EE2 Mathematics

The role of grad, div and curl in vector calculus

The gradient operator V is defined as
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Using this operator on a scalar field ¢ = ¢(x,y, z) gives the gradient of ¢
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grad¢:V¢:z%+Ja—y+k$.

Note that V¢ is a vector. Since V is a wvector operator it can act upon a vector field
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through the dot product. This defines the divergence of a vector (which is itself a scalar)
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which physically expresses how the vector A changes spatially through the six faces of a 3D-
box!. Note, however, that V- A # A -V: the RHS is a differential operator while the LHS is a
scalar function.

The curl of a vector (which is itself a vector) is defined by
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This expresses how much swirl is in a vector field; if = is the line from the origin to the point

(z,y,2) then curlr = 0.
There are various identities that are useful:

1. The gradient of the product of two scalars ¢ and

V(gy) = ¢Ve + ¢V
2. The divergence of the product of a scalar ¢ with a vector A
div (pA) = ¢divA+ (Vo) - A
3. The curl of the product of a scalar ¢ with a vector A
curl (pA) = pcurl A + (Vo) x A

4. The curl of the gradient of any scalar ¢
curl (V¢) =V x V¢ = 0.
5. The divergence of the curl of any vector A
div(curlA) =V -(Vx A)=0

The cyclic rule for the scalar triple product shows that this is zero for all vectors A because
two vectors in the triple (V) are the same.

1One can think of a vector field that has zero divergence as ‘incompressible’.



