Ten Lectures on Spatially Localized Structures

Edgar Knobloch

Department of Physics University of California, Berkeley, CA 94720, USA http://tardis.berkeley.edu

Imperial College, 23-27 May 2016

→ 3 → 4 3

Binary fluid convection - again

We consider the equations

$$\begin{aligned} \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} &= -\nabla P + \sigma R[(1+S)\theta - S\eta]\hat{\mathbf{z}} + \sigma \nabla^2 \mathbf{u}, \\ \theta_t + (\mathbf{u} \cdot \nabla)\theta &= w + \nabla^2 \theta, \\ \eta_t + (\mathbf{u} \cdot \nabla)\eta &= \tau \nabla^2 \eta + \nabla^2 \theta, \end{aligned}$$

where $\nabla \cdot \mathbf{u} = 0$, so that $\mathbf{u} \equiv (u, w) = (-\psi_z, \psi_x)$ where ψ is the streamfunction, with the boundary conditions $\beta = 1$:

at
$$z = 1$$
: $u = w = \theta = \eta_z = 0$.
at $z = -1$: $u = w = \theta = \eta_z = 0$.

However, we now consider the case S > 0 for which steady convection sets in with a **long** wavelength. We therefore write $X = \epsilon x$, $T = \epsilon^4 t$, where $R = R_0(1 + \mu \epsilon^2)$, $0 < \epsilon \ll 1$. In addition, we write

$$\psi = \epsilon \Psi(X, z, T), \quad \theta = \epsilon^2 \Theta(X, z, T), \quad \eta = -\Phi(X, z, T).$$

Binary fluid convection - again

Thus, with
$$D \equiv \partial/\partial z$$
,

$$\frac{1}{\sigma} [\epsilon^{6} \Psi_{XXT} + \epsilon^{4} D^{2} \Psi_{T} + \epsilon^{2} \Psi_{X} (\epsilon^{2} D \Psi_{XX} + D^{3} \Psi) - \epsilon^{2} D \Psi (\epsilon^{2} \Psi_{XXX} + D^{2} \Psi_{X})]$$

$$= R_{0} (1 + \mu \epsilon^{2}) [(1 + S) \epsilon^{2} \Theta_{X} + S \Phi_{X}] + \epsilon^{4} \Psi_{XXXX} + 2 \epsilon^{2} D^{2} \Psi_{XX} + D^{4} \Psi,$$

$$\epsilon^{4} \Theta_{T} + \epsilon^{2} (\Psi_{X} D \Theta - D \Psi \Theta_{X}) = \Psi_{X} + \epsilon^{2} \Theta_{XX} + D^{2} \Theta,$$

$$\epsilon^{4} \Phi_{T} + \epsilon^{2} (\Psi_{X} D \Phi - D \Psi \Phi_{X}) = \tau (\epsilon^{2} \Phi_{XX} + D^{2} \Phi) - \epsilon^{2} (\epsilon^{2} \Theta_{XX} + D^{2} \Theta).$$
These equations are solved by an asymptotic expansion of the form

$$\Psi = \Psi_{0} + \epsilon^{2} \Psi_{2} + \cdots, \Theta = \Theta_{0} + \epsilon^{2} \Theta_{2} + \cdots, \Phi = \Phi_{0} + \epsilon^{2} \Phi_{2} + \cdots$$
 as
described in Knobloch, PRA **40**, 1549 (1989).

Edgar Knobloch (UC Berkeley)

・ロト ・回ト ・ヨト ・ヨ

Binary fluid convection – again At O(1):

$$D^2\Phi_0=0,$$
 with $D\Phi_0=0$ on $z=\pm 1.$

Hence $\Phi_0 = f(X, T)$, where f is to be determined. Since

$$D^4\Psi_0 = -SR_0f'$$

it follows that $\Psi_0 = SR_0 f'P(z)$, where P is a fourth order polynomial in z depending on the boundary conditions. In addition,

$$\Theta_0=SR_0f''Q(z),$$

where Q is a degree six polynomial in z. At $\mathcal{O}(\epsilon^2)$:

$$\tau D^2 \Phi_2 = -(\tau + SR_0P)f'' - SR_0DPf'^2 \quad \text{with} \quad D\Phi_2 = 0 \quad \text{on} \quad z = \pm 1.$$

Thus

$$SR_0\int_{-1}^1 P\,dz+2\tau=0.$$

- 4 同 6 4 日 6 4 日 6

This equation determines R_0 leaving $\Phi_2 = f_2(X, T) + f''U(z) + f'^2V(z)$. Similarly, $\Psi_2 = SR_0f'_2P(z) + \mu Sf'P(z) + f'f''W(z) + f'''Z(z)$ and

$$D^{2}\Theta_{2} = (SR_{0})^{2}P)(f''^{2}PDQ - f'f'''DPQ) - SR_{0}f_{2}''P - \mu Sf''P - (f'f'')'W - f''''(Z + SR_{0}Q).$$

Finally, at $\mathcal{O}(\epsilon^4)$ the solvability condition for Φ_4 gives

$$f_T = -SR_0\mu Af'' - Bf'''' + C(f'^3)' + D(f'f'')'.$$

For the boundary conditions adopted $R_0 = 45\tau/S$, A = 1/45, $B = [34\tau - 131(1 + S^{-1})\tau^2]/231$, $C = 10\tau/7$, D = 0.

The sign of the coefficient $B \equiv -\frac{1}{2} [\tau \int_{-1}^{1} U \, dz + \int_{-1}^{1} Z \, dz]$ plays an important role. If B > 0 $[S > S_0 \equiv 131\tau(34 - 131\tau)^{-1}]$ the minimum of the neutral stability curve is at k = 0 and we get Cahn-Hilliard dynamics; if B < 0 the minimum is at finite k and the calculation needs to be taken to higher order: we take $S = S_0(1 - \nu\epsilon^2)$ so that $B = \mathcal{O}(\epsilon^2)$, and hence write $R = R_0(1 + \nu\epsilon^2 + \mu\epsilon^4)$, obtaining instead

$$f_{T} = -SR_{0}(\mu - \nu^{2})Af'' + \nu\tilde{B}f'''' + Ff''''' + C(f'^{3})'.$$

Binary fluid convection – again With $f' = \phi$ this equation takes the form

$$\phi_T = \partial_X^2 [-SR_0(\mu - \nu^2)A\phi + \nu \tilde{B}\phi'' + F\phi'''' + C\phi^3].$$

This is the conserved Swift-Hohenberg equation.

Rotating convection: Basic Equations

We consider a plane horizontal layer, heated from below and rotating uniformly with angular velocity Ω about the vertical axis. We consider two-dimensional convection with $\mathbf{u} \equiv (-\psi_z, v, \psi_x)$, where $\psi(x, z, t)$ is the streamfunction in the (x, z) plane and v(x, z, t) is the associated zonal velocity. The basic equations are (Veronis 1959)

$$\begin{aligned} Ra\theta_{x} - Tv_{z} + \nabla^{4}\psi &= \sigma^{-1} \left[\nabla^{2}\psi_{t} + J(\psi, \nabla^{2}\psi) \right], \\ \psi_{x} + \nabla^{2}\theta &= \theta_{t} + J(\psi, \theta), \\ T\psi_{z} + \nabla^{2}v &= \sigma^{-1} \left[v_{t} + J(\psi, v) \right]. \end{aligned}$$

The dimensionless parameters are

$$\sigma = rac{
u}{\kappa}, \qquad Ra = rac{g lpha riangle \Theta h^3}{\kappa
u}, \qquad T = rac{2\Omega h^2}{
u}.$$

The equations are to be solved subject to stress-free boundary conditions

$$\psi = \psi_{zz} = \theta = v_z = 0$$
 at $z \in \{0, 1\}$

- 4 同 6 4 日 6 4 日 6

Basic Equations

With these boundary conditions

$$rac{d}{dt}ar{V}=0,\qquad ar{V}\equiv\int_D v(x,z,t)\,dx\,dz.$$

Thus \overline{V} is a conserved quantity, and this fact exerts a profound influence on the behavior of this system. In the following we set wlog $\overline{V} = 0$. We also define $V(x) \equiv \int_0^1 v(x, z) dz$. Then

$$\sigma \frac{dV}{dx} = -\int_0^1 \psi_z v \, dz.$$

This is the Reynolds stress relation. The quantity $\Delta V \equiv V(x = L/2) - V(x = -L/2)$ measures the shear across a convecton of length *L*. This is always anticyclonic ($\Delta V < 0$).

- 4 回 ト 4 回 ト 4 回 ト

Subcritical case: $\Gamma = 10\lambda_c$, T = 20, $\sigma = 0.1$

Beaume et al., J. Fluid Mech. 717, 417-448 (2013) = • • • •

Edgar Knobloch (UC Berkeley)

Localized pattern

May 2016 9 / 29

Subcritical case: $\Gamma = 10\lambda_c$, T = 20, $\sigma = 0.1$

Beaume et al., J. Fluid Mech. 717, 417-448 (2013)

э

Subcritical case: $\Gamma = 10\lambda_c$, T = 20, $\sigma = 0.1$

Beaume et al., J. Fluid Mech. 717, 417-448 (2013)

→ Ξ →

Subcritical case: $\Gamma = 10\lambda_c, 15\lambda_c, 20\lambda_c, T = 20, \sigma = 0.1$

Subcritical case: $\Gamma = 20\lambda_c$, T = 20, $\sigma = 0.1$

Subcritical case: $\Gamma = 10\lambda_c$, $T = 10, 40, 80, \sigma = 0.1$

Supercritical case: $\Gamma = 10\lambda_c$, T = 40, $\sigma = 0.6$

Supercritical case: $\Gamma = 10\lambda_c$, T = 40, $\sigma = 0.6$

Edgar Knobloch (UC Berkeley)

May 2016 16 / 29

Supercritical case: $\Gamma = 10\lambda_c$, $\sigma = 0.6$

Supercritical case: $\Gamma = 10\lambda_c$, $\sigma = 0.6$

Edgar Knobloch (UC Berkeley)

Theory

We let $Ra = Ra_c + \epsilon^2 r$ and look for solutions in the form $\psi = \frac{\epsilon}{2} \left(a(X, T_2)e^{ikx} + c.c. \right) \sin(\pi z) + h.o.t.,$ $\theta = \frac{\epsilon k}{2p} \left(ia(X, T_2)e^{ikx} + c.c. \right) \sin(\pi z) + h.o.t.,$ $v = \epsilon V(X, T_2) + \frac{\epsilon T\pi}{2p} \left(a(X, T_2)e^{ikx} + c.c. \right) \cos(\pi z) + h.o.t.$ where $X = \epsilon x$, $T_2 = \epsilon^2 t$. After rescaling

$$\eta A_{T_2} = rA + A_{XX} - \frac{1-\zeta}{2} |A|^2 A - \xi A V_X,$$

$$V_{T_2} = V_{XX} + \xi (|A|^2)_X,$$

where $\xi \equiv \frac{T\pi^2}{\sqrt{3}pk^2\sigma} > 0$, $p = k^2 + \pi^2$. Thus, in steady state,

$$V_X = \xi \left(\left\langle |A|^2 \right\rangle - |A|^2 \right),$$

where $\langle \cdot \rangle$ represents a spatial average over the domain. Thus $V_X < 0$ if $|A|^2 > \langle |A|^2 \rangle$, i.e., inside the convecton, while $V_X < 0$ outside it.

Edgar Knobloch (UC Berkeley)

Nonlocal amplitude equation

Nonlocal amplitude equation

Bifurcation diagrams for $\sigma = 0.6$ and $\Gamma = 10\lambda_c$ and (a) T = 50 ($\xi^2 = 0.7032$, region (2)). (b) T = 70 ($\xi^2 = 0.5882$, region (2)). (c) T = 120 ($\xi^2 = 0.4269$, region (2)). (d) $T = 140 \ (\xi^2 = 0.3877, \text{ region (3)}).$ • • = • • = •

Image: A matrix

Homotopy to no-slip boundary conditions

With no-slip boundary conditions at $z = \pm 1/2$,

$$\psi = \psi_z = \mathbf{v} = \mathbf{0},$$

the zonal momentum equation contains a source term:

$$\frac{d}{dt}\overline{V} = \frac{\sigma}{\Gamma} \int_{-\Gamma/2}^{\Gamma/2} \left[\partial_z v\right]_{z=-1/2}^{1/2} dx,$$

To examine the effect of the breaking of this conserved quantity we perform homotopy between the stress-free case and the no-slip case:

$$\psi = (1 - \beta)\psi_{zz} \pm \beta\psi_z = (1 - \beta)v_z \pm \beta v = 0$$

at $z = \pm 1/2$, where $\beta \in [0, 1]$ is a homotopy parameter. Thus $\beta = 0$ corresponds to stress-free boundaries and $\beta = 1$ to no-slip boundaries.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homotopy to no-slip boundary conditions: Ta = 60, $\sigma = 0.1$, $\Gamma \approx 30.9711$

Beaume et al., Phys. Fluids 25, 124105 (2013)

Homotopy to no-slip boundary conditions: L_{20}^+ branch

Beaume et al., Phys. Fluids 25, 124105 (2013)

Edgar Knobloch (UC Berkeley)

May 2016 24 / 29

(日) (同) (三) (三)

Homotopy to no-slip boundary conditions: L_{20}^- branch

Beaume et al., Phys. Fluids 25, 124105 (2013)

Edgar Knobloch (UC Berkeley)

May 2016 25 / 29

(日) (同) (三) (三)

Homotopy: (a) $\beta = 0.1$, (b) $\beta = 0.2$, (c) $\beta = 0.4$ and (d) $\beta = 0.6$

Edgar Knobloch (UC Berkeley)

Localized patterns

May 2016 26 / 29

-

Conclusions

We have seen that on a periodic domain with finite period Γ the presence of zonal momentum conservation changes dramatically the standard snaking scenario:

- localized states exist outside the bistability region
- snaking becomes slanted
- snaking occurs even in the supercritical case

In the limit $\Gamma \to \infty$ the momentum conservation constraint is lost and snaking becomes vertical as in the standard scenario.

Similar behavior occurs in other systems with a conserved quantity, including the conserved Swift-Hohenberg equation and convection in an imposed vertical magnetic field.

- 4 週 ト - 4 三 ト - 4 三 ト

Take-home message from the lecture series

I have

- introduced the notion of spatial dynamics
- demonstrated its usefulness for understanding the origin of LS in 1D
- described the snakes-and-ladders structure of the bifurcation diagram
- discussed the corresponding 2D results
- explained how the presence of a conserved quantity modifies this structure
- shown how to determine the speed of a front invading an unstable state
- shown how to determine the speed of a front invading a stable state
- demonstrated how these results inform our understanding of more complicated systems described by Navier-Stokes dynamics

There is a large number of other systems exhibiting this type of behavior because it is **generic**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks to:

- Arantxa Alonso, Polytechnic University of Catalunya, Barcelona
- Andrew Archer, Loughborough
- Pauline Assemat, IMFT, Toulouse
- Daniele Avitabile, Nottingham
- Oriol Batiste, Polytechnic University of Catalunya, Barcelona
- Cédric Beaume, Leeds
- Alain Bergeon, IMFT, Toulouse
- John Burke, Barra, Berkeley
- Lendert Gelens. Leuven
- Steve Houghton, Leeds
- Hsien-Ching Kao, Mathematica, Urbana-Champaign
- David Lloyd, Surrey,
- David Lo Jacono, IMFT, Toulouse
- Yi-Ping Ma, Boulder
- Isabel Mercader, Polytechnic University of Catalunya, Barcelona
- Björn Sandstede, Brown
- Arik Yochelis, Technion
- Uwe Thiele. Münster