokes equation (1.11) whose energy dissipation rate
is ε = ν

〈
‖∇u‖

2
2

〉
L−d . Standard estimates show that its upper

bound is proportional to Gr2. By (1.12), this turns into Re4,
which is not sharp. Now we estimate this a different way [30]:
consider Leray’s energy inequality

1
2

d
dt

‖u‖
2
2 ≤ −ν‖∇u‖

2
2 + ‖f‖2‖u‖2. (1.13)

Time-averaging (1.13) and using (1.9) and (1.12) yields

ε ≤ ν3`−4Gr Re ≤ c ν3`−4
(

Re3
+ Re

)
, (1.14)

which is a considerable improvement. To leading order the
inverse Kolmogorov length λ−1

k = (ε/ν3)1/4 is then bounded
above by

`λ−1
k ≤ c Re3/4. (1.15)

This estimate now conforms with the generally accepted scaling
law for the inverse Kolmogorov length with the Reynolds
number [1,2].

The relation in (1.12) is essentially a Navier–Stokes result
and thus needs re-proving for the LANS-α equations. It turns
out to be true but the proof is a non-trivial extension of the

3 This result is not advertised in [30] but it follows immediately from their
Eq. 48. Ref. [30] also contains another result that the energy dissipation rate ε

has a lower bound proportional to Gr : see Appendix A.2.
method in [30]; the whole of Appendix A.1 is devoted to this
proof. As will be shown in Section 2, the estimate for 〈H1〉 in
(1.14) can be improved to

ε ≤ c ν3`−3α−1 Re5/2, ⇒ `λ−1
k ≤ c

(
`

α

)1/4

Re5/8. (1.16)

Moreover, in Section 3 the estimate by Foias et al. [16] (see
also [33]) for the fractal dimension dF (A) of the global attractor
A is considered in the light of these Re-bounds. Using their
estimate in terms of the generalized α-dependent dissipation
rate, we show that

dF (A) ≤ c
VαV 1/2

`

(L2λ1)9/8 Re9/4 (1.17)

where the two dimensionless volumes V` and Vα are defined by

V` =

(
L

`

)3

Vα =

(
L

(`α)1/2

)3

, (1.18)

and λ1 > 0 is the smallest eigenvalue of the Stokes operator.
Given our definition of Re in (1.9), this Re9/4 estimate is
consistent with scaling theories of turbulence but it does not
survive in the Navier–Stokes limit because the volume Vα

blows up as α → 0.
The Re9/4 estimate for dF also gives an idea of how many

degrees of freedom, in Landau’s sense, exist in a turbulent
flow—indeed this is exactly the result predicted by Landau
for the Navier–Stokes equations.4 What is not taken into
account in this picture is the effect of strong dissipation-range
intermittency where significant energy lies in wave-numbers
larger than λ−1

k . In this case estimates are needed for length-
scales that are associated with higher derivatives. This idea has
been investigated in [31,32] where estimates were found for

4 However, given the improved Re5/8 inverse Kolmogorov estimate in
(1.16) for the LANS-α model, it is possible that the sharp estimate for dF is
proportional to Re15/8.
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time-averaged Navier–Stokes quantities. Those for the LANS-
α equations should be much better because of their enhanced
regularity properties [16]. In Section 4 we combine the forcing
with higher derivatives of the velocity field in the form

Fn = Hn + τ 2
‖∇

nf‖2
2, (1.19)

where τ = `2ν−1(Gr ln Gr)−1/2 is a characteristic time: see
Appendix A.2. We also form the combination

Jn = Fn + α2 Fn+1 (1.20)

and use it to define a set of inverse length scales, or time-
dependent wave-numbers,

κn,0(t) =

(
Jn

J0

) 1
2n

. (1.21)

In the α → 0 limit, the κ2n
n,0 behave as the 2nth moments of the

energy spectrum. Theorem 2 of Section 4 proves that the time
average of their squares must obey

`2
〈
κ2

n,0

〉
≤ cn,αV

n−1
n

α ReΛn (ln Re)
1
n + c1 Re ln Re, (1.22)

for the LANS-α model, where

Λn =
11
4

−
7

4n
. (1.23)

Note that the n = 1 estimate in (1.22) scales with Re the same
as the Taylor micro-scale. This best that could be achieved for
the full 3D Navier–Stokes equations was [31,32]

`
〈
κn,0

〉
≤ cn V` Re3−

5
2n (ln Re)

1
n + c1 Re ln Re, (1.24)

which appears in the last line of Table 1. With the exponent
of unity in the time-average – if indeed a solution exists at all –
this is not only much worse that (1.22) but represents only weak
solutions, as opposed to the strong solutions of Foias et al. [16].

The fact that no upper bound is known to exist for
〈
κ2

n,0

〉
for the

3D Navier–Stokes equations is consistent with the fact that the
dimensionless volume Vα blows up as α → 0. The κn,0 could
even become singular in this limit.

2. Properties of the product
∫
Ω u · v dV

Foias et al. [16] noted that the product u · v has two
convenient properties∫

Ω
u · v dV =

∫
Ω

{
|u|

2
+ α2

|∇u|
2
}

dV (2.1)

and

d
dt

∫
Ω

u · v dV =

∫
Ω

(ut · v + u · vt ) dV

=

∫
Ω

(ut · (1 − α2∆)u + u · vt ) dV

=

∫
Ω

{
u ·

[
(1 − α2∆)ut

]
+ u · vt

}
dV

= 2
∫
Ω

u · vt dV (2.2)
where two integrations by parts have occurred between the
second and third lines. Now define

Hn =

∫
Ω

|∇
nu|

2 dV ≡

∫
Ω

|curlnu|
2 dV (2.3)

this being true on a periodic domain because div u = 0. Clearly
we have the bound

1
2

d
dt

(
H0 + α2 H1

)
= −ν

(
H1 + α2 H2

)
+

∫
Ω

u · f dV

≤ −ν
(

H1 + α2 H2

)
+ ‖u‖2‖f‖2. (2.4)

One can then calculate an absorbing ball for H1 with ease
(see [16]). It is also possible to estimate the time averages 〈H1〉

and 〈H2〉 which can be found in the same manner as in (1.13)
to satisfy

νL−3
〈
H1 + α2 H2

〉
≤ ν3`−4 Re Gr ≤ c ν3`−4 Re3. (2.5)

The upper bound on 〈H2〉, written as

α2`ν−2
〈H2〉 ≤ c V` Re3 (2.6)

can then be used to improve the estimate for 〈H1〉 by using the
fact that 〈H1〉 ≤ 〈H0〉

1/2
〈H2〉

1/2 and that U 2
= L−3 〈H0〉. We

find that

〈H1〉 ≤ c ν2L3`−3α−1 Re5/2, (2.7)

and so

`λ−1
k ≤ c

(
`

α

)1/4

Re5/8. (2.8)

Hence the energy dissipation rate ε is also bounded above by
Re5/2 but the improved estimate blows up when α → 0; no
equivalent result is implied for the 3D Navier–Stokes equations.

3. A Re9/4 bound for the attractor dimension

Foias et al. [16] made two independent estimates of the
fractal dimension dF (A) of the global attractor A. The first
was in terms of Gr but the second estimate was made in terms
of the “energy dissipation rate” ε; this phrase has been put
in inverted commas because it includes the H2-norm, whereas
conventionally only the H1-norm is used. Their definition of ε

is

ε = λ
3/2
1 ν

〈
H1 + α2 H2

〉
(3.1)

where λ1 is the smallest eigenvalue of the Stokes’ operator
which has the dimension of an inverse length squared. Foias
et al. [16] then proved that

dF (A) ≤ c
λ

−3/2
1

(α2λ1)3/4

(
ε

ν3

)3/4

. (3.2)

They then defined a Kolmogorov length as `−1
ε =

(
ε/ν3

)1/4

which turns (3.2) into

dF (A) ≤ c
1

(α2λ1)3/4

1

(`ελ
1/2
1 )3

. (3.3)
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The problem here lies in interpretation: `ε is not the
conventional Kolmogorov length because ε is not the
Navier–Stokes energy dissipation rate ε = ν 〈H1〉 L−3.
Instead we take an alternative route and use the estimate for〈
H1 + α2 H2

〉
from (2.5), which we repeat here

νL−3
〈
H1 + α2 H2

〉
≤ c ν3`−4 Re3. (3.4)

Thus

ε ≤ c (Lλ
1/2
1 )3ν3`−4 Re3, (3.5)

which turns the result of Foias et al. [16] into

dF (A) ≤ c
VαV 1/2

`

(L2λ1)9/8 Re9/4, (3.6)

where L2λ1 = 4π2. The right hand side blows up as α → 0
through Vα . Despite this, the Re9/4 estimate is, to our belief,
the first time this has been achieved with this definition of Re.
As has often been pointed out, this upper bound is also valid for
the Hausdorff dimension dH (A) because dH (A) ≤ dF (A).

4. A theorem involving higher derivatives

In terms of the number of degrees of freedom, the result in
(3.6) says that Re3/4

× Re3/4
× Re3/4 resolution grid points are

needed. However, as explained in Section 1.2, what is not taken
into account in attractor dimension estimates is the effect of
strong dissipation-range intermittency where significant energy
lies in wave-numbers larger than λ−1

k . In this case estimates
are needed for length-scales that are associated with higher
derivatives. To obtain such estimates we begin by forming the
combination

Fn = Hn + τ 2
‖∇

nf‖2
2, (4.1)

where the quantity τ

τ = `2ν−1(Gr ln Gr)−1/2 (4.2)

where the ln Gr -term is there for reasons explained in
Appendix A.2. We also define the combination

Jn = Fn + α2 Fn+1. (4.3)

The ultimate aim is to find time-averaged estimates for the κn,r
that appeared in (1.21): this will be the subject of the next
section. In preparation, we prove the following result:

Theorem 1. As Gr → ∞, for n ≥ 1, 1 ≤ p ≤ n, Jn satisfies

dJn

dt
≤ −

1
2
ν

J
1+

1
p

n

J 1/p
n−p

+ cn,α ν−1
‖u‖

2
∞ Jn + c1ν`−2 Re(ln Re)Jn (4.4)

and, for n = 0,

1
2

dJ0

dt
≤ −ν J1 + c1ν`−2 Re(ln Re)J0. (4.5)
Proof. The results on the pairing of H0 and H1 in (2.1) and
(2.2) apply more generally:∫

Ω
(∇nu) · (∇nv) dV =

∫
Ω

{
|∇

nu|
2
+ α2

|∇
n+1u|

2
}

dV

= Hn + α2 Hn+1. (4.6)

Thus

1
2

d
dt

(
Hn + α2 Hn+1

)
=

∫
Ω

(∇nu) · (∇nvt ) dV (4.7)

which, from (1.4), gives the estimate

1
2

d
dt

(
Hn + α2 Hn+1

)
=

∫
Ω

(∇nu)

·
{
ν∆∇

nv − ∇
n(u × curlv)

}
dV (4.8)

≤ −ν
(

Hn+1 + α2 Hn+2

)
+

∣∣∣∣∫
Ω

(∇n+1u)
(
∇

n−1(u × curlv)
)

dV

∣∣∣∣ . (4.9)

Upon separating the two constituent parts of v = u − α2∆u
within the last term in (4.8), the first is found to satisfy∣∣∣∣∫

Ω
(∇n+1u) ·

(
∇

n−1(u × curlu)
)

dV

∣∣∣∣ ≤ ‖u‖∞ H1/2
n+1 H1/2

n

+ H1/2
n+1

n−1∑
m=1

Cn−1
m ‖∇

mu‖p‖∇
n−mu‖q , (4.10)

where p, q must satisfy p−1
+ q−1

= 1/2 according to
Hölder’s inequality. The first term on the RHS of (4.10) is
the m = 0 term. Now we use the two Gagliardo–Nirenberg
inequalities

‖∇
mu‖p ≤ c ‖∇

nu‖
am
2 ‖u‖

1−am
∞

‖∇
n−mu‖q ≤ c ‖∇

nu‖
bm
2 ‖u‖

1−bm
∞

(4.11)

where

1
p

−
m

d
= am

(
1
2

−
n

d

)
1
q

−
n − m

d
= bm

(
1
2

−
n

d

)
.

(4.12)

Adding the two and noting that p−1
+ q−1

=
1
2 implies that

am + bm = 1. In fact this is true in d dimensions. Thus the last
term in (4.10) is estimated by

H1/2
n+1

n−1∑
m=1

Cn−1
m ‖∇

mu‖p‖∇
n−mu‖q ≤ c(1)

n H1/2
n H1/2

n+1‖u‖∞.

(4.13)

We may approach the second constituent part of v in the same
manner as (4.10). After an integration by parts we find∣∣∣∣∫

Ω
(∇n+2u) ·

(
∇

n−2
(

u × curl(−α2∆u)
))

dV

∣∣∣∣
≤ c(2)

n α2 H1/2
n+1 H1/2

n+2‖u‖∞. (4.14)
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The estimate (4.8) now becomes

1
2

d
dt

(
Hn + α2 Hn+1

)
≤ −

1
2
ν
(

Hn+1 + α2 Hn+2

)
+ cn ν−1

‖u‖
2
∞

(
Hn + α2 Hn+1

)
+ ‖∇

nf‖2 H1/2
n

+ α2
‖∇

n+1f‖2 H1/2
n+1. (4.15)

To turn this into an inequality for the Fn we add and subtract
the negative terms on the right hand side, and break up the last
terms to form the group of terms designated as Xn :

Xn = ‖∇
nf‖2 H1/2

n + α2
‖∇

n+1f‖2 H1/2
n+1 +

1
2
ν`−2τ 2

‖∇
nf‖2

2

+
1
2
ν`−2τ 2α2

‖∇
n+1f‖

2
2 (4.16)

with

1
2

d
dt

(
Fn + α2 Fn+1

)
≤ −

1
2
ν
(

Fn+1 + α2 Fn+2

)
+ cn ν−2

‖u‖
2
∞

(
Fn + α2 Fn+1

)
+ Xn (4.17)

where

Xn ≤

{
g

2
Hn +

(
1

2gτ 2 +
ν

2`2

)
τ 2

‖∇
nf‖2

}
+

{
g

2
Hn+1 +

(
1

2gτ 2 +
ν

2`2

)
τ 2

‖∇
n+1f‖2

}
. (4.18)

To make the coefficients of Hn and τ 2
‖∇

nf‖2 equal, choose g
to satisfy

g2
−

gν

`2 −
1

τ 2 = 0. (4.19)

That is

2g =
ν

`2 +

[( ν

`2

)2
+

4

τ 2

]1/2

. (4.20)

Given τ in (4.2) we have g ≈ τ−1 as Gr → ∞. Consequently,

τ−1
= `2ν−1(Gr ln Gr)

1
2 ≤ c `2ν−1 Re(ln Re) (4.21)

and

Xn ≤
1
2
τ−1

(
Fn + α2 Fn+1

)
. (4.22)

When applied to (4.17), the previous result yields

dJn

dt
≤ −ν Jn+1 + cn

(
ν−1

‖u‖
2
∞ + ν`−2 Re(ln Re)

)
Jn (4.23)

which is (4.4).

The following lemma deals with the −Jn+1-term in (4.23):

Lemma 1. For 1 ≤ p ≤ n, the Jn satisfy

Jn+1 ≥
1
2

J
1+

1
p

n

J 1/p
n−p

. (4.24)
Proof. Firstly from (4.1), by writing Fn in Fourier transforms
one finds

Fn = Hn + τ 2
‖∇

nf‖2
2 =

∫
k2n

|û|
2 dVk, (4.25)

where |û|
2 includes the three components of the fluid velocity

and the three components of the forcing. Using Hölder’s
inequality produces

Fn =

∫ (
k2(n+q)

|û|
2
) p

p+q
(

k2(n−p)
|û|

2
) q

p+q
dVk

≤ F
p

p+q
n+q F

p
p+q

n−p . (4.26)

Another application of Hölder’s inequality also gives the
standard result

N−p

(
N∑

i=1

ai

)p+1

≤

N∑
i=1

|ai |
p+1. (4.27)

Now we find upper and lower bounds for the combination
F p+1

n + α2p+2 F p+1
n+1 . Inequality (4.26) is used to find an upper

bound

F p+1
n + α2p+2 F p+1

n+1 ≤ F p
n+1 Fn−p + α2p+2 F p

n+2 Fn+1−p

≤

(
Fn+1 + α2 Fn+2

)p

×

(
Fn−p + α2 Fn+1−p

)
. (4.28)

A lower bound comes from inequality (4.27) with N = 2

F p+1
n + [α2 Fn+1]

p+1
≥ 2−p

(
Fn + α2 Fn+1

)p+1
. (4.29)

Thus we have

2−p J p+1
n ≤ J p

n+1 Jn−p (4.30)

which gives the result. �
The n = 0 result (4.5) follows from (2.4) by using the same

methods. �

5. Length scales

Now define the quantities r < n (we take r = n − p)

κn,r (t) =

(
Jn

Jr

) 1
2(n−r)

, (5.1)

which act as t-dependent wave-numbers and thus have the
dimension of inverse length scales. For r = 0 they are
analogous to the 2nth moments of the energy spectrum. In what

follows we find upper bounds for
〈
κ2

n,0

〉
. These are bounds on

an infinite series of inverse squared length scales.
In Theorem 1 for r < n, dividing by the Jn and time

averaging, we have〈
κ2

1,0

〉
≤ c1`

−2 Re ln Re, (5.2)〈
κ2

n,r

〉
≤ cn,α ν−2

〈
‖u‖

2
∞

〉
+ c1`

−2 Re ln Re. (5.3)

The results for this can be summarized in the following:
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Theorem 2. As Gr → ∞, the four time averages are estimated
as

`2
〈
κ2

n,0

〉
≤ cn,αV

n−1
n

α Re
11
4 −

7
4n (ln Re)

1
n + c1 Re ln Re, (5.4)

`2
〈
κ2

1,0

〉
≤ c1 Re ln Re, (5.5)

`2ν−2
〈
‖u‖

2
∞

〉
≤ c Vα Re11/4, (5.6)

α`ν−1
〈‖∇u‖∞〉 ≤ c V 1/4

α V 1/2
` Re35/16. (5.7)

Remark. These four results are also listed in Table 1.

Proof. Agmon’s inequality says that

‖u‖
2
∞ ≤ c ‖∇

2u‖2‖∇u‖2 = c H1/2
2 H1/2

1 . (5.8)

Moreover, we also notice that because H1 ≤ H1/2
2 H1/2

0 and
U = L−3/2 〈H0〉

1/2 we have〈
‖u‖

2
∞

〉2
≤ c 〈H0〉

1/2
〈H2〉

3/2
≤ c L3/2U 〈H2〉

3/2 . (5.9)

which simplifies to5

`2ν−2
〈
‖u‖

2
∞

〉
≤ c Vα Re11/4 (5.10)

which is (5.6). With the dimensionless volumes Vα and V`

defined in (1.18), we have

`2
〈
κ2

1,0

〉
≤ c1 Re ln Re, (5.11)

`2
〈
κ2

n,r

〉
≤ cn,αVα Re11/4

+ c1 Re ln Re. (5.12)

For r = 0 we can improve this by writing〈
κ2

n,0

〉
=

〈(
Fn

F1

)1/n ( F1

F0

)1/n
〉

=

〈
(κ2

n,1)
n−1

n (κ2
1,0)

1
n

〉
≤

〈
κ2

n,1

〉 n−1
n
〈
κ2

1,0

〉 1
n
, (5.13)

and then using the estimates in (5.11) and (5.12) for n ≥ 1,
which gives

`2
〈
κ2

n,0

〉
≤ cn,αV

n−1
n

α Re
11
4 −

7
4n (ln Re)

1
n + c1 Re ln Re. (5.14)

This is (5.4). Note that when n = 1 we return to `2
〈
κ2

n,0

〉
≤

c1 Re ln Re.
It is also possible to estimate 〈‖∇u‖∞〉

〈‖∇u‖∞〉 ≤ c
〈
H1/4

3 H1/4
2

〉
= c

〈
κ

1/2
3,2 H1/2

2

〉
≤ c

〈
κ2

3,2

〉1/4
〈H2〉

1/2 . (5.15)

5 Herein lies the difference between 3D LANS-α equations and the 3D
Navier–Stokes equations: in the former we have a bound on 〈H2〉 from (2.5)
which is missing in the latter.
Using (2.5) and (5.12) we find

α`ν−1
〈‖∇u‖∞〉 ≤c

〈
H1/4

3 H1/4
2

〉
≤ c V 1/4

α V 1/2
` Re35/16,(5.16)

which is (5.7). �
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Appendix A. Issues concerning the forcing

A.1. Bounds concerning Gr and Re

Doering and Foias [30] split the forcing function f (x) into
its magnitude F and its “shape” 8 such that

f (x) = F8(`−1x) (A.1)

where ` is the longest length scale in the force. On the unit
torus Id , 8 is a mean-zero, divergence-free vector field with the
chosen normalization property∫
Id

∣∣∣∇−1
y 8

∣∣∣2 dd y = 1. (A.2)

L2-norms of f on Id are

‖∇
N f‖

2
2 = CN `−2N Ld F2 (A.3)

where the coefficients CN refer to the shape of the force but not
its magnitude

CM =

∑
n

|2πn|
2N

|8̂n|
2. (A.4)

Doering and Foias [30] showed that various bounds exist such
as (among others)

‖∇∆−M f‖∞ = DM F`2M−1. (A.5)

The energy dissipation rate ε is

ε =

〈
νL−d

∫
Ω

|∇u|
2 dV

〉
= νL−d

〈H1〉 . (A.6)

In terms of F the Grashof number in (1.7) becomes

Gr = F`3/ν2 (A.7)

and the Taylor micro-scale λT is related to U via λT =√
νU 2/ε, which is consistent with the definition λ−2

T =

〈H1〉 / 〈H0〉.
The LANS-α equations (1.3) and (1.4) can also formally be

re-written as

ut + u · ∇u − ν∆u + ∇ p̃ = (1 − α2∆)−1

×

{
f (x) + α2div T

}
(A.8)
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where the tensor T is defined as

T = ∇u · ∇u + ∇u · ∇uT
− ∇uT

· ∇u. (A.9)

Following the procedure in [30] (pg 296 Eq. 2.9) and
multiplying by (−∆−M )f we have

d
dt

∫
Id

u · [(−∆−M )f ] dV = −ν

∫
Id

∆u · [(−∆−M )f ]

−

∫
Id

u · ∇u · [(−∆−M )f ] dV

+

∫
Id

[(−∆−M )f ] · (1 − α2∆)−1

×

{
f + α2divT

}
dV . (A.10)

Now there are two strategies:
(1) To prove that Gr ≤ c Re2: integrate all the terms by parts,
and take the time average〈

L−d
∫
Id

∇
−M f · (1 − α2∆)−1

∇
−M f dV

〉
≤

〈
L−dν

∫
Id

u · [(−∆−M+1)f ] dV

〉
−

〈
L−d

∫
Id

u · [∇[(−∆−M )]f ] · u dV

〉
+

〈
L−d

∫
Id

∣∣∣∇[(−∆−M )f ]
∣∣∣ ∣∣∣∣ α2

(1 − α2∆)
T
∣∣∣∣ dV

〉
. (A.11)

Using the scaling properties of 8 and a Fourier transform on
the last term

L−d
∫
Id

∣∣∣∇[(−∆−M )f ]
∣∣∣ ∣∣∣∣ α2

(1 − α2∆)
T
∣∣∣∣ dV

≤ DM F`2M−1
∫

α2k2

1 + α2k2 |û|
2 dVk

≤ DM F`2M−1
∫

|û|
2 dVk (A.12)

where (A.5) defines DM . Thus (A.11) turns into

c0
F2`2M

1 + α2`−2 ≤ c1νF`2M−2U + c2`
2M−1 FU 2, (A.13)

where the U 2-term contains the contributions from both
nonlinear terms and the constants (not explicitly given) contain
the shape of the body forcing. Using (A.7) and (A.13) becomes

Gr ≤ c
(

Re + Re2
)

, Gr → ∞, (A.14)

the only difference from the Navier–Stokes equations being the
value of the constant.
(2) To prove that ε ≥ c ν3`−3L−1Gr : return to (A.10) and take
a different route. Firstly in the Laplacian term use one derivative
on u and another on the forcing. Then keep the u ·∇u advection
term. Finally integrate the T-term by parts and exploit the fact
that (1 − α2∆)−1 is a symmetric operator.〈

L−d
∫
Id

(∇−M f ) ·
1

(1 − α2∆)
∇

−M f dV

〉

≤

〈
L−dν

∫
Id

|∇u| · [(∇∆−M )f ]
〉

+

〈
L−d

∫
Id

|u| |∇u| |(−∆−M )f | dV

〉
+

〈
L−d

∫
Id

∣∣∣∣ α2

(1 − α2∆)
∇[(−∆−M )f ]

∣∣∣∣ |T| dV

〉
. (A.15)

Thus (A.15) turns into

c0
F2`2M

1 + α2`−2 ≤ c1 Fν1/2`2M−1ε1/2
+ c2 Fν−1/2`2Mε1/2U

+ c3α
2`2M−1 Fν−1ε. (A.16)

We assume the ordering of length scales as L ≥ ` ≥ α ≥ λT
and use the fact that U 2

= λ2
T εν−1

≤ L2εν−1. Then (A.16)
becomes

1
2

c0 F ≤ c1ν
1/2`−1ε1/2

+ ν−1ε (c2L + c3α
2`−1)

≤ c1ν
1/2`−1ε1/2

+ c4ν
−1Lε. (A.17)

For Gr → ∞ the last term on the RHS is the dominant one: we
have

ε ≥ c5 `−3L−1ν3Gr (A.18)

which, with a different constant, agrees with the result in
Doering and Foias [30]. This inequality is used in the next
subsection.

A.2. Forcing and the fluid response

For technical reasons, we must address the possibility that
in their evolution the quantities Hn might take small values.
Thus we need to circumvent problems that may arise when
dividing by these (squared) semi-norms. We follow Doering
and Gibbon [31] who introduced the modified quantities in (4.1)

Fn = Hn + τ 2
‖∇

nf‖2
2 (A.19)

where the “timescale” τ is to be chosen for our convenience.
So long as τ 6= 0, the Fn are bounded away from zero by the
explicit value τ 2L3`−2n f 2

rms. Moreover, we may choose τ to
depend on the parameters of the problem such that 〈Fn〉 ∼ 〈Hn〉

as Gr → ∞. To see how to achieve this, let us define

τ = `2ν−1(Gr ln Gr)−1/2. (A.20)

Then the additional term in (A.19) is

τ 2
‖∇

nf‖2
2 = L3ν−2`4−2n f 2

rms(Gr ln Gr)−1

= ν2`−(2n+2)L3Gr(ln Gr)−1. (A.21)

Recalling the a priori bound on the far right hand side of (A.18)

τ 2
‖∇

nf‖2
2 ≤ c6ε `−(2n−1)L4ν−1(ln Gr)−1

= c6

(
L

`

)(2n−1)

L−2(n−1)
〈H1〉(ln Gr)−1. (A.22)



78 J.D. Gibbon, D.D. Holm / Physica D 220 (2006) 69–78
Using Poincaré’s inequality in the form H1 ≤ (2π L)2(n−1) Hn ,
as Gr → ∞ we have

τ 2
‖∇

nf‖2
2

〈Hn〉
≤ c6

(
L

`

)(2n−1)

(ln Gr)−1. (A.23)

Hence, the additional forcing term in (A.19) becomes negligible
with respect to 〈Hn〉 as Gr → ∞, so the forcing does not
dominate the response.
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