M3M3 Partial Differential Equations

Solutions to problem sheet $3 / 4$

1* (i) Show that the second order linear differential operators L and M, defined in some domain $\Omega \subset \mathbb{R}^{n}$, and given by

$$
\begin{array}{r}
L \phi=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial \phi}{\partial x_{i}}+c \phi \\
M \phi=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} a_{i j} \phi-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} b_{i} \phi+c \phi \tag{2}
\end{array}
$$

where $a_{i j}, b_{i}$, and c are differentiable functions of \mathbf{x}, are formally adjoint, in the sense that:

$$
\begin{equation*}
\langle u, L v\rangle-\langle M u, v\rangle=Q \tag{3}
\end{equation*}
$$

where Q is some expression involving only terms evaluated on $\partial \Omega$.
(ii) Show that if L is self-adjoint, that is $L=M$, then

$$
\begin{equation*}
L \phi=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}} a_{i j} \frac{\partial}{\partial x_{j}} \phi+c \phi \tag{4}
\end{equation*}
$$

where $a_{i j}$ is symmetric. Find also the general expression for differential operators, of the form (1), to be skew-adjoint, that is satisfying $L=-M$.

Solution (i) Since $\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$ is symmetric, the antisymmetric part of $a_{i j}$ is irrelevant. Take $a_{i j}=a_{j i}$.
M, the adjoint of L, and L itself must satisfy:

$$
u L v-v M u=\sum_{i=1}^{n} w_{i}
$$

for some local expressions w_{i}. When we integrate over the volume Ω, this divergence then integrates to a local expression on the boundary $\partial \Omega$. We find here:

$$
\begin{array}{r}
u L v-v M u= \\
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(u a_{i j} \partial_{i} \partial_{j} v-v \partial_{i} \partial_{j} a_{i j} v\right) \\
+u \sum_{i=1}^{n} b_{i} \partial_{i} v+v \sum_{i=1}^{n} \partial_{i} b_{i} u= \\
\sum_{i=1}^{n} \partial_{i}\left(\sum_{j=1}^{n}\left(u a_{i j} \partial_{j} v-v \partial_{j} a_{i j} u\right)+b_{i} u v\right) \tag{8}
\end{array}
$$

as required.
(ii) Expanding $M u$ and equating with $L u$, for self-adjointness, we find the coefficient of u gives

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} a_{i j}}{\partial x_{i} \partial x_{j}}=\sum_{i=1}^{n} \frac{\partial b_{i}}{\partial x_{i}}
$$

and the coefficient of $\partial_{i} u$ gives

$$
\sum_{i=1}^{n} \frac{\partial\left(a_{i j}+a_{j i}\right)}{\partial x_{i}}=2 b_{i} .
$$

Since $a_{i j}$ is symmetric, $b_{i}=\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{j}}$. Expression (4) follows.

Show that if the Riemann (or Riemann-Green) function $v(x, y ; \xi, \eta)$ for a hyperbolic partial differential operator L, with adjoint L^{\dagger},

$$
\begin{equation*}
L=\frac{\partial^{2}}{\partial x \partial y}+a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y}+c(x, y) \tag{9}
\end{equation*}
$$

is defined by

$$
\begin{array}{r}
L^{\dagger} v=0, \quad \xi>x, \quad \text { and } \quad \eta>y, \\
v_{y}=a v, \quad x=\xi, \\
v_{x}=b v, \quad y=\eta \\
v=0, \quad \xi<x \quad \text { or } \quad \eta<y \\
v(\xi, \eta)=1 \tag{14}
\end{array}
$$

then, for all x, y

$$
\begin{equation*}
L^{\dagger} v=\delta(x-\xi) \delta(y-\eta) \tag{15}
\end{equation*}
$$

Hint: write $v(x, y)=w(x, y) H(\xi-x) H(\eta-y)$, where H is the Heaviside function, whose derivative is the δ-function, and w is a smooth function.

Solution 2(i) Substitute $v=w(x, y) H(\xi-x) H(\eta-y)$ into the adjoint pde

$$
M v=\delta(x-\xi) \delta(y-\eta)
$$

. This gives terms in $H(\xi-x) H(\eta-y)$, implying that w and hence v satisfy the pde if $\xi>x$ and $\eta>y$. The conditions on $\xi=x$ and $\eta=y$ come from matching the coefficients of $\delta(\xi-x) H(\eta-y)$ and $H(\xi-x) \delta(\eta-y)$ respectively. The coefficient of $\delta(\xi-x) \delta(\eta-y)$ gives the condition at the singular point $\xi=x, \eta=y$.
(ii) Here v must satisfy

$$
\begin{array}{r}
v_{x y}-\partial_{x} \frac{v}{x+y}-\partial_{y} \frac{v}{x+y}=0, \\
v_{x}=v /(x+y) \quad y=\eta \\
v_{y}=v /(x+y) \quad x=\xi \\
v(\xi, \eta)=1 . \tag{19}
\end{array}
$$

Clearly, taking $v=(x+y) /(\xi+\eta)$ achieves this. Put $L=\partial_{x} \partial_{y}+1 /(x+y)\left(\partial_{x}+\right.$ ∂_{y}), and L^{\dagger} is its adjoint. Integrate

$$
v L u-u L^{\dagger} v
$$

over the triangle Δ bounded by $x=y, x=\xi, y=\eta$. The integrand vanishes, as $L u=L^{\dagger} v=0$. However, it can also be written as a divergence
$\partial_{x}\left(\frac{1}{2}\left(v \partial_{y} u-u \partial_{y} v\right)+u v /(x+y)\right)+\partial_{y}\left(\frac{1}{2}\left(v \partial_{x} u-u \partial_{x} v\right)+u v /(x+y)\right)=\phi_{x}+\psi_{y}$,
say. Thus we get

$$
0=\iint_{\Delta} \phi_{x}+\psi_{y} d x d y=\int_{\partial \Delta} \phi d y-\psi d x .
$$

Now on $x=y$, we have $u=0, u_{x}=f(x)$, and also $u_{y}=-f(x)$, for $u_{x} d x+$ $u_{y} d y=d u=0$. Integrating anticlockwise, along $x=y, \quad x=\xi$, and $y=\eta$, we get, using the boundary conditions on u and on v,

$$
u(\xi, \eta)=\frac{2}{\xi+\eta} \int_{\xi}^{\eta} x f(x) d x .
$$

3* Using the maximum property for harmonic functions, prove the uniqueness of the solution to the Dirichlet problem for Poisson's equation.

Solution 3 The difference v between any two solutions of Poisson's equation with the same Dirichlet data is a harmonic function which vanishes at the boundary. Being harmonic, this function takes its maximum (and minimum) values on the boundary; hence it vanishes everywhere.(4 marks)

4i* Show that the solution of Helmholtz' equation in 3 dimensions with Dirichlet boundary conditions:

$$
\begin{array}{r}
\nabla^{2} u+\lambda u=f(\mathbf{x}), \quad \mathbf{x} \in D \\
u=g(\mathbf{x}), \quad \mathbf{x} \in \partial D \tag{21}
\end{array}
$$

is unique provided $\lambda \leq 0$.
ii With $\lambda=k^{2}>0$, a constant, find the radially symmetric solution $u(r)$ of the Dirichlet BVP in the ball $0<r<a$, which satisfies:

$$
\begin{array}{r}
\nabla^{2} u+k^{2} u=r^{-2} \frac{d}{d r} r^{2} \frac{d u}{d r}+k^{2} u=0, \quad 0<r<a \\
u=\frac{1}{4 \pi a}, \quad r=a \\
u \simeq-\frac{1}{4 \pi r}+O(1), \quad \text { as } r \rightarrow 0 \tag{24}
\end{array}
$$

It will be helpful to put $u(r)=v(r) / r$ and to find the ode satisfied by $v(r)$. Hence show directly that the solution is not unique if $k=\pi / a$.

Solution 4The difference between 2 solutions with the same Dirichlet data satisfies

$$
\begin{array}{r}
\nabla^{2} u+\lambda u=0, \quad \mathbf{x} \in D \\
u=0, \quad \mathbf{x} \in \partial D . \tag{26}
\end{array}
$$

Multiply the pde by u, and integrate over D. There is a vanishing boundary term, together with

$$
\int_{D}-|\nabla u|^{2}+\lambda u^{2} d V
$$

If u satisfies the pde, then this must vanish; however if $\lambda<0$, and u is not identically zero, this is strictly negative. Hence u must be zero throughout D.

For finite domains, this result is not the best possible; rather the solution is unique if $\lambda<\lambda_{0}$, the smallest eigenvalue of $-\nabla^{2}$ in D. So in the cube of side a, in 3 dimensions, $\lambda_{0}=3(\pi / a)^{2}$.
ii In the ball of radius a, with $\lambda=k^{2}$, the radially symmetric solution satisfies:

$$
\begin{equation*}
r^{-2} \frac{d}{d r} r^{2} \frac{d u}{d r}+k^{2} u=0, \quad 0<r<a \tag{27}
\end{equation*}
$$

Put $u(r)=v(r) / r$. So

$$
\begin{equation*}
\frac{d^{2} v}{d r^{2}}+k^{2} v=0, \quad 0<r<a \tag{28}
\end{equation*}
$$

The b.c's are $v(0)=-1 /(4 \pi)$, so u is close to the free space Green's function for the Laplace equation, as $r \rightarrow 0$, and $v(a)=1 /(4 \pi)$, so

$$
\begin{equation*}
v=-1 /(4 \pi) \cos (k r)+A \sin (k r) \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
v(a)=-1 /(4 \pi) \cos (k a)+A \sin (k a)=1 /(4 \pi) \tag{30}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A=1 /(4 \pi) \frac{\cos (k a)+1}{\sin (k a)} . \tag{31}
\end{equation*}
$$

This obviously fails if $k=\pi / a$, when numerator and denominator both vanish; any value for A will do in this case.

5 Show how the method of images may be used to solve the Dirichlet problem for Laplace's equation in a two-dimensional wedge-shaped domain between two straight lines meeting at an angle α, for certain values of α.
Hint - it is necessary to use multiple images. What values of α can be treated in this way?

What image systems would be needed if instead we had Neumann conditions on one or both lines?

Hence solve Laplace's equation in the quarter-plane $x>0, y>0$, with Dirichlet conditions on the two axes and infinity:

$$
\begin{array}{r}
u=1 \quad \text { on } y=0, \quad 0<x<1 \\
u=0 \quad \text { otherwise } \\
u \rightarrow 0 \quad \text { as }\left(x^{2}+y^{2}\right) \rightarrow \infty \tag{34}
\end{array}
$$

Solution 5 In polar coordinates, with the origin at the vertex, if the free-space Green's function is

$$
G_{0}\left(r, \theta, r^{\prime}, \theta^{\prime}\right)
$$

we introduce images by repeated reflection in the two half-lines $\theta=0, \theta=\alpha$. These reflections are given by the two maps $\theta \rightarrow-\theta$, and $\theta \rightarrow 2 \alpha-\theta$ respectively.

These images give

$$
\begin{array}{r}
G\left(r, \theta, r^{\prime}, \theta^{\prime}\right)=G_{0}\left(r, \theta, r^{\prime}, \theta^{\prime}\right) \\
-G_{0}\left(r,-\theta, r^{\prime}, \theta^{\prime}\right)-G_{0}\left(r, 2 \alpha-\theta, r^{\prime}, \theta^{\prime}\right) \\
+G_{0}\left(r, 2 \alpha+\theta, r^{\prime}, \theta^{\prime}\right)+G_{0}\left(r,-2 \alpha+\theta, r^{\prime}, \theta^{\prime}\right) \ldots \tag{37}
\end{array}
$$

The sum is periodic in θ with period 2α, corresponding to a double reflection, but also periodic with period 2π. Hence, if we are to ensure that the system of images is finite, without images in the original wedge, we find 2π must be an even integer multiple of $\alpha, \alpha=\pi / n$ say. (3 marks)

Neumann problems can be treated in the same way, but the sum must then be even under each reflection, so each term has a plus sign. (2 marks)

In the quarter-plane, $n=2$ and we need 3 images. The Green's function we need here is

$$
\begin{align*}
G\left(x^{\prime}, y^{\prime}, z^{\prime} ; x, y, 0\right)= & \frac{1}{4 \pi}\left(\ln \left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right)-\ln \left(\left(x+x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right)\right. \tag{38}\\
& \left.-\ln \left(\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}\right)+\ln \left(\left(x+x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}\right)\right) \tag{39}
\end{align*}
$$

The first term is the free-space Green's function, the second and third are its reflections under $x \rightarrow-x$ and $y \rightarrow-y$, while the fourth term is the double reflection in both planes. The solution of the given problem is then

$$
\begin{equation*}
u\left(x^{\prime}, y^{\prime}\right)=\int_{0}^{1} \frac{\partial G}{\partial n}\left(x^{\prime}, y^{\prime}, x, 0\right) 1 d x \tag{40}
\end{equation*}
$$

Then, with

$$
\begin{equation*}
\left.\frac{\partial G}{\partial n}\right|_{y=0}=\frac{y^{\prime}}{\pi}\left(\frac{1}{\left(x-x^{\prime}\right)^{2}+y^{\prime 2}}-\frac{1}{\left(x+x^{\prime}\right)^{2}+y^{\prime 2}}\right) \tag{41}
\end{equation*}
$$

we get

$$
u\left(x^{\prime}, y^{\prime}\right)=\frac{1}{\pi}\left(\tan ^{-1}\left(\frac{y^{\prime}}{x^{\prime}-1}\right)-2 \tan ^{-1}\left(\frac{y^{\prime}}{x^{\prime}}\right)+\tan ^{-1}\left(\frac{y^{\prime}}{x^{\prime}+1}\right)\right)
$$

It can easily be checked geometrically that this satisfies the boundary conditions. (4 marks)

6 Using the method of images, construct the Green's function of the Neumann problem for Laplace's equation in the half-space $D=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $z>0\}$. Hence solve

$$
\begin{align*}
& \nabla^{2} u=0, \quad \mathbf{x} \in D \tag{42}\\
& \frac{\partial u}{\partial z}=1-x^{2}-y^{2}, \quad x^{2}+y^{2}<1, \quad z=0 \tag{43}\\
& \frac{\partial u}{\partial z}=0, \quad x^{2}+y^{2}>1 \quad z=0, \tag{44}
\end{align*}
$$

and evaluate the resulting integral on the z-axis.
Solution 6 The Neumann Green's function is:

$$
\begin{gathered}
G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)= \\
-\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}}+\frac{1}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z+z^{\prime}\right)^{2}}}\right)
\end{gathered}
$$

which is even in z. Integrate $u \nabla^{2} G-G \nabla^{2} u$ over the upper half-space $z>$ 0 , getting $u\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. By the divergence theorem, this is equal to the surface integral

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u \frac{\partial G}{\partial n}-G \frac{\partial u}{\partial n} \quad d x d y
$$

Now $\partial / \partial n=-\partial / \partial z$, and $\partial G /\left.\partial z\right|_{z=0}=0$. Thus

$$
u\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G\left(x, y, 0 ; x^{\prime}, y^{\prime}, z^{\prime}\right) \frac{\partial u}{\partial z} \quad d x d y
$$

Hence

$$
\begin{gathered}
u\left(0,0, z^{\prime}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G\left(x, y, 0 ; 0,0, z^{\prime}\right) \frac{\partial u}{\partial z} \quad d x d y \\
=-\frac{1}{4 \pi} \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \frac{2}{\sqrt{r^{2}+z^{\prime 2}}} r d r d \theta \\
=-\int_{r=0}^{1} \frac{1}{\sqrt{r^{2}+z^{\prime 2}}} \quad r d r \\
=-\int_{\rho=0}^{1} \frac{1}{2 \sqrt{\rho+z^{\prime 2}}} d \rho \\
=-\left[\sqrt{\rho+z^{\prime 2}}\right]_{0}^{1}=-\left(\sqrt{1+z^{\prime 2}}-z^{\prime}\right)
\end{gathered}
$$

This plainly has the correct z^{\prime} derivative at $z^{\prime}=0$.
$7 \quad$ Solve the heat equation

$$
\begin{equation*}
u_{t}=u_{x x} \tag{45}
\end{equation*}
$$

with Neumann (insulating) boundary conditions $u_{x}=0$ on the ends of the interval $[0, \pi]$, and initial condition

$$
\begin{equation*}
u(x, 0)=\delta(x-\pi / 2) \tag{46}
\end{equation*}
$$

in two different ways,
(i) in terms of Green's functions, using the method of images, and
(ii) in terms of a Fourier cosine series, by separation of variables.

Write these solutions in terms of two of the four theta functions, defined by:

$$
\begin{equation*}
\theta_{4}(s, q)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \cos (2 n s) \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{2}(s, q)=\sum_{n=-\infty}^{\infty} q^{(n+1 / 2)^{2}} \cos ((2 n+1) s) \tag{48}
\end{equation*}
$$

where q is chosen appropriately in each case. Hence, using the uniqueness theorem, derive the Jacobi imaginary transformation formula which relates θ_{2} and θ_{4} for different values of q. Such formulae are important in the theory of elliptic functions, as these may be written as quotients of theta functions.

See Lawden: Elliptic Functions and Applications, or other texts on elliptic functions, for further information.

Solution 7 This heat equn can be solved in 2 ways. (i)By separation of variables: the solution must be a sum of terms like $X(x) T(t)$, satisfying

$$
\begin{equation*}
T_{t} / T=X_{x x} / X=\text { constant } \tag{49}
\end{equation*}
$$

Now X must be $\cos (2 n x), n$ integer, to satisfy the Neumann boundary conditions at $x=0$ and $x=\pi$, and we get

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} a_{n} \cos (2 n x) \exp \left(-4 n^{2} t\right) \tag{50}
\end{equation*}
$$

At $t=0$ we get

$$
\begin{equation*}
\delta(x)=\sum_{n=0}^{\infty}\left(a_{n} \cos (2 n x)\right), \tag{51}
\end{equation*}
$$

so on multiplying by $\cos (2 n x)$ or 1 , and integrating, we find $a_{n} \pi / 2=$ $\cos (n \pi)=(-1)^{n}$, and $b_{n}=0$, and $a_{0} \pi=1$.

Thus

$$
\begin{equation*}
\left.u(x, t)=\frac{1}{\pi} \sum_{n=-\infty}^{\infty}(-1)^{n} \cos (2 n) x\right) \exp \left(-4 n^{2} t\right)=\frac{1}{\pi} \theta_{4}(x, t) \tag{52}
\end{equation*}
$$

(ii) Alternatively, using Green's functions and the method of images, letting each image of the δ-function evolve into a copy of the free-space Green's function centred at $(2 n+1) \pi / 2$, we have:

$$
\begin{aligned}
u(x, t) & =\sum_{n=-\infty}^{\infty} \exp \left(-(x-(2 n+1) \pi / 2)^{2} / 4 t\right) / \sqrt{4 \pi t} \\
& \left.=\sum_{n=-\infty}^{\infty} \exp \left(-x^{2}+(2 n+1) \pi x-(2 n+1)^{2} \pi^{2} / 4\right) / 4 t\right) / \sqrt{4 \pi t} \\
& \left.=\exp \left(-x^{2} / 4 t\right) \sum_{n=-\infty}^{\infty} \exp \left(\frac{(2 n+1) x \pi}{4 t}\right) \exp \left(-\left(n+\frac{1}{2}\right)^{2} \pi^{2} / t\right)\right) / \sqrt{4 \pi t} \\
& \left.=\exp \left(-x^{2} / 4 t\right) \sum_{n=-\infty}^{\infty} \cosh \left(\frac{(2 n+1) x \pi}{4 t}\right) \exp \left(-\left(n+\frac{1}{2}\right)^{2} \pi^{2} / t\right)\right) / \sqrt{4 \pi t} \\
& =\exp \left(-x^{2} / 4 t\right) / \sqrt{4 \pi t} \theta_{2}\left(\frac{-i x \pi}{4 t}, \frac{\pi^{2}}{4 t}\right),
\end{aligned}
$$

where we have used the evenness of cosh to symmetrise the sum in the last step. Since these 2 expressions solve the same equation with the same boundary
conditions, they must be equal by the uniqueness theorem. This gives the transformation formula required, which relates values of θ_{3} for large and small values of its second argument.

8* Solve

$$
\begin{equation*}
u_{t}=u_{x x} \tag{53}
\end{equation*}
$$

i on the line with the initial condition:

$$
\begin{gather*}
u(x, 0)=\frac{1}{2 a}, \quad|x|<a \tag{54}\\
u(x, 0)=0, \tag{55}\\
|x|>a
\end{gather*}
$$

and describe the limit $a \rightarrow 0$;
ii and, on the half-line $x>0$, with the boundary and initial conditions:

$$
\begin{array}{r}
u(x, 0)=0 \\
u(0, t)=1 . \tag{57}
\end{array}
$$

Solution 8* (i) As in notes, using the Green's function $G(x, t)=$ $\frac{1}{\sqrt{4 \pi t}} \exp \left(-x^{2} /(4 t)\right)$, we get

$$
\begin{align*}
& u(x, t)= \tag{58}\\
& \int_{-\infty}^{\infty} u\left(x^{\prime}, 0\right) G\left(x-x^{\prime}, t\right) d x^{\prime}= \tag{59}\\
& \frac{1}{\sqrt{4 \pi t}} \int_{-a}^{a} \frac{1}{2 a} \exp \left(-\left(x-x^{\prime}\right)^{2} / 4 t\right) d x^{\prime}= \tag{60}\\
& \frac{1}{2 a} \frac{1}{\sqrt{4 \pi t}} \int_{-(x+a)}^{(a-x)} \exp \left(-\left(x^{\prime}\right)^{2} / 4 t\right) d x^{\prime}= \tag{61}\\
& \frac{1}{2 a \sqrt{\pi}}(\operatorname{erf}((a-x) / \sqrt{ }(4 t))-\operatorname{erf}(-(a+x) / \sqrt{ }(4 t))) \tag{62}
\end{align*}
$$

where $\operatorname{erf}(x)=2 / \sqrt{\pi} \int_{0}^{x} \exp \left(-t^{2}\right) d t$. As $a \rightarrow 0, u(x, t) \rightarrow G(x, t)$.
(ii) Here we need $G\left(x, x^{\prime}, t\right)=\frac{1}{\sqrt{4 \pi t}}\left(\exp \left(-\left(x-x^{\prime}\right)^{2} /(4 t)\right)-(\exp (-(x+\right.$ $\left.\left.x^{\prime}\right)^{2} /(4 t)\right)$, so that:

$$
\begin{align*}
u(x, t)= & \int_{0}^{\infty} u\left(x^{\prime}, 0\right) G\left(x-x^{\prime}, t\right) d x^{\prime}-\int_{0}^{t} u\left(0, t^{\prime}\right) \frac{\partial G\left(x, t-t^{\prime}\right)}{\partial x}= \tag{63}\\
& \int_{0}^{t} \frac{1}{\sqrt{4 \pi}} \frac{x}{\left(t-t^{\prime}\right)^{3 / 2}} \exp \left(-\frac{x^{2}}{4\left(t-t^{\prime}\right)}\right) d t^{\prime} \tag{64}
\end{align*}
$$

Now put $\tau=x /\left(2 \sqrt{t-t^{\prime}}\right)$; the result becomes:

$$
\int_{\tau=x /(2 \sqrt{t})}^{\infty} \frac{2}{\sqrt{\pi}} \exp \left(-\tau^{2}\right) d \tau
$$

that is

$$
u=\left(1-\operatorname{erf}\left(\frac{x}{2 \sqrt{t}}\right)\right)
$$

$$
\begin{equation*}
u_{t}=u^{n} u_{x x} \tag{65}
\end{equation*}
$$

in the domain $t>0,0<x<1$, with the initial and boundary conditions:

$$
\begin{array}{r}
u(x, 0)=f(x) \\
u(0, t)=u(1, t)=0 \tag{67}
\end{array}
$$

If n is a positive integer, and $f(x)$ is square-integrable, show that if

$$
\begin{equation*}
E=\int_{0}^{1} u^{2} d x \tag{68}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d E}{d t} \leq 0 \tag{69}
\end{equation*}
$$

provided that n is even. Discuss why the problem may not be well-posed for odd n; show that $E(t)$ can increase in this case. Discuss the generalisation to more than one space dimension.

Solution 9 Multiply the equation by $2 u$, so that:

$$
\begin{equation*}
\left(u^{2}\right)_{t}=2 u^{n+1} u_{x x} \tag{70}
\end{equation*}
$$

Hence on integrating by parts, over the interval $0<x<1$,

$$
\begin{equation*}
\frac{d E}{d t}=-2(n+1) \int_{0}^{1} u^{n} u_{x}^{2} d x \tag{71}
\end{equation*}
$$

If n is even, the rhs is negative, and E is a decreasing function of time. However the sign of the integrand on the right is not definite for odd n. In the latter case, E may increase if u is somewhere negative; indeed, linearising about some negative constant u_{0}, with $u=u_{0}+\epsilon u_{1}$, where $0<\epsilon \ll 1$, we see that u_{1} satisfies a backwards heat equation, which is ill-posed. We would expect solutions to grow without bound in this case, in any region where u is negative. Analogous results can be obtained using the divergence theorem in more than one space dimension.

10 Self-similar solutions Find m, n such that the ansatz $u(x, t)=$ $t^{m} f\left(x t^{n}\right)$ satisfies Burger's equation:

$$
\begin{equation*}
u_{t}+u u_{x}=u_{x x} . \tag{72}
\end{equation*}
$$

Find the ordinary differential equation satisfied by f, and hence solve Burger's equation with

$$
\begin{align*}
& u(0, t)=-2 /(\pi t)^{1 / 2} \tag{73}\\
& u \rightarrow 0, \quad x \rightarrow \infty \tag{74}
\end{align*}
$$

Solution $10 \quad$ Put $\xi=x t^{n}, \quad u=t^{m} f\left(x t^{n}\right)$, in the equation; we get:

$$
\begin{equation*}
m t^{m-1} f+n x t^{m+n-1} f^{\prime}+t^{2 m+n} f f^{\prime}=t^{m+2 n} f^{\prime \prime} \tag{75}
\end{equation*}
$$

Rearranging,

$$
\begin{equation*}
m f+n \xi f^{\prime}+t^{m+n+1} f f^{\prime}=t^{2 n+1} f^{\prime \prime} \tag{76}
\end{equation*}
$$

Equate coefficients of t to get $n=m=-1 / 2$.

$$
\begin{equation*}
u(x, t)=f\left(x / t^{1 / 2}\right) / t^{1 / 2} \tag{77}
\end{equation*}
$$

Then

$$
\begin{equation*}
f^{\prime \prime}-f f^{\prime}+1 / 2 \xi f^{\prime}+1 / 2 f=0 \tag{78}
\end{equation*}
$$

Integrating, with $f \rightarrow 0$ as $x \rightarrow \infty$:

$$
\begin{equation*}
f^{\prime}-f^{2} / 2+1 / 2 \xi f=0 \tag{79}
\end{equation*}
$$

Put $f=-2 \psi^{\prime} / \psi$ so that

$$
\begin{equation*}
\psi^{\prime \prime}+1 / 2 \xi \psi^{\prime}=0, \tag{80}
\end{equation*}
$$

giving $\psi^{\prime}=\exp \left(-\xi^{2} / 4\right)$. The constant of integration is irrelevant here. Hence

$$
\begin{equation*}
\psi=\sqrt{\pi} \operatorname{erf}(\xi / 2)+A \tag{81}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
f=-2 \frac{\exp \left(-\xi^{2} / 4\right)}{\sqrt{\pi} \operatorname{erf}(\xi / 2)+A} \tag{82}
\end{equation*}
$$

At $\xi=0$, this reduces, with the condition on $x=0$, to $f=-2 / A=-2 / \sqrt{\pi}$. Finally, we obtain

$$
\begin{equation*}
u=-\frac{2}{\sqrt{t}} \frac{\exp \left(-x^{2} /(4 t)\right)}{\sqrt{\pi} \operatorname{erf}(\xi / 2)+\sqrt{\pi}} \tag{83}
\end{equation*}
$$

