EE2 Mathematics

The role of grad, div and curl in vector calculus

The gradient operator ∇ is defined as

$$
\nabla=\hat{\boldsymbol{i}} \frac{\partial}{\partial x}+\hat{\boldsymbol{j}} \frac{\partial}{\partial y}+\hat{\boldsymbol{k}} \frac{\partial}{\partial z} .
$$

Using this operator on a scalar field $\phi=\phi(x, y, z)$ gives the gradient of ϕ

$$
\operatorname{grad} \phi=\nabla \phi=\hat{\boldsymbol{i}} \frac{\partial \phi}{\partial x}+\hat{\boldsymbol{j}} \frac{\partial \phi}{\partial y}+\hat{\boldsymbol{k}} \frac{\partial \phi}{\partial z} .
$$

Note that $\nabla \phi$ is a vector. Since ∇ is a vector operator it can act upon a vector field

$$
\boldsymbol{A}(x, y, z)=\hat{\boldsymbol{i}} A_{1}(x, y, z)+\hat{\boldsymbol{j}} A_{2}(x, y, z)+\hat{\boldsymbol{k}} A_{3}(x, y, z)
$$

through the dot product. This defines the divergence of a vector (which is itself a scalar)

$$
\operatorname{div} \boldsymbol{A}=\nabla \cdot \boldsymbol{A}=\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}
$$

which physically expresses how the vector \boldsymbol{A} changes spatially through the six faces of a 3Dbox 1. Note, however, that $\nabla \cdot \boldsymbol{A} \neq \boldsymbol{A} \cdot \nabla$: the RHS is a differential operator while the LHS is a scalar function.
The curl of a vector (which is itself a vector) is defined by

$$
\operatorname{curl} \boldsymbol{A}=\nabla \times \boldsymbol{A}=\left|\begin{array}{ccc}
\hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right|
$$

This expresses how much swirl is in a vector field; if \boldsymbol{r} is the line from the origin to the point (x, y, z) then $\operatorname{curl} \boldsymbol{r}=0$.

There are various identities that are useful:

1. The gradient of the product of two scalars ϕ and ψ

$$
\nabla(\phi \psi)=\psi \nabla \phi+\phi \nabla \psi
$$

2. The divergence of the product of a scalar ϕ with a vector \boldsymbol{A}

$$
\operatorname{div}(\phi \boldsymbol{A})=\phi \operatorname{div} \boldsymbol{A}+(\nabla \phi) \cdot \boldsymbol{A}
$$

3. The curl of the product of a scalar ϕ with a vector \boldsymbol{A}

$$
\operatorname{curl}(\phi \boldsymbol{A})=\phi \operatorname{curl} \boldsymbol{A}+(\nabla \phi) \times \boldsymbol{A}
$$

4. The curl of the gradient of any scalar ϕ

$$
\operatorname{curl}(\nabla \phi)=\nabla \times \nabla \phi=0 .
$$

5. The divergence of the curl of any vector \boldsymbol{A}

$$
\operatorname{div}(\operatorname{curl} \boldsymbol{A})=\nabla \cdot(\nabla \times \boldsymbol{A})=0
$$

The cyclic rule for the scalar triple product shows that this is zero for all vectors \boldsymbol{A} because two vectors in the triple (∇) are the same.

[^0]
[^0]: ${ }^{1}$ One can think of a vector field that has zero divergence as 'incompressible'.

