Numerical Continuation of Bifurcations

An Introduction

Part II: Connecting Orbits

LDSG School 2005

Thomas Wagenknecht, Jan Sieber

Computation of connecting orbits

Let x_- and x_+ be equilibria and let $\Gamma = \{\gamma(t) : t \in \mathbb{R}\}$ be a connecting orbit from x_- to x_+ . Then Γ is characterized as follows:

$$\dot{\gamma} = f(\gamma, \lambda)$$
$$f(x_{-}, \lambda) = 0$$
$$f(x_{+}, \lambda) = 0$$
$$\lim_{t \to -\infty} \gamma(t) = x_{-}$$
$$\lim_{t \to \infty} \gamma(t) = x_{+}$$

Computation of connecting orbits II

For numerical computations the equations have to be transferred to a finite time-interval, say [-T, T].

For simplicity: restrict to *homoclinic orbits*, $(x_{-} = x_{+} = x^{*})$ and assume that x^{*} is a *hyperbolic equilibrium*.

Let $A := D_x f(x^*, \lambda)$ have n_u positive and n_s negative eigenvalues, and let E^u and E^s denote the unstable and stable eigenspace.

(Un)Stable Manifold Theorem: Locally near x^* there exist an n_u -dimensional unstable manifold W^u , tangent to E^u and an n_s -dimensional stable manifold W^s tangent to E^s .

Computation of connecting orbits III

The orbit Γ has to approach x^* along $W^{s(u)}$ for $t \to \pm \infty$. We use $E^{s(u)}$ as linear approximations to $W^{s(u)}$.

Thus, let $L_{s(u)}$ be projections on $E^{s(u)}$. Then we demand

$$L_s(\gamma(-T) - x^*) = 0$$
$$L_u(\gamma(T) - x^*) = 0$$

Finally, we need the standard phase condition (also truncated from \mathbb{R} to [-T, T])

$$\int_{-T}^{T} (\gamma(t) - x_0(t))^T \dot{\gamma}(t) dt = 0,$$

where x_0 is a reference solution (initial guess).

BLADE

Computation of connecting orbits IV

The boundary value problem for the computation of a homoclinic orbit thus reads

$$\dot{\gamma}(t) = f(\gamma(t), \lambda), \quad \text{for } t \in [-T, T]$$
$$L_s(\gamma(-T) - x^*) = 0$$
$$L_u(\gamma(T) - x^*) = 0$$

with phase condition

$$\int_{-T}^{T} (\gamma(t) - x_0(t))^T \dot{\gamma}(t) dt = 0,$$

