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Transformations on the Real Line 

Fractal geometry studies "complicated" subsets of geometrically "simple" spaces 
such as «::, and C. In deterministic fractal geometry the focus is on those 
subsets of a space that are generated by, or possess invariance properties under, 
simple geometrical transformations of the space into itself. A simple geometrical 
transformation is one that is easily conveyed or explained to someone else. Usually 
it can be completely specified by a small set of parameters. Examples include affine 
transformations in which are expressed using 2 x 2 matrices and 2-vectors, and 
rational transformations on the Riemann Sphere, which require the specification of 
the coefficients in a pair of polynomials. 

Definition 1. 1 Let (X, d) be a metric space. A transformation on X is a function 
f : X --+ X, which assigns exactly one point f (x) E X to each point x E X. If S c X 
then f(S) = {f(x): xES}. f is one-to-one if x, y EX with f(x) = f(y) implies 
x = y. f is onto iff (X) = X. f is called invertible if it is one-to-one and onto: in 
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this case it is possible to define a transformation f- 1 X, called the inverse of 
f, by f- 1(y) = x, where x EX is the point such that y = f(x). 

Definition 1.2 Letf: X be a transformation on a metric space. The forward 
iterates of f are transformations Jon : X X defined by f 00 (x) = x, fo 1 (x) = 
f(x), fo(n+l)(x) = f o f(n)(x) = f( f(n)(x)) for n = 0, 1, 2, .... Iff is invertible 
then the backward iterates off are transformations fo(-m)(x) X defined by 
fo(-l)(x) = /- 1(x), fo(-m)(x) = (fom)- 1(x)for m = 1, 2, 3, .... 

In order to work in fractal geometry one needs to be familiar with the basic fam-
ilies of transformations in ([, and C. One needs to know well the relation-
ship between "formulas" for transformations and the geometric changes, stretchings, 
twistings, foldings, and skewings of the underlying fabric, the metric space upon 
which they act. It is more important to understand what the transformations do to 
sets than how they act on individual points. So, for example, it is more useful to 
know how an affine transformation in acts on a straight line, a circle, or a trian-
gle, than to know to where it takes the origin. 

Examples & Exercises 
1. 1. Let f: X X be an invertible transformation. Show that 

for all integers m and n. 

1.2. A transformation f : is defined by f (x) = 2x for all x E Is f in-
vertible? Find a formula for Jon (x) that applies for all integers n. 

1.3. A transformation f: [0, 1] [0, 1] is defined by f(x) = Is this transfor-
mation one-to-one? Onto? Invertible? 

1.4. The mapping f: [0, 1] [0, 1] is defined by f(x) = 4x · (1- x). Is this trans-
formation one-to-one? Onto? Is it invertible? 

1.5. Let C denote the Classical Cantor Set. This subset of the metric space [0, 1] 
is obtained by successive deletion of middle-third open subintervals as follows. We 
construct a nested sequence of closed intervals 

where 
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Figure 111.28. Con-
struction of the Classical 
Cantor Set C. o 
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I 4 = h take away the middle open third of each interval in 1), 

In = IN -I take away the middle open third of each interval in IN -I· 

This construction is illustrated in Figure III.28. We define 

c = 

C contains the point x = 0, so it is nonempty. In fact C is a perfect set that contains 
uncountably many points, as discussed in Chapter IV. Cis an official fractal and we 
will often refer to it. 

We are now able to work in the metric space (C, Euclidean). A transformation 
f : C ---+ C is defined by f (x) = x. Show that this transformation is one-to-one but 
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Figure 111.29. The ac-
tion of the affine transfor-
mation f : ---+ defined 
by f(x) =ax+ b. 

Figure 111.30. This fig-
ure suggests a sequence of 
intervals Find an 
affine transformation f : 

---+ SO that Jon Uo) = 
In for n = 0, 1, 2, 3, .... 
Use a straight -edge and 
dividers to help you. 

not onto. Also, find another affine transformation (see example 1.7, which maps C 
one-to-one into C). 

1.6. f: IR?. 2 ---+ IR?.2 is defined by j(x1, x2) = (2xl, xi+ x 1) for all (x 1, x2) E IR?.2 . 

Show that f is not invertible. Give a formula for f 02 (x). 

1. 7. Affine transformations in IR?. 1 are transformations of the form f (x) = a · x + b, 
where a and bare real constants. Given the interval I= [0, 1], f(l) is a new interval 
of length I a I, and f rescales by a. The left endpoint 0 of the interval is moved to b, 
and f(l) lies to the left or right of b according to whether a is positive or negative, 
respectively (see Figure 111.29). 

We think of the action of an affine transformation on all of IR?. as follows: the whole 
line is stretched away from the origin if Ia I > 1, or contracted toward it if Ia I < 1; 
flipped through 180° about 0 if a < 0; and then translated (shifted as a whole) by 
an amount b (shift to the left if b < 0, and to the right if b > 0). 

1.8. Describe the set of affine transformations that takes the real interval X = [ 1, 2] 
into itself. Show that if f and g are two such transformations then f o g and g o f 
are also affine transformations on [1, 2]. Under what conditions does f o g(X) U go 
f(X) =X? 

1.9. A sequence of intervals is indicated in Figure 111.30. Find an affine 
transformation f: IR?.---+ IR?. so that fon(/o) =In for n = 0, 1, 2, 3, .... Use a straight-
edge and dividers to help you. Also show that is a Cauchy sequence in 
(7t(IR?.), h), where h isHhe Hausdorff distance on H(IR?.) induced by the Euclidean 
metric on IR?.. Evaluate I = limn--+oo In· 
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Figure 111.31. Picture 
of a convergent geometric 
series in 1 (see exer-
cise 1.1 0). 

--
1.1 0. Consider the geometric series b ·an = b +a · b + a2b + a3b + a4b + 
· · · > 0, 0 < b < l. This is associated with a sequence of intervals I0 = [0, b], In = 
fon(lo), where f(x) =ax+ b, n = 1, 2, 3, ... , as illustrated in Figure 111.31. 

Let I = and let l denote the total length of I. Show that f (I) = I \ I0 , and 
hence deduce that al = l - b so that l = hI ( 1 - a). Deduce at once that 

00 L b · an = b I (1 - a). 
n=O 

Thus we see from a geometrical point of view a well-known result about geometric 
series. Make a similar geometrical argument to cover the case -1 <a < 0. 

Definition 1.3 A tramformation f : --* of the form 

f(x) = ao + a,x + a2x2 + a3x3 + · · · + anxn, 

where the coefficients ai (i = 0, 1, 2, ... , N) are real numbers, an# 0, and N is a 
nonnegative integer, is called a polynomial transformation. N is called the degree of 
the transformation. 

Examples & Exercises 
1.11. Show that iff: g: polynomial transfonnations, then 
so is f o g. Iff is of degree N, calculate the degee of fom (x) form = 1, 2, 3, .... 

1.12. Show that for n > 1 a polynomial transformation f: degree n is not 
generally invertible. 

1.13. Show that far enough out (i.e., for large enough lxj), a polynomial transfor-
mation f : --* always stretches intervals. That is, view f as a transformation 
from Euclidean) into itself. Show that if I is an interval of the form I = {x : 
lx -a I ::: b} for fixed a, b E then for any number M > 0 there is a number f3 > 0 
such that if b > f3, then the ratio (length of f (I) )/(length of I) is larger than M. This 
idea is illustrated in Figure III.32. 

1. 14. A polynomial transformation f : lPS. --+ lPS. of degree n can produce at most 
(n - 1) folds. For example f(x) = x 3 - 3x + 1 behaves as shown in Figure Ill.33. 

1. 15. Find a family of polynomial transfonnations of degree 2 which map the inter-
val [0, 2] into itself, such that, with one exception, if y E f ([ 0. 2]) then there exist 
two distinct points x 1 and x 2 in [0, 2] with f(xi) = f(x'2) = y. 

1.16. Show that the one-parameter family of polynomial transformations h.: 

T 
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[0, 2] --+ [0, 2], where 

h.(x) =A ·X· (2 -x), 
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Figure 111.32. A poly-
nomial transformation 
f : of degree > 1 
stretches more and more 
the farther out one goes. 

and the parameter A. belongs to [0, 1], indeed takes the interval [0, 2] into itself. 
Locate the value of x at which the fold occurs. Sketch the behavior of the family, 
in the spirit of Figure III.33. 
1. 17. Let f : --+ be a polynomial transformation of degree n. Show that values 
of x that are transformed into fold points are solutions of 

df 
-(x) =O,x E 
dx 

Solutions of this equation are called (real) critical points of the function f. If c is a 
critical point then f(c) is a critical value. Show that a critical value need not be a 
fold point. 

1. 18. Find a polynomial transformation such that Figure III.34 is true. 
1. 19. Recall that a polynomial transformation of an interval f : I c --+ I is nor-
mally represented as in Figure III.35. This will be useftd when we study iterates 

However, the folding point of view helps us to understand the idea of 
the deformation of space. 
1.20. Polynomial transformations can be lifted to act on subsets of 2 in a simple 
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Figure 111.33. The 
polynomial transformation 
j(x) = x 3 - 3x + 1. 
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Figure 111.34. Find a 
polynomial transformation 
f : so that this 
figure correctly represents 
the way it folds on the real 
line. 

Figure 111.35. The 
usual way of picturing a 
polynomial transforma-
tion. 
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way: we can define, for example, F(x) = (fi(xi), h(x2)), where !1 and h are 
polynomial transformations in IR<., so that F : IR<.2 ---+ IR<.2 . Desired foldings in two 
orthogonal directions can be produced; or shrinking in one direction and folding in 
another. Show that the transformation F(x1, x2) - ¥-x1, x2) acts on 
the triangular set S in Figure 111.36 as shown. 

The real line can be extended to a space which is topologically a circle by includ-
ing the point at infinity. One way to do this is to think of IR<. as a subset of C, and 

Figure 111.36. A poly-
nomial transformation 
acting on a set S in the 
plane. 

--------------------

fold lines 
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N 

0 

Figure 111.37. !R u { oo} 
becomes a circle on a 
sphere. 

then include the North Pole on C. We define this space to be = U { oo} and will 
usually give it the spherical metric. 

Definition 1.4 A transformation f : defined in the form 

f (X = ax + b b rm ) cx+d' a, ,c,dEil'l>.,ad=f.bc, 

is called a linear fractional transformation or a Mobius transformation./f c =f. 0, then 
f( -djc) = oo, and f(oo) = ajc. If c = 0, then f(oo) = oo. 

Examples & Exercises 
1.21. Show that a Mobius transformation is invertible. 

1.22. Show that if /I and hare both Mobius transformations then so is !I o h. 
1.23. What does f (x) = 1 I x do to on the sphere? 

1.24. Show that the set of Mobius transformations f such that f ( oo) = oo is the 
set of affine transformations. 

1.25. Find a Mobius transformation f : so 'that /(1) = 2, /(2) = 0, 
f(O) = oo. Evaluate f(oo). 

1.26. Figure III.38 shows a Sierpinski triangle before and after the polynomial 
transformation x .-..+ ax(x- b) has been applied to the x-axis. Evaluate the real con-
stants a and b. Notice how well fractals can be used to illustrate how a transforma-
tion acts. 

2 Affine Transformations in the Euclidean Plane 

Definition 2.1 A transformation w: of the form 

w(fi· x2) = (axi + bx2 + e, cxi + dx2 +f), 

where a, b, c, d, e, and f are real numbers, is called a (two-dimensional) affine 
transformation. 
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-2 

We will often use the following equivalent notations 

Here A = (: ! ) is a two-dimensional, 2 x 2 real matrix and t is the column 

vector ( ; ) , which we do not distinguish from the coordinate pair ( e, f) E 2 

Such transformations have important geometrical and algebraic properties. From this 
point on, we shall assume that the reader is familiar with matrix multiplication. 

The matrix A can always be written in the form 

AFTER 
1 

0 0 

BEFORE 
TRANSFORMATION 

---!> 
X 

Figure 111.38. A Sierpinski triangle before and after the polynomial transformation 
x ax(x -b) is applied to the x-axis. Evaluate the real constants a and b. 
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-1 0 

0 

-1 0 

Figure 111.39. An affine 
r 2 transformation takes par-

allelograms into parallelo-
grams. 

where (r1, e1) are the polar coordinates of the point (a, c) and (rz, (ez + n /2)) are 
the polar coordinates of the point (b, d). The linear transformation 

in lR?. 2 maps any parallelogram with a vertex at the origin to another parallelogram 
with a vertex at the origin, as illustrated in Figure III.39. Notice that the parallelo-
gram may be "turned qver" by the transformation, as illustrated in Figure III.40. 

The general affine transformation w(x) =Ax+ tin lR?.2 consists of a linear trans-
formation, A which deforms space relative to the origin, as described above, fol-
lowed by a translation or shift specified by the vector t (see Figure III.41). 

Figure 111.40. A linear 
transformation can turn 
pictures over. 
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Figure 111.41. An affine 
transformation consists 
of a linear transformation 
followed by a translation. 

FIRST MAKE A liNEAR 
TRANSFORMATION 

THEN/ 
(e,f) 

/ TRANSLATE by t 

Figure 111.42. Two 
ivy leaves lying on the 
Euclidean Plane determine 
an affine transformation. 

0 .. 

How can one find an affine transformation that approximately transforms one 
given set into another given set in Let's show how to find the affine transfor-
mation that almost takes the big leaf to the little leaf in Figure 111.42. This figure 
actually shows a photocopy of two real ivy leaves. We wish to find the numbers 
a, b, c, d, e, and f defined above, so that 

w(BIG LEAF) approximately equals LITTLE LEAF. 

T 
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Begin by introducing x and y coordinate axes, as already shown in Figure 111.42. 
Mark three points on the big leaf (we've cbosen the leaf tip, a side spike, and the 
point where the stem joins the leaf) and determine their coordinates (x1, x2), (y1, Y2), 
and (z1, z2). Mark the corresponding points on the little leaf, assuming that a cater-
pillar hasn't eaten them, and determine their coordinates; say (x 1, x2), (.)1 1, y2), and 
(ZI, Z2), respectively. 

Then a, b, and e are obtained by solving the three linear equations 

while c, d, and f satisfy 

Examples & Exercises 

x1a + x2b + e = x1, 

Y1 a + Y2b + e = Y1, 

z1a + z2b + e = z1; 

x 1c + x2d + f = x2, 

Y!C + Y2d + f = Y2· 

Ztc+z2d+f=z2. 

2.1. Find an affine transformation in that takes the triangle with vertices at 
(0, 0), (0, 1), (1, 0) to the triangle with vertices at (4, 5), (-1, 2), and (3, 0). Show 
what this transformation does to a circle inscribed in the first triangle. 

2.2. Show that a necessary and sufficient condition for the affine transformation 

to be invertible is det A =j:. 0, where det A= (ad- be) is the determinant of the 2 x 2 
matrix A. 

2.3. Show that if f 1 : and h: are both affine transformations, 
then so is 

If Ji(x) = Aix + ti, i = 1, 2, 3, where Ai is a 2 x 2 real matrix, express A 3 in terms 
of A1 and A2. 

2.4. Let A and B be 2 x 2 matrices, with determinants det A and det B, respec-
tively. Show that the determinant of the product is the product of the determinants, 
i.e., 

det(AB) = det A· det B. 
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.., 
Definition 2.2 A transformation w: is called a similitude if it is an 

affine transformation having one of the special forms 

w (XI) = (r 
x2 r smB 

-r sin()) (x1 ) + (e) 
r cos() x2 f 

w = +G) 
for some translation (e, f) E some real number r =/= 0, and some angle B, 0.::::: 
() < 2rr. () is called the rotation angle while r is called the scale factor or scaling. 
The linear transformation 

Re (xI ) = ( r B 
x2 r smB 

-r sin()) (XI) 
r cos() X2 

is a rotation. The linear transformation 

R(XI) = (1 0) (XI) 
X2 \0 -1 X2 

is a reflection. 

Figure 111.43 shows some of the things a similitude can do. Notice that a simili-
tude preserves angles. 

Examples & Exercises 
2.5. Find the scaling ratios r 1, r2 and the rotation angles 81, 82 for the affine trans-
formation that takes the triangle (0, 0), (0, 1), (1, 0) onto the straight-line segment 
from (1, 1) to (2, 2) in in such a way that both (0, 1) and (1, 0) go to (1, 1). 

2.6. Let S be a region in bounded by a polygon or other "nice" boundary. Let 
w: be an affine transformation, w(x) =Ax+ t. Show that 

(area of w(S)) =I det AI ·(area of S); 

see Figure 111.44. Show that det A < 0 has the interpretation that S is "flipped over" 
by the transformation. (Hint: suppose first that Sis a triangle.) 

2. 7. Show that if w : 2 ---+ 2 is a similitude, w (x) = Ax + t, where t is the trans-
lation and A is a 2 x 2 matrix, then A can always be written either A = r Re or 
A= rRRe. 

2.8. View the railway tracks image in Figure 111.45 as a subset S of Find a 
similitude w: such that w(S) c S, w(S) =!= S. 

2. 9. We use the notation introduced in Definition 2.2. Find a nonzero real number 
r, an angle (), and a translation vector t such that the similitude wx = r Rex + t on 

obeys 

w(A) c A, with w(A) =!= A, 

where A denotes a Sierpinski triangle with vertices at (0, 0), (1, 0), and <4. 1). 
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2. 1 0. Show that if w : 2 -+ 2 is affine, w (x) = Ax + t, then it can be reexpressed 

w(x) = ;,) Re G:) +t, 

where r; E and 0 ::s () < 2rr. We call a transformation of the form 

W (XI)= (ri 0) (XI). 
X2 0 r2 X2 

a coordinate rescaling. 

2.11. Let S denote the two-dimensional orchard subset of shown in Fig-
ure 111.46. Find two fundamentally different affine transformations that map S into 
S but not onto S. Define the transformations by specifying how they act on three 
points. 

2. 12. Show that if A is a 2 x 2 matrix such that det A =j:. 0, with 

then the inverse of A, denoted A -I, is given by 

I i 1 ( d -b) = ( d;cA 
A- = detA -c a detA 

-b ) detA a • 
detA 

Figure 111.43. Some of 
the things that a similitude 
can do. 
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Figure 111.45. Railway 
to infinity. Can you find an 
affine transformation that 
nearly maps the track ties 
into themselves? 

Figure 111.44. The scal-
ing factor by which an 
affine transformation 
changes area is deter-
mined by the determinant 
of its linear part. 
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Figure 111.46. Orchard subset of IR2• Can you find some interesting affine transformations 
that map this set into itself? 

2. 13. The trace of a matrix A is the sum of the elements along the diagonal, that is 

tr A= :Laii. 

Let A be a 2 x 2 matrix, and let B be another 2 x 2 matrix such that det B f= 0. Show 
that 

tr(BAB- 1) = tr A 

and 

det(BAB- 1) = det A. 

1 

2.14. Let w(x) =Ax denote a linear transformation in the metric space D) 
where 
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A=(: 
Define the norm of a point x E to be lxl = D(x, 0), where 0 denotes the origin. 
Define the norm of the linear transformation A by 

I A I = max { I Ax I : x E 2, x # 0} 
lxl 

when this maximum exists. Show that I A I is defined when D is the Euclidean metric 
and when it is the Manhattan metric. Find an expression for I A I in terms of a, b, c, 
and d in each case. Make a geometrical interpretation of I A 1. Show that when 1 A 1 

exists we have 

IAxl::: IAI · lxl for all x E 

3 Mobius Transformations on the Riemann Sphere 

Definition 3. 1 A transformation f : C --* C defined by 

(az +b) 
f(z) = (cz +d)' 

where a, b, c, and dE(, ad- be# 0, is called a Mobius transformation on C. If 
c # 0 then f( -djc) = oo, and f(oo) = ajc. If c = 0, then f(oo) = oo. 

As shown by the following exercises and examples, one can think of a Mobius 
transformation as follows. Map the whole plane (, together with the point at infin-
ity, onto the sphere C, as described in Chapter II. A sequence of operations is then 
applied to the sphere. Each operation is elementary and has the property that it takes 
circles to circles. The possible operations are rotation about an axis, rescaling (uni-
formly expand or contract the sphere), and translation (the whole sphere is picked 
up and moved to a new place on the plane, without rotation). Finally, the sphere is 
mapped back onto the plane in the usual way. Since the mappings back and forth 
from the plane to the sphere take straight lines and circles in the plane to circles on 
the sphere, we see that a Mobius transformation transforms the set of straight lines 
and circles in the plane onto itself. We also see that a Mobius transformation is in-
vertible. It is wonderful how the quite complicated geometry of Mobius transforma-
tions is handled by straightforward complex algebra, where we simply manipulate 
expressions of the form (az + b)j(cz +d). 

Examples & Exercises 
3. 1. Show that the most general Mobius transformation, which maps oo to oo, is of 
the form f(z) = az + b, a, bE(, a# 0, and that this is a similitude. Show that any 
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sets in the plane are 
mapped onto the sphere 

the sphere may be moved to 
a new location on the plane, 
rescaled, rotated, and inverted. 

Figure 111.47. A Mobius transformation acting on England to produce a new country. 

two-dimensional similitude that does not involve a reflection can be written in this 
form. That is, disregarding changes in notation, 

f(z) = f(xi + ix2) = (ai + ia2)(xi + ix2) + (bi + ib2) 

= reie (xi + ix2) + (bi + ib2), (i = -J=l) 
= (rcos() -rsin()) (XI)+ (bi). 

r sin() r cos() x2 b2 

Find r and () in terms of a I and a2• Show that the transformation can be achieved as 
illustrated in Figure III.48. 

3.2. Show that the M6\1ius transformation f (z) = 1 I z corresponds to first mapping 
the plane to the sphere in such a way that the unit circle {z E ([: lzl = 1} goes to 
the equator, followed by an inversion of the sphere (tum it upside down by rotating 
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Figure 111.48. The 
mechanism of the simil-
itude f (z) = rei0 z + b in 
terms of the sphere. 

N 
A (l)map him onto 

the sphere 

the globe 
1 N until it is r times 

as large as it was I 
I 

N 

(2) spin the globe 
on its NS axis 
hrough angle e 

the NS 
I vector constant 

pick up and move 
the sphere, putting 
S down on b. 

about an axis through + 1 and -1 on the equator), and finally mapping back to the 
plane. 

3.3. Show that any Mobius transformation that is not a similitude may be written 

f(z) = e + _j_ for some e, f, g E C, f # 0. z+g 
3.4. Sketch what happens to the picture in Figure III.49 under the Mobius transfor-
mation f (z) = 1.. z 
3.5. What happens to Figure III.49 under the Mobius f (z) = 1 + i z? 
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(-1, 0) (0, 0) 

(0, -1) 
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Figure 111.49. Up the 
Garden Path. What does 
the Mobius transformation 
z 1 + i z do to this 
picture? 

3.6. Show algebraically that a Mobius transformation f : C --+ C is always invert-
ible. 

3. 7. Show that if /I and h are Mobius transformations, then f 1 o h is a Mobius 
transformation. 

3.8. Find a Mobius transformation that takes the real line to the unit circle centered 
at the origin. 

3.9. Evaluate fon(z) if f(z) = 1/(1 + z), n E {-2, -1, 0, 1, 2, 3, ... }. 

3.10. Interpret the Mobius transformation f(z) = i + 1/(z- i) in terms of opera-
tions on the sphere. 

4 Analytic Transformations 

In this section we continue the discussion of transformations on the metric spaces 
(C, Euclidean) and (C, Spherical). We introduce a generalization of the Mobius 
transformations, called analytic transformations. We concentrate on the behavior 
of quadratic transformations. It is recommended that during a first reading or first 
course the reader obtaiqs a good mental picture of how the quadratic transformation 
acts on the sphere. The reader may then want to study this section more closely after 
reading about Julia sets in Chapter VII. 
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The similitude f : C --+ C defined by the formula f (z) = 3z + 1 is an example 
of an analytic transformation. It maps circles to circles magnified by a factor of 
three. A disk with center at zo is taken to a disk with center at f (zo) = 3z0 + 1. The 
tranformation is continuous, and it maps open sets to open sets. Nowhere does it 
"fold back along the dotted line." 

The similitude f: C--+ C defined by f(z) = (3 + 3i)z + (1 - 2i) is similarly de-
scribed. The circles and disks are now rotated by 45° in addition to being magnified 
and translated. 

Loosely a transformation on C is analytic if it is continuous and it locally "be-
haves like" a similitude. If you take a very small region indeed (How small? Small 
enough! There is a smallness such that what is about to be said is true!) and you 
watch what the transformation does to that tiny region, you will typically find that 
it is magnified or rotated, and translated, in almost exactly the same manner 
that some similitude would do the job. The similitude will always be of the special 
type discussed in exercise 3.1 above. 

We make this description more precise. Let us decide to look at what our transfor-
mation does in the vicinity of a point zoE C. Assume that zo is not a critical point, 
defined below. Let T denote a tiny region, a disk for example, which contains the 
point z0 . Let f(T) be its image under the transformation. Then one can rescale T by 
a factor that makes it roughly the size of the unit square, and one can rescale f (T) 
by the same factor. The assertion of the previous paragraph is that the action of the 
transformation, viewed as taking T, rescaled, onto f(T), rescaled, can be described 
more accurately by a similitude. If you like, one could consider a picture P drawn 
in T and examine the transformed image f(P): if P and f(P) are rescaled by the 
same factor so that P is the size of the unit square, then f ( P) looks more and more 
like a similitude applied to P ., This description becomes more and more precise the 
tinier the region under discussion. 

Consider the quadratic transformation f : C --+ C defined by 

j(z) = z2 =(XI + ix2)2 = (xf- xi)+ 2XIX2i =/I (XI, X2) + /2(XI, X2)i, 

where !I (xi, x2) = (xf- xi) is called the real part of f(z), and h(xi, x2) = 2xix2 
is called the imaginary part of f. Pictures of what this transformation does to some 
Sierpinski triangles in C are illustrated in Figure 111.50. 

Two features are to be noticed. (I) Provided that we stay away from the origin, 
the transformation behaves locally like a similitude: for points z close to zo , f (z) is 
approximated by the similitude 

w(z) = az + b where a= 2zo and b = -z5. 
This fact shows up in Figure 111.50: upon close examination (we suggest the use of a 
magnifying glass here) of the transformed Sierpinski triangles, one sees that they are 
built up out of small triangles whose shapes are only slightly different from that of 
their preimages. The only place where this is not true is at the forward image of the 
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Figure 111.50. Quadrat-
ic transformations are 
described by showing how 
they act on a Sierpinski 
triangle. Use a magnifying 
glass to check that the 
transformations behave 
locally like similitudes. 

origin, which is a critical point. (II) The transformation maps the space twice around 
the origin. 

One can track analytically what happens to the point 

z = R cos t + i R sin t, 

where R > 0. As the time parameter t goes from zero to 21r, z moves anticlockwise 
once around the circle of radius R. The transformed point f(z) is given by 

f(z) = R2 cos 2t + i R2 sin 2t. 

As the time parameter t goes from 0 to 21r, f(z) moves twice around the circle of 
radius R2• 

On the Riemann sph1re the transformation z 1--+ z2 can be described as follows. 
Let us say that the Equator corresponds to the circle of unit radius in the plane, that 
the South Pole corresponds to the Origin, and that the North Pole corresponds to the 
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Point at Infinity. Then the transformation leaves both Poles fixed. The Line of Longi-
tude L connecting the Poles, which corresponds to the positive real axis, is mapped 
into itself, and the Equator is mapped into itself. Here is what we must picture. First, 
points that lie above the Equator are moved closer to the North Pole; points that lie 
below the Equator are moved closer to the South Pole; and the Equator is not shifted. 
Second, the skin of the sphere is cut along the Line of Longitude L. One side of the 
cut is held fixed while the other side is pulled around the sphere (following the ter-
minator when the Sun is high above the Equator), uniformly stretching the space, 
until the edge of the cut is back over L. The two lips of the the cut are rejoined. 
The sphere has been mapped twice over itself. The Poles are the critical points of the 
transformation; they are the points about which wrapping occurs. This description is 
illustrated in Figure 111.51. 

The most general quadratic transformation on the sphere is expressible by a for-
mula of the form f(z) = Az2 + Bz + C, where A, B, and Care complex numbers. 

Figure 111.51. The ac-
tion of the quadratic trans-
formation z z2 in terms 
of the sphere. (1) POINTS ABOVE 

THE EQUATOR MOVE 
CLOSER TO THE 
NORTH POLE; BELOW 
THEY MOVE SOUTH. 

(2)THE SPHERE IS CUT 
ALONG THE LINE OF 
LONGITUDE L. 

(3) ONE EDGE OF THE 
CUT IS PULLED RIGHT 
AROUND THE SPHERE. 
THE SPHERE IS 
COVERED TWICE. 
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y 

B 

One can show there is a change of coordinates, z 1--+ O(z), where () is a similitude, 
such that f(z) becomes expressible in the special form f(z) = z2 + C for some 
complex number C; see Exercise 5.20 in the following section. Hence the descrip-
tion of the most general quadratic transformation on the sphere can be made in the 
same terms as above, except that at the end there is a translation by some constant 
amount C. This translation leaves the Point at Infinity fixed. 

The quadratic transformation f(z) = z2 maps the punctured plane ([ onto it-
self twice. Each point on z E C{O} has two preimages. Hence f: C---+ C is not 
an invertible transformation. In such situations we can define a set-valued inverse 
function. 

Definition 4.1 Let f: C---+ C be an analytic transformation such that f(C) = 
C. Then the set-valued inverse off is the mapping f- 1 : 1i(C) ---+ 1i(C) defined by 

f- 1(A) ={wE C: f(w) E A} for all A E 1i(X). 

In Figure III.52 we the transformation f- 1 acting on the Space of Frac-
tals, in the case of the quadratic transformation f (z) = z2• 

Figure 111.52. The set 
valued inverse, f 1, of 
the quadratic transforma-
tion f(z) = z2, maps the 
Sierpinski triangle A 0 B 
into POQ U POQ. More 
generally, f- 1 maps the 
Space of Fractals into it-
self. Look carefully at this 
image! Several important 
features of analytic trans-
formations are illustrated 
here. 
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One can obtain explicit formulas for f- 1 (z) when f is a quadratic transfor-
mation. For example for f(z) = z2, f- 1(0) = 0, f- 1(oo) = oo, and f- 1(z) = 
{wi(Z), w2(z)} for z E C \ {0, oo}. Here WJ(XI + ix2) = a(xJ, x2) + ib(xJ, x2), and 
W2(XJ, X2) = -a(x1, X2)- ib(XJ, X2), where 

Jx? +xi +x1 
2 

when x2 2:: 0, 

whenx2 < 0, 

Each of the two functions w 1 (z) and w2(z) is itself analytic on C \ {0, oo }. 
The following definition formalizes what is meant by an analytic transformation 

on the complex plane. We recommend further reading, for example [Rudin, 1966]. 

Definition 4.2 Let (C, d) denote the complex plane with the Euclidean metric. 
A transformation f : C C is called analytic if for each zo E C there is a similitude 
of the form 

w(z) = az + b, for some pair of numbers a, bE C, 

such that d(f(z), w(z))/d(z, zo) 0 as z zo. The numbers a and b depend on z0. 

If, corresponding to a certain point zo = c, we have a= 0, then cis called a critical 
point of the transformation, and f (c) is called a critical value. 

If the analytic transformation f (z) is a rational transformation, which means that 
it is expressible as a ratio of two polynomials in z, such as 

(i)f(z) = 1 + 2i + 27z2 - 9z3
, 

( .. f( ) 1 + z 11) z = --, 
1-z 

("')f( ) 1 + z + z2 
111 z = ; 

1- z + z2 

then the numbers a and bin the similitude w(z) in Definition 4.2 are given by the 
formulas 

a = f' (zo) and b = f (zo) - azo. 

The derivative f' (z) of the rational function f (z) can be calculated by treating z as 
though it were the real variable x and applying the standard differentiation rules of 
calculus. The critical points c E C are the solutions of the equation f' (c) = 0. 

For example, close enough to any point zo E C such that f' (zo) # 0, the cubic 

1 
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transformation (i) is well described by the similitude 

w(z) = (54zo - 27zZ)z + (l + 2i - 27zZ + 18zJ). 

The finite critical points associated with (i) may be obtained by solving 

54c- 27c2 = 0 

and are accordingly c = 0 + iO and c = 2 + iO. By making the change of coordinates 
z' = 1/z (see section 5), one can also analyze the behavior near the point at infinity. 
It turns out that c = oo is always a critical point for a polynomial transformation 
f(z) on (. The space is "wrapped" an integral number of times about the image 
of critical point. For example, the cubic transformation (i) wraps space twice about 
each of the points f(O + iO) = 1 + 2i, and f(2 + iO) = 37 + 2i, and it wraps it three 
times about f ( oo) = oo. 

Examples & Exercises 
4. 1. Sketch a globe representing (, including a subset that looks like Africa, and 
show what happens to the subset under the quadratic transformation f(z) = z2. 

4.2. Verify the following explicit formulas for f-I(z), corresponding to f(z) = 
z2 - 1: f-I(-1) = 0; f-I(oo) = oo; and f-I(z) = {wi(Z), w2(z)} for z E ( \ 

{-1, 00}, where WI(XI + ix2) = a(XI, X2) + ib(XI, X2), and W2(XI, X2) = -a(XI, X2) 
- ib(xi, x2). Here 

and 

Jo + XI)2 +xi+ 1 +XI 
2 

Jo +xi)2 +xi+ 1 +xi 
2 

whenx2 0, 

whenx2 < 0, 

Jo + XI)2 +xi- 1- XI 
2 

Both wi(Z) and w2(z) are analytic on ([ \ {-1}. 

4.3. Locate the critical points and critical values of the quadratic transformation 
f(z) = z2 + 1. 

4.4. Draw a side view of a man with an arm stretched out in front of him, holding 
a knife. The blade shopld point down. Choose the origin of coordinates to be his 
navel. Draw another picture to explain how hara-kiri can be achieved by applying 
the inverse of the transformation f (z) = z2 to your image. 
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4.5. Find a similitude that approximates the behavior of the given analytic transfor-
mation in the vicinity of the given point: (a) f(z) = z2 near zo = 1; (b) f(z) = 1/z 
near zo = 1 + i; (c) f(z) = (z- 1)3 near zo = 1 - i. 

5 How to Change Coordinates 

In describing transformations on spaces we usually make use of an underlying coor-
dinate system. Most spaces have a coordinate system by means of which the points 
in the space are located. This underlying coordinate system is implied by the specifi-
cation of the space: for example, X = [ 1, 2] provides a collection of points together 
with the natural coordinate x restricted by l ::=: x ::=: 2. We can think of either the 
space, made of points x E X, or equivalently the system of coordinates. If the space 
X is or C, then the underlying coordinate system may be Cartesian coordinates. 
If X = C, then the coordinate system may be angular coordinates on the sphere. 

In each case the underlying coordinate system is itself a subset of a metric space. 
We denote this metric space by Xc. Usually we do not consciously distinguish 
between a point x EX and its coordinate x E Xc. Notice, however, that the space 
Xc may contain points (coordinates) that do not correspond to any point in the space 
X. For example, in the case of the space X= • it is natural to take Xc = then 
points x E X in the space correspond to coordinates x = (xi, x2) E Xc restricted by 
0 ::=:XI ::=: 1 and 0 ::=: x2 ::=: 1. However, the coordinates (3, 5) E Xc do not correspond 
to a point in X. We would like the reader to think of the space itself as "lying above" 
its coordinate system, as suggested in Figure 111.53. 

A change of coordinate system may be described by a transformation () : Xc ---+ 
Xc. We can think of a change of coordinates being effected by physically moving 
each point x E X so that it no longer lies above x E Xc but instead above the coordi-
nate x' = () (x) E Xc. Thus we must now distinguish between a point x lying in the 
space, X, from its coordinate x E Xc. Then we want to think of the change of coor-
dinates () : Xc ---+ Xc as moving X relative to the underlying coordinate space Xc, 
as illustrated in Figure 111.54. 

Example 
5.1. Let X= [1, 2] and take Xc to be Let (): be defined by ()(x) = 
2x + 1. Then the coordinate of the point x = 1.5 becomes changed to 4. We want 
to think of the space X as being moved relative to the coordinate space Xc, which is 
held fixed, as illustrated in Figure 111.55. 

Let () : Xc ---+ Xc denote a change of coordinates. In order that the new coordinate 
system be useful, it is usually necessary that (), treated as a transformation from X 
to ()(X), be one-to-one and onto, and hence invertible. Let f : X ---+ X be a transfor-
mation on a metric space X. We want to consider how the transformation f should 
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Figure 111.53. The un-
derlying coordinate sys-
tem Xc for the space X. 

be expressed after the change of coordinates. Let x denote simultaneously a point 

in X and the coordinates of that point. Let f (x) denote simultaneousiy the point to 

which x is transformed by f, and the coordinates of that point. Let x' denote the 

point x EX in the new coordinate system. That is, x' = &(x) E Xc denotes the new 

coordinates of the point x. Let f' (x') denote the same transformation f : X X, 

but expressed in the new coordinate system. Then the relation between the two co-

ordinate systems is expressed by the commutative diagram in Figure III.57, and is 

illustrated in Figure III.56. 

Theorem 5.1 Let X be a space and let Xc =:> X be a coordinate space for X. 

Let a change of coordinates be provided by a transformation e : Xc Xc . Let e be 

invertible when treated as a transformation from X to e (X). Let the coordinates of 

a point x EX be denoted by x before the change of coordinates, and by x' after the 

change of coordinates, so that 

x' = 8(x). 
? 

Let f : X X be a transformation on the space X. Let x 1-+ f (x) be the formula 

for f expressed in the original coordinates. Let x' 1-+ f' (x') be the formula for f 

expressed in the new coordinates. Then 
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Figure 111.54. A 
change of coordinates 
in terms of X and Xc. 
We think of X as being 
removed relative to the 
underlying coordinate 
space Xc. 

f(x) = (B- 1 of' o B)(x), 

f'(x') = (B of o e- 1)(x'). 

Examples & Exercises 
5.2. Consider an affine transformation f(x) =ax+ b, a =f: 0, a =f: 1, a, bE IRL This 
has a fixed point Xf E by f(xf) =X f. We find Xf = b/(1- a). Xf is 
clearly the interesting point in the action of an affine transformation on Accord-
ingly let us change coordinates to move x f to the origin: that is x' = B (x) = x - x 1. 
What does f look like in this new coordinate system? 

j'(x') =((}of o (}- 1)(X 1
) = (} 0 (x' + Xj) = a(x' + Xj) + b- Xf; 

f' (x') = ax', which is simply a rescaling! Now using the first formula we get 

Figure 111.55. A X e(x) 
change of coordinates 
for the space [ 1, 2] given + -+----
by the transformation 0 1 2 3 4 5 x' = B(x) = 2x + 1. 6 

1 
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Figure 111.56. The 
transformation F acting 
on X is equivalent to F' 
acting on 8(X). 

for all n E {0, 1, 2, 3, ... }. 

We now see a new way of visualizing an affine transformation for example, if 
a > 1, we see the image in Figure III. 58. 

5.3. Show that for any affine transformation f (x) : 2 --+ given by f (x) = 
Ax + t' with fixed point X f' that the coordinate transformation e (x) = X - X f trans-
forms the function f' (x') = Ax'. 

5.4. Let X = [1, 2] and let a change of coordinates be defined by x' = 2x - 1. Let a 
transformation f : X --+ X be defined by f (x) = (x - 1 )2 + 1. Express f in the new 
coordinate system. 

Definition 5.1 Let f :X--+ X be a tramformation on a metric space. A point 
x f E X such that f (x f) = x f is called a fixed point of the transformation. 

1 
The fixed points of a transformation are very important. They tell us which parts 

of the space are pinned in place, not moved, by the transformation. The fixed points 
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of a transformation restrict the motion of the space under nonviolent, nonripping 
transformations of bounded deformation. 

Examples & Exercises 
5.5. Find the fixed points x1 and x2 of the Mobius transformation 

/(z) = (z + 2) 
(4- z) 

on C. Make a change of coordinates so that x1 becomes the origin and x 2 becomes 
the point at infinity. Hence interpret the action of f (z) on the sphere in geometrical 
terms. 

5.6. Let W (x) = Ax + t where det A =f. 0 is a two-dimensional affine transforma-
tion acting on the space X = 2. Find the fixed point x f. Change coordinates so 
that x f becomes the origin of coordinates. Hence describe the action geometri-
cally of a two-dimensional, nondegenerate affine transformation. What can happen 
if det A= 0? 

5.7. Suppose we can find a coordinate transformation BAB- 1 = D, where Dis a 
diagonal matrix we denote by 

Figure 111.57. Com-
mutative diagram for 
the coordinate change 
(): Xc Xc. 

Figure 111.58. An affine 
transformation on rR. We 
see rescaling (magnifica-
tion or diminution) cen-
tered at the fixed point, 
together with a flip of 180° 
if a< 0. 

f(X) X f 

e e 

, x' t' f(X) 

ORIGINAL 
COORDINATES 

NEW 
COORDINATES 
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Show that A 1 and A2 satisfy the equation 

det ( e A h A ) = I e A h A I = A 2 
- tr AA + det A = 0. 

5.8. Analyze the behavior of the affine transformation w(z) = 7z + 1 on <C near the 
point at infinity by making the change of coordinates h (z) = 1 j z. 

5.9. Two one-parameter families of transformations on IP& are = x 2 - 11- and 
gA(x) = AX(l - x), where 11- and A are real parameters. Find a change of coordinates 
and a function 11- = f-1-(A) so that (x') = gA (x') is valid for an appropriate interval 
on the A-axis. 

5.10. Find the real fixed points of g(x) = x 2 - !·Analyze the behavior of g near 
each of its fixed points by changing coordinates so as to move first one then the other 
to the origin. Another method for looking at the behavior of g near a fixed point is 
to approximate g(x) by the first two terms of its Taylor series expansion about the 
fixed point. Compare these methods. 

5.11. Suppose that the 2 x 2 matrix 

A=(; 0 
satisfies the condition (tr A)2 - 4 det A > 0. Show that there is a B such that 

BAB-1 = D, 

where D is a diagonal matrix. Furthermore, show that one choice for B is given by 

B=(: +). 
A2-h 

What do you think happens if (tr A)2 - 4 det A < 0? 

5. 12. Let w : IP& 2 IP& 2 denote the affine transformation 

Make a change of coordinates so that the transformation is simply a coordinate 
rescaling. What are the rescaling factors? 

Definition 5.2 Let F denote a set of transformations on a metric space X. F 
is called a semigroup if f, g E F implies f o g E F. F is called a group if it is a 
semigroup of invertible transformations, and f E F implies f- 1 E F. 

We introduce this qefinition because we will use semigroups (and groups) of 
transformations both to characterize and to compute fractal subsets of X. However, 
we do not use any deep theorems from group theory. 
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Examples & Exercises 
5. 13. Let f : X ----* X be a transformation on a metric space. Show that the set of 
transformations {Jon: n=O, 1, 2, 3, ... } forms a semigroup. 

5. 14. A transformation T : ----* on code space is defined by 

T (x1x2x3X4X5 •• • ) = X2X3X4X5X6 ••• 

and is called a shift operator. Describe the semigroup of transformations {ron : n = 
0, 1, 2, 3, ... } . What are the fixed points of T 03 if the code space is built up from the 
two symbols {0, 1}? 

5. 15. Show that the set of Mobius transformations on forms a group. 

5. 16. Show that the set of Mobius transformations on C forms a group. 

5. 17. Show that the set of invertible affine transformations on 2 forms a group. 

5. 18. Show that the set of transformations f : 2 ----* 2 such that f ( £) c £ forms 
a semigroup. 

5. 19. Show that a group of transformations is provided by the set of affine trans-

formations of the form w(x) =Ax+ t, where A= (: for a, b, c E with 

ac =f. 0, and the translation vector t is arbitrary. 

5.20. The most general analytic quadratic transformation f: C----* C can be ex-
pressed by a formula of the form f(z) = Az2 + Bz + C, where A, B, and C are 
complex numbers, and A =f. 0. Show that by means of a suitable change of coordi-
nates, z' = B(z), where e is a similitude, show that f(z) can be reexpressed as a 
quadratic transformation of the special form f' (z) = (z') 2 + C for some complex 
number C. 

6 The Contraction Mapping Theorem 

Definition 6. 1 A transformation f : X ----* X on a metric space (X, d) is called 
contractive or a contraction mapping if there is a constant 0 :S s < 1 such that 

d(f(x), f(y)) :S s · d(x, y)'v'x, y EX. 

Any such number s is called a contractivity factor for f. 

It would be convenient to be able to talk about the largest number and the smallest 
number in a set of real numbers. However, a set such as S = ( -oo, 3) does not 
possess either. This difficulty is overcome by the following definition. 

Definition 6.2 Let S denote a set of real numbers. Then the infimum of S is 
equal to -oo if S contains negative numbers of arbitrarily large magnitude. Other-
wise the infimum of S = max{x E x :S s for all s E S}. The infinum of S always 
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exists because of the nature of the real number system, and it is denoted by inf S. 

The supremum of S is similarly defined. It is to +oo if S contains arbitrarily 

large numbers; otherwise it is the minimum of the set of numbers that are greater 

than or equal to all of the numbers inS. The supremum of S always exists, and it is 

denoted by sup S. 

Examples & Exercises 
6.1. Find the supremum and the infimum of the following sets of real numbers: (a) 

(-oo, 3); (b) C, the Classical Cantor Set; (c) {1, 2, 3, 4, ... }; (d) the positive real 

numbers. 

6.2. Let f : X X be a contraction mapping on a compact metric space (X, d). 

Show that inf{s E s is a contractivity factor for f} is a contractivity factor for f. 

6.3. Show that if f : X X and g : X X are contraction mappings on a space 

(X, d), with contractivity factors s and t, respectively, then f o g is a contraction 

mapping with contractivity factor st. 

Theorem 6.1 [(The Contraction Mapping Theorem).] Let f: X be a con-

traction mapping on a complete metric space (X, d). Then f possesses exactly one 

fixed point x f EX and moreover for any point x EX, the sequence {fan(x): n = 
0, 1, 2, ... } converges to x f. That is, 

for each x EX. 

Figure III.59 illustrates the idea of a contractive transformation on a compact 

metric space. 

Proof Let x E X. Let 0 s < 1 be a contractivity factor for f. Then 

(1) 

for all m, n = 0, 1, 2, ... , where we have fixed x EX. The notation u 1\ v denotes 

the minimum of the pair of real numbers u and v. In particular, fork= 0, 1, 2, ... , 

we have 
d(x, fok(x)) d(x, f(x)) + (f(x), f 02 (x)) + · · · + d(fo(k-l)(x), fok(x)) 

(1 + s + s 2 + · · · + sk-1)d(x, f(x)) 

(1- s)-1d(x, f(x)), 

so substituting into equation ( 1) we now obtain 

d(fon(x), fom(x)) sml\n. (1- s)-1. (d(x, f(x)), 

from which it immediately follows that is a Cauchy sequence. Since X 

is complete this Cauchy sequence possesses a limit x f E X, and we have 

lim fon(x) =X!· 
n-+oo 
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Figure 111.59. (a) Illus-
trates the idea of a con-
tractive transformation on 
a metric space. (b) A con-
traction mapping doing 
its work, drawing all of a 
compact metric space X 
toward the fixed point. 

(a) 

(b) 

Now we shall show that x f is a fixed point off. Since f is contractive it is continu-
ous and hence 

Finally, can there be more than one fixed point? Suppose there are. Let x f and y f be 
two fixed points of f. Then x f = f(x f), YJ = f(YJ ), and 

d(xf. YJ) = d(f(xf). f(xf)) :S sd(xf, YJ), 
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where (1- s)d(x1 , y1):::: 0, which implies d(x1 , YJ) = 0 and hence x1 = YJ· This 
completes the proof. 

Examples & Exercises 
6.4. Let w (x) = Ax + t be an affine transformation in two dimensions. Make the 
change of coordinates h(x) = x' = x - x 1, under the assumption that det(/ - A) =I= 

0, and show that w'(x') =how o h-1(x') =Ax', that w(x) = (h- 1 ow' o h)(x) = 
A(x- x 1 ) + x f• and hence that 

W 0 n(x) = An(x- X f)+ Xf for n = 0, 1, 2, 3,.... (2) 

Give conditions on A such that it is contractive (a) in the Euclidean metric, and (b) in 
the Manhattan metric. Show that if I A I < 1, where I A I denotes any appropriate norm 
of A viewed as a linear operator on a two-dimensional vector space, then {won (x)} 
is a Cauchy sequence that converges to x 1, for each x E 2. 

6.5. Let f : •-+ • be a contraction mapping on (•, Euclidean). Show that Fig-
ure 111.59 gives the right idea. 

6.6. Let f : -+ be the affine transformation f (x) = ! x + ! . Verify f is a 
contraction mapping and deduce 

for each x E 

Use this formula with x = 1 to obtain a geometrical series for the fixed point x 1 E 

Observe, however, f = indeed f is invertible. 

6.7. Let (X, d) be a compact metric space that contains more than one point. Show 
that the situation in exercise 6.6 cannot occur for any contraction mapping f : X -+ 
X. That is, show that f (X) C X but f (X) =I= X. That is, show that a contraction 
mapping on a nontrivial compact metric space is not invertible. Hint: use the com-
pactness of the space to show that there is a point in the space that is farthest away 
from the fixed point. Then show that there is a point that is not in f (X). 

6.8. Show that the set of contraction mappings on a metric space forms a semi-
group. 

6. 9. Show that the affine transformation w : £ -+ £ defined by w (x) = Ax + t is a 
contraction, where 

( 
l cos 120° 

A= 2 
l sin 120° 2 

_1. sin 120° ) ( l ) 2 and t = 2 . 
lcos120° 0 2 

Here £ is an equilateral Sierpinski triangle with a vertex at the origin and one at 
(1, 0). You need to begin by verifying that w does indeed map£ into itself! Locate 
the fixed point x 1. Maf.e a picture of this contraction mapping "doing its work, 
mapping all of the compact metric space £ toward the fixed point." Use different 
colors to denote the successive regions fo(n)(£) \ fo(n+l)(£) for n = 0, 1, 2, 3, .... 
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Figure 111.60. The ex-
istence of a positive 
eigenvalue of an "angle-
squeezing" linear transfor-
mation. 

6.10. Define a mapping on the code space of two symbols {0, 1} by f(x 1x2x3x4 .. . ) 
. (R 11 h h · · d( ) " 00 lx·-y·l · = lx 1xzx3x4.... eca t at t e metnc IS x, y = Li=l or equivalent.) 

Show that f is a contraction mapping. Locate the fixed point of f. 
6. 11. Let (X, d) be a compact metric space, and let f : X X be a contraction 
mapping. Show that {Jon (X)} is a Cauchy sequence of points in (1t (X), h) and 
limn---+oo fon(X) = {x f }, where x f is the fixed point of f. 

6. 12. Let (X, d) be a compact metric space. Let f : X X have the property 
limn---+oo fon(X) = x !· Find a metric d on X such that f is a contraction mapping, 
and the identity is a homeomorphism from (X, (X, d). 

6.13. Let Ax= (: ( with a, b, c, dE IR, all strictly positive, be a lin-

ear transformation on Show that A maps the positive quadrant {(x1, x2): x1 :::: 

0, x2 :::: 0} into itself. Let a mapping f : [0, 90°] [0, 90°] be defined by 

A positive number) ( · 
Show that {Jon (B)} converges to the unique fixed point of f. Deduce that there 

exists a unique positive number A, and an angle 0 < 0 < 90" such that A ( ) = 

), Figure IIT.60. 
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7 Contraction Mappings on the Space of Fractals 

Let (X, d) be a metric space and let (1i(X), h(d)) denote the corresponding space 
of nonempty compact subsets, with the Hausdorff metric h(d). We introduce the 
notation h(d) to show that d is the underlying metric for the Hausdorff metric h. 
For example, we may discuss (1i(C), h(spherical)) or h(Manhattan)). We 
will drop this additional notation when we evaluate Hausdorff distances. 

We have repeatedly refused to define fractals: we have agreed that they are sub-
sets of simple geometrical spaces, such as Euclidean) and (C, Spherical). If 
we were to define a deterministic fractal, we might say that it is a fixed point of a 
contractive transformation on (1i(X), h(d)).· We would require that the underlying 
metric space (X, d) be "geometrically simple." We would require also that the con-
traction mapping be constructed from simple, easily specified, contraction mappings 
on (X, d), as described below. 

Lemma 7. 1 Let w : X --+ X be a contraction mapping on the metric space 
(X, d). Then w is continuous. 

Proof Let E > 0 be given. Let s > 0 be a contractivity factor for w. Then 

d(w(x), w(y))::::: sd(x, y) < E 

whenever d(x, y) < 8, where 8 = E/s. This completes the proof. 

Lemma 7.2 Let w : X --+ X be a continuous mapping on the metric space 
(X, d). Then w maps 1i(X) into itself 

Proof LetS be a nonempty compact subset of X. Then clearly w(S) = {w(x): 
xES} is nonempty. We want to show that w(S) is compact. Let {Yn = w(xn)} be 
an infinite sequence of points in S. Then {xn} is an infinite sequence of points in S. 
Since S is compact there is a subsequence { x Nn} that converges to a point .X E S. But 
then the continuity of w implies that {y Nn = f (x NJ} is a subsequence of {Yn} that 
converges toy= f(x) E w(S). This completes the proof. 

The following lemma tells us how to make a contraction mapping on (1i(X), h) 
out of a contraction mapping on (X, d). 

Lemma 7.3 Let w : X --+ X be a contraction mapping on the metric space 
(X, d) with contractivity factors. Then w: 1i(X)--+ 1i(X) defined by 

w(B) = {w(x): x E B}VB E 1i(X) 

is a contraction mapping on (1i(X), h(d)) with contractivity factors. 

Proof From Lemma 7.1 it follows that w : X --+ X is continuous. Hence by 
Lemma 7.2 w maps 1i(X) into itself. Now let B, C E 1t(X). Then 

d(w(B), w(C)) = max{min{d(w(x, y), w(y)): y E C}: x E B} 
::::: max{min{s · d(x, y): y E C}: x E B} = s · d(B, C). 
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Similarly, d(w(C), w(B)) :::;: s · d(C, B). Hence 
h(w(B), w(C)) = d(w(B), w(C)) v d(w(C), w(B)):::;: s · d(B, C) v d(C, B) 

:::::s·d(B,C). 
This completes the proof. 

The following lemma gives a characteristic property of the Hausdorff metric 
which we will shortly need. The proof follows at once from exercise 6.13 of Chapter 
II. 

Lemma 7.4 For all B, C, D, and E, in H(X) 

h(B U C, DUE):::;: h(B, D) v h(C, E), 

where as usual h is the Hausdorff metric. 

The next lemma provides an important method for combining contraction map-
pings on (H(X), h) to produce new contraction mappings on (H(X), h). This 
method is distinct from the obvious one of composition. 

Lemma 7.5 Let (X, d) be a metric space. Let { Wn : n = 1, 2, ... , N} be con-
traction mappings on (H(X), h). Let the contractivity factor for Wn be denoted by sn 
for each n. Define W: H(X)---+ H(X) by 

W(B) =WI (B) U w2(B) U ... U Wn(B) 
for each BE H(X). 

Then W is a contraction mapping with contractivity factors= max{sn : n = 1, 2, 
... , N}. 

Proof We demonstrate the claim for N = 2. An inductive argument then com-
pletes the proof. Let B, C E H(X). We have 

h(W(B), W(C)) = h(w,(B) U w2(B), w 1(C) U w2(C)) 
:::: h(w1 (B), w 1 (C)) v h(w2(B), w2(C)) (by Lemma 7.2) 
:::;: s1h(B, C) v s2h(B, C):::;: sh(B, C). 

This completes the proof. 

Definition 7. 1 A (hyperbolic) iterated function system consists of a complete 
metric space (X, d) together with a finite set of contraction mappings Wn : X ---+ 
X, with respective contractivity factors sn, for n = 1, 2, ... , N. The abbreviation 
"/FS" is used for "iterated function system." The notation for the IFS just an-
nounced is {X; Wn, n = 1, 2, ... , N} and its contractivity factor iss= max{sn : n = 
1,2, ... ,N}. 

We put the word "hyperbolic" in parentheses in this definition because it is some-
times dropped in practice. Moreover, we will sometimes use the nomenclature "IFS" 
to mean simply a finite set of maps acting on a metric space, with no particular con-
ditions imposed upon the maps. 

The following theorem summarizes the main facts so far about a hyperbolic IFS. 
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Theorem 7. 1 Let {X; wn, n = 1, 2, ... , N} be a hyperbolic iterated function 
system with contractivity factors. Then the t':ansformation W: 1-l(X) 1-l(X) de-
fined by 

W(B) = 

for all BE 1-l(X), is a contraction mapping on the complete metric space (1-l(X), 
h(d)) with contractivity factors. That is 

h(W(B), W(C)) s · h(B, C) 

for all B, C E 1-l(X). Its unique fixed point, A E 1-l(X), obeys 

A= W(A) = 

and is given by A= limn-H)O won(B) for any B E 1-l(X). 

Definition 7.2 The fixed point A E 1-l(X) described in the theorem is called the 
attractor of the IFS. 

Sometimes we will use the name "attractor" in connection with an IFS that is 
simply a finite set of maps acting on a complete metric space X. By this we mean 
that one can make an assertion analagous to the last sentence of Theorem 7 .1. 

We wanted to use the words "deterministic fractal" in place of "attractor" in 
Definition 7 .2. We were tempted, but resisted. The nomenclature "iterated function 
system" is meant to remind one of the name "dynamical system." We will introduce 
dynamical systems in Chapter 4. Dynamical systems often possess attractors, and 
when these are interesting to look at they are called strange attractors. 

Examples & Exercises 
7.1. This exercise takes place in the metric spaces Euclidean) and (1-l(R), 
h(Euclidean)). Consider the IFS w1, w2}, where WI(x) = and w2(x) = + 

Show that this is indeed an IFS with contractivity factors= Let B0 = [0, 1]. 
Calculate Bn = won(Bo), n = 1, 2, 3, .... Deduce that A= Bn is the classi-
cal Cantor set. Verify directly that A = U + Here we use the following 
notation: for a subset A xA = {xy: yEA} and A+ x = {y + x: yEA}. 

7.2. With reference to example 7.1, show that if WI(x) =six and w2(x) = (1-
s1)x + s 1, where s 1 is a number such that 0 < s1 < 1, then BI = B2 = B3 = .... Find 
the attractor. 

7.3. Repeat example 7.1 with WI (x) = and w2(x) = + In this case A= 
Bn will not be the classical Cantor set, but it will be something like it. 

Describe A. Show that A contains no intervals. How many points does A contain? 

7 .4. Consider the IFS { x + , x, x + Verify that the attractor looks like 
the image in Figure 111.61. Show, precisely, how the set in Figure 111.61 is a union of 

1 
three "shrunken copies of itself." This attractor is interesting: it contains countably 
many holes and countably many intervals. 
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Figure 111.61. Attractor · 
for three affine maps on 
the real line. Can you find 
the maps? 

Figure 111.62. A se- y 
quence of sets converging 
to a line segment. 

1 

0 32 48 S6 64 

X 
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7.5. Show that the attractor of an IFS having the w 1 (x) =ax+ b, w2(x) = 
ex+ d}, where a, b, c, and dE either connected or totally disconnected. 

7 .6. Does there exist an IFS of three affine maps in 2 whose attract or is the union 
of two disjoint closed intervals? 

7. 7. Consider the IFS 

Let Ao = {(i, y): 0 y 1}, and let won(A0 ) =An, where W is defined on 
in the usual way. Show that the attractor is A = { (x, y) : x = y, 0 x 1} and 
that Figure 111.62 is correct. Draw a sequence of pictures to show what happens if 
Ao = {(x, y) E 0 x 1, 0 y 1}. 

7.8. Consider the attractor for the IFS w1 (x) = 0, w2(x) = + 1 }. Show that 
it consists of a countable increasing sequence of real points {xn : n = 0, 1, 2, ... } 
together with { 1 }. Show that Xn can be expressed as the nth partial sum of an infinite 
geometric series. Give a succinct formula for Xn. 

7.9. Describe the attractor A for the IFS {[0, 2]; w 1(x) = bx2, w2(x) = + iJ by 
describing a sequence of sets which converges to it. Show that A is totally discon-
nected. Show that A is perfect. Find the contractivity factor for the IFS. 

7.10. Let (r, B), 0 r oo, 0 B < 2rr denote the polar coordinates of a point 
in the plane, Define w 1(r, B)= Cir + i, iB), and w2(r, B)= + 1, + 
2; ). Show that w 1, w2 } is not a hyperbolic IFS because both maps w 1 and w 2 

are discontinuous on the whole plane. Show that w1, w2 } nevertheless has an 
attractor; find it (just consider r and B separately). 

7. 11. Show that the sequence of sets illustrated in Figure 111.63 can be written in 
the form An= won(Ao) for n = 1, 2, ... , and find W: 

7. 12. Describe the collection of functions that constitutes the attractor A for the IFS 
1 1 

{C[O, 1]; w, (f(x)) = 2 f(x), w2(j(x)) = 2 f(x) + 2x(l- x)}. 

Find the contractivity factor for the IFS. 

7.13. Let C0[0, 1] = {f E C[O, 1] : f(O) = f(l) = 0}, and define d(f, g)= 
max{lf(x)- g(x)i: X E [0, 1]}. Define Wt: C0[0, 1] C0 [0, 1] by (wt(f))(x) = 
if(2x mod 1) + 2x(1- x) and (w2(f))(x) = if(x). Show that {C0[0, 1]; Wt, w2} 
is an IFS, find its contractivity factor, and find its attractor. Draw a picture of the 
attractor. 

7.14. Find conditions that the Mobius transformation w(x) =(ax+ b)j(cz + 
d), a, b, c, dE ([,ad- be f. 0, provides a contraction mapping on the unit disk 

w 

) 

w 

Figure 111.63. The first 
three sets A0 , A 1, and A2 
in a convergent sequence 
of sets in Can 
you find a transformation 
W : --+ 
such that An+l = W(An)? 
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X= {z E C: lzl ::::: 1}. Find an upper bound for the contractivi{y factor. Construct an 
IFS using two Mobius transformations on X, and describe its attractor. 

7.15. Show that a Mobius transformation on (is never a contraction in the spheri-
cal metric. 

7.16. Let (1:, d) be the code space of three symbols {0, 1, 2}, with metric 

d( ) _ lxn - Yn I 
x,y . 

n=l 4n 

Define w 1 : 1: 1: by Wt (x) = Ox1x2x3 ... and w2(x) = 2x1x2x3 .. .. Show that w 1 

and w2 are both contraction mappings and find their contractivity factors. Describe 
the attractor of the IFS { 1:; w 1, w2 }. What happens if we include in the IFS a third 
transformation defined by w3x = 1x 1 x2x3 ... ? 

7. 17. Let .A c 2 denote the compact metric space constisting of an equilateral 
Sierpinski triangle with vertices at (0, 0), (1, 0), and f), and consider the IFS 
{.A, + + where we use complex number notation. Let Ao = .A, 
and An= won(Ao) for n = 1, 2, 3, .... Describe At, A2, and the attractor A. What 
happens if the third transformation w3(z) = + i + (.J3/4)i is included in the 
IFS? 

8 Two Algorithms for Computing Fractals from Iterated Function Systems 

In this section we take time out from the mathematical development to provide two 
algorithms for rendering pictures of attractors of an IFS on the graphics display de-
vice of a microcomputer or workstation. The reader should establish a computer-
graphical environment that includes one or both of the software tools suggested in 
this section. 

The algorithms presented are (1) the Deterministic Algorithm and (2) the Random 
Iteration Algorithm. The Deterministic Algorithm is based on the idea of directly 
computing a sequence of sets {An = won (A)} starting from an initial set A 0 . The 
Random Iteration Algorithm is founded in ergodic theory; its mathematical basis 
will be presented in Chapter IX. An intuitive explanation of why it works is pre-
sented in Chapter IV. We defer important questions concerning discretization and 
accuracy. Such questions are considered to some extent in later chapters. 

For simplicity we restrict attention to hyperbolic IFS of the form Wn : n = 
1, 2, ... , N}, where each mapping is an affine transformation. We illustrate the al-
gorithms for an IFS whose attractor is a Sierpinski triangle. Here's an example of 
such an IFS: 

WI [X1] = [0.5 0 ] [Xl] + [ 1]' 
X2 0 0.5 X2 1 
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w2 [::] = [
005 

o
05J[::J + l 

W 3 [ Xt] = [ 0.5 0 ] [ X1] + [ 25] . 
X2 0 0.5 X2 50 

This notation for an IFS of affine maps is cumbersome. Let us agree to write 

W;(x) = W; [::] = [ :; [::] + [;,] = A;x + f;. 
Then Table 111.1 is a tidier way of conveying the same iterated function system. 
Table 111.1 also provides a number p; associated with w; fori= 1, 2, 3. These 

numbers are in fact probabilities. In the more general case of the IFS {X; Wn : n = 
1, 2, ... , N}, there would beN such numbers {p;: i = 1, 2, ... , N} that obey 

Pt + P2 + P3 + · · · + Pn = 1 and p; > 0 fori=1,2, ... ,N. 

These probabilities play an important role in the computation of images of the at-
tractor of an IFS using the Random Iteration Algorithm. They play no role in the 
Deterministic Algorithm. Their mathematical significance is discussed in later chap-
ters. For the moment we will them only as a computational aid, in connection 
with the Random Iteration Algorithm. To this end we take their values to be given 
approximately by 

"'"' I det Ad _ la;d;- b;c;l 
Pi""-' N - N 

Li=l lA; I Li=l la;d; - b;c; I 
for i = 1, 2, ... , N. 

Here the symbol means "approximately equal to." If, for some i, det A; = 0, 
then p; should be assigned a small positive number, such as 0.001. Other situations 
should be treated empirically. We refer to the data in Table 111.1 as an IFS code. 
Other IFS codes are given in Tables 111.2, 111.3, and III.4. 

Algorithm 8.1 The Deterministic Algorithm. Let {X; w1, w2, ... , wN} be a 
hyperbolic IFS. Choose a compact set A 0 C Then compute successively An = 
won(A) according to 

for n = 1, 2, .... 

Thus construct a sequence {An: n = 0, 1, 2, 3, ... } c H(X). Then by Theorem 7.1 
the sequence {An} converges to the attractor of the IFS in the Hausdorff metric. 

Table Ill. 1. IFS code for a Sierpinski triangle. 

w a b c d e f p 

0.5 0 0 0.5 0.33 
2 0.5 0 0 0.5? 50 0.33 
3 0.5 0 0 0.5 50 50 0.34 
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Table 111.2. IFS code for a square. 

w a b c d e f p 

0.5 0 0 0.5 0.25 
2 0.5 0 0 0.5 50 1 0.25 
3 0.5 0 0 0.5 1 50 0.25 
4 0.5 0 0 0.5 50 50 0.25 

Table 111.3. IFS code for a fern. 

w a b c d e f p 

1 0 0 0 0.16 0 0 0.01 
2 0.85 0.04 -0.04 0.85 0 1.6 0.85 
3 0.2 -0.26 0.23 0.22 0 1.6 0.07 
4 -0.15 0.28 0.26 0.24 0 0.44 0.07 

Table 111.4. IFS code for a fractal tree. 

w a b c d e f p 

0 0 0 0.5 0 0 0.05 
2 0.42 -0.42 0.42 0.42 0 0.2 0.4 
3 0.42 0.42 -0.42 0.42 0 0.2 0.4 
4 0.1 0 0 0.1 0 0.2 0.15 

We illustrate the implementation of the algorithm. The following program com-
putes and plots successive sets An+l starting from an initial set A 0 , in this case a 
square, using the IFS code in Table 111.1. The program is written in BASIC. It should 
run without modification on an IBM PC with Color Graphics Adaptor or Enhanced 
Graphics Adaptor, and Turbobasic. It can be modified to run on any personal com-
puter with graphics display capability. On any line the words preceded by a ' are 
comments and not part of the program. 

Program 1. (Example of the Deterministic Algorithm) 
screen 1 : cls 'initialize graphics 
dim s(100,100) : dim t(100,100) 'allocate two arrays of pixels 
a(1)=0.5:b(1)=0:c(1)=0:d(1)=0.5:e(1)=1:f(1)=1 'input the IFS code 
a(2)=0.5:b(2)=0:c(2)=0:d(2)=0.5:e(2)=50:f(2)=1 
a(3)=0.5:b(3)=0:c(3)=0:d(3)=0.5:e(3)=25:f(3)=50 
for i=1 to 100 'input the initial set A(O), in this case 

a square, into the array t(i,j) 
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t(i,1)=1: pset(i,1) 'A(O) can be used as a condensation set 
t(1,i)=1:pset(1,i) 'A(O) is plotted on the screen 
t(100,i)=1:pset(100,i) 
t(i,100)=1:pset(i,100) 
next: do 
for i=1 to 100 'apply W to set A(n) to make A(n+1) in the 

array s(i,j) 
for j=1 to 100 : if t(i,j)=1 then 
s(a(1)*i+b(1)*j+e(1),c(1)*i+d(1)*j+f(1))=1 'and apply W to A(n) 
s(a(2)*i+b(2)*j+e(2),c(2)*i+d(2)*j+f(2))=1 
s(a(3)*i+b(3)*j+e(3),c(3)*i+d(3)*j+f(3))=1 
end if: next j: next i 
cls 'clears the screen--omit to obtain sequence with a A(O) as 

condensation set (see section 9 in Chapter II) 
for i=1 to 100 : for j=1 to 100 
t(i,j)=s(i,j) 'put A(n+1) into the array t(i,j) 
s(i,j)=O 'reset the array s(i,j) to zero 
if t(i,j)=1 then 
pset(i,j) 'plot A(n+1) 
end if : next : next 
loop until instat 'if a key has been pressed then stop, 

otherwise compute A(n+1)=W(A(n+1)) 

The result of running a higher-resolution version of this program on a Masscomp 
5600 workstation and then printing the contents of the graphics screen is presented 
in Figure III.64. In this case we have kept each successive image produced by the 
program. 

Notice that the program begins by drawing a box in the array t(i, j). This box has 
no influence on the finally computed image of a Sierpinski triangle. One could just 
as well have started from any other (nonempty) set of points in the array t(i, j), as 
illustrated in Figure III.65. 

To adapt Program 1 so that it runs with other IFS codes will usually require 
changing coordinates to ensure that each of the transformations of the IFS maps the 
pixel array s(i, j) into itself. Change of coordinates in an IFS is discussed in exercise 
10.14. As it stands in Program 1, the array s(i, j) is a discretized representation of 
the square in with lower left comer at (1, 1) and upper right comer at (100, 100). 
Failure to adjust coordinates correctly will lead to unpredictable and exciting results! 

Algorithm 8.2 The Random Iteration Algorithm. Let {X; WJ, w2, ... ' WN} 

be a hyperbolic IFS, where probability p; > 0 has been assigned to to w; fori = 
1, 2, ... , N, where L:7=1 p; = 1. Choose xo EX and then choose recursively, inde-
pendently, 

1 

Xn E {WJ(Xn_l), W2(Xn-J), ... , WN(Xn-d} for n = 1, 2, 3, ... , 
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Figure 111.64. The re-
sult of running the De-
terministic Algorithm 
(Program 1) with various 
values of N, for the IFS 
code in Table III. I. 

where the probability of the event Xn = wi(Xn-1) is Pi· Thus, construct a sequence 
{xn: n = 0, 1, 2, 3, ... } C X. 

* The reader should skip the rest of this paragraph and come back to it after 
reading Section 9. If {X, w0 , w1, w2, ... , w N} is an IFS with condensation map w0 
and associated condensation set C c 1t(X), then the algorithm is modified by (a) 
attaching a probability Po> 0 to wo, so now L.:7=o Pi= 1; (b) whenever wo(Xn- 1) 
is selected for some n, choose Xn "at random" from C. Thus, in this case too, we 
construct a sequence {xn : n = 0, 1, 2, ... } of points in X. 

The sequence "converges to" the attractor of the IFS, under various con-
ditions, in a manner that will be made precise in Chapter IX. 

We illustrate the implementation of the algorithm. The following program com-
putes and plots a thousand points on the attractor corresponding to the IFS code in 
Table III.1. The program is written in BASIC. It runs without modification on an 
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IBM PC with Enhanced Graphics Adaptor and Turbobasic. On any line the words 
preceded by a ' are comments: they are not part of the program. 

Program 2. (Example of the Random Iteration Algorithm) 
'Iterated Function System Data 

a[1] 0.5 b[1] =0 c [1] =0 d[1] =.5 e[1] =1 : f [1] =1 
a[2] 0.5 b[2] =0 c [2] =0 d[2] =.5 e [2] =50 f [2] =1 
a[3] 0.5 b[3] =0 c [3] =0 d[3] =.5 e [3] =50 : f [3] =50 

screen 1 : cls 'initialize computer graphics 
window (0,0)-(100,100) 'set plotting window to O<x<100, O<y<100 
x =0 : y = 0: numits =1000 'initialize (x,y) and define 

the number of iterations, numits 

Figure 111.65. The re-
sult of running the Deter-
ministic Algorithm (Pro-
gram 1 ), again for the IFS 
code in Table III.l, but 
starting from a different 
initial array. The final re-
sult is always the same! 
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Figure 111.66. The result of running the Random Iteration Algorithm for increasing 
numbers of iterations. The randomly dancing point starts to suggest the structure of the 
attractor of the IFS given in Table 111.3. 

for n =1 to numits 'Random Iteration begins! 
k int(3*rnd-0.00001) +1 'choose one of the numbers 1, 2, 

and 3 with equal probability 

'apply affine transformation number k to (x,y) 
newx =a[k]*x+b[k]*y+e[k] : newy =c[k]*x+d[k]*y+f[k] 
x =newx : y =newy 'set (x,y) to the point thus obtained 
if n > 10 then pset (x,y) 'plot (x,y) after the first 10 

iterations 
next end 

The result of running an adaptation of this program on a Masscomp workstation 
and then printing the contents of the graphics screen is presented in Figure III.66. 
Notice that if the size of the plotting window is decreased, for example by replacing 
the window call by WINDOW (0,0)-(50,50), then only a portion of the image is 
plotted, but at a higher resolution. Thus we have a simple means for "zooming in" 
on images of IFS attractors. The number of iterations may be increased to improve 
the quality of the computed image. 

Examples & Exercises 
8.1. Rewrite Programs 1 and 2 in a form suitable for your own computer environ-
ment, then run them and obtain hardcopy of the output. Compare their performance. 

8.2. Modify Programs 1 and 2 so that they will compute images associated with the 
IFS code given in Table III.2. 
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8.3. Modify Program 2 so that it will compute images associated with the IFS codes 
given in Tables 111.3 and 111.4. 

8.4. By changing the window size in Program 2, obtain images of "zooms" on the 
Sierpinski triangle. For example, use the following windows: (1, 1) - (50, 50); (1, 
1)- (25, 25); (1, 1) - (12, 12); ... ; (1, 1) - (N, N). How must the total number of 
iterations be adjusted as a function of N in order that (approximately) the number 
of points that land within the window remains constant? Make a graph of the total 
number of iterations against the window size. 

8.5. What should happen, theoretically, to the sequence of images computed by 
Program 1 if the set A0 is changed? What happens in practice? Make a computa-
tional experiment to see if there is any difference in say A 10 corresponding to two 
different choices for A0 • 

8.6. Rewrite Program 2 so that it applies the transformation wi with probabil-
ity Pi, where the probabilities are input by the user. Compare the number of it-
erations needed to produce a "good" rendering of the Sierpinski triangle, for the 
cases (a) Pt = 0.33, P2 = 0.33, P3 = 0.34; (b) Pt = 0.2, P2 = 0.46, P3 = 0.34; (c) 
Pt = 0.1, P2 = 0.56, P3 = 0.34. 

9 Condensation Sets 

There is another important way of making contraction mappings on 7t(X). 

Definition 9.1 Let (X, d) be a metric space and let C E 7t(X). Define a trans-
formation wo: 7t(X)--+ 1t(X) by w0 (B) = C for all BE 7t(X). Then wo is called a 
condensation transformation and C is called the associated condensation set. 

Observe that a condensation transformation w0 : 7t(X) --+ 1t(X) is a contraction 
mapping on the metric space (7t(X), h(d)), with contractivity factor equal to zero, 
and that it possesses a unique fixed point, namely the condensation set. 

Definition 9.2 Let {X; w 1, w2 , ••. , wn} be a hyperbolic IFS with contractivity 
factor 0 s < 1. Let w0 : 7t(X)--+ 1t(X) be a condensation transformation. Then 
{X; wo, w 1, ••• , Wn} is called a hyperbolic IFS with condensation, with contractivity 
factors. 

Theorem 7.1 can be modified to cover the case of an IFS with condensation. 

Theorem 9.1 Let {X; wn: n = 0, 1, 2, ... , N} be a hyperbolic iterated/unction 
system with condensation, with contractivity factor s. Then the transformation W : 
1t (X) --+ 1t (X) defined by 

W(B) = E 7t(X) 
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Figure 111.67. A geo-
metric series of pine trees, 
the attractor of an IPS with 
condensation. 

is a contraction mapping on the complete metric space ('H.(X), h(d)) with contrac-
tivity factor s. That is 

h(W(B), W(C)):::: s · h(B, C)VB, C E 'H.(X). 

Its unique fixed point, A E 'H.(X), obeys 

A= W(A) = 

and is given by A= limn-+oo won(B) for any B E 'H.(X). 

Examples & Exercises 
9.1. A sequence of sets {An c where (X, d) is a metric space, is said to be 

increasing if A0 c A 1 C A2 C · · · and decreasing if Ao :::> A 1 :::> A2 :::> • • •• The in-
clusions are not necessarily strict. A decreasing sequence of sets {An C 
is a Cauchy sequence (prove it!). If X is compact then an increasing sequence of 

sets {An C is a Cauchy sequence (prove it!). Let {X; wo, w 1, ••• , wn} be 
a hyperbolic IFS with condensation set C, and let X be compact. Let W0(B) = 

E 'H.(X) and let W(B) = Define {Cn = 
Then Theorem 9.1 tells us { C n} is a Cauchy sequence in 'H. (X) that converges to 
the attractor of the IFS. Independently of the theorem observe that 

Cn = C U W(C) U W02 (C) U ... U won(C) 

provides an increasing sequence of compact sets. It follows immediately that the 

limit set A obeys W0(A) =A. 

9.2. This example takes place in Euclidean). Let C = = Ao c 

denote a set that looks like a scorched pine tree standing at the origin, with its trunk 
perpendicular to the x -axis. Let 
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1 

0 

Show that w0 , wd is an IFS with condensation and find its contractivity factor. 
Let An= won(Ao) for n = 1, 2, 3, ... , where W(B) = forB E 
Show that An consists of the first (n + 1) pine trees reading from left to right in 
Figure 111.67. If the first tree required 0.1% of the ink in the artist's pen to draw, and 
if the artist had been very meticulous in drawing the whole attractor correctly, find 
the total amount of ink used to draw the whole attractor. · 

9.3. What happens to the trees in Figure lll.67 if w1 ( is replaced by 

in exercise 9.2? 

9.4. Find the attractor for the IFS with condensation w0 , wd, where the 
condensation set is the interval [0, 1] and w 1 (x) = + 2. What happens if w1 (x) = 
.!.x? 2 . 

9 .5. Find an IFS with condensation that generates the treelike set in Figure 111.68. 
Give conditions on r and e such that the tree is simply connected. Show that the tree 
is either simply connected or infinitely connected. 

9.6. Find an IFS with condensation that generates Figure 111.69. 

9.7. You are given a condensation map w0 (x) in that provides the largest tree 

Figure 111.68. Sketch 
of a fractal tree, the at-
tractor of an IFS with 
condensation. 
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Figure 111.69. An end-
less spiral of little men. 

in Figure 111.46. Find a hyperbolic IFS with condensation, of the form {!R{2 ; w0 , w1, 

w 2 }, which produces the whole orchard. What is the contractivity factor for this IFS? 

Find the attractorofthe IFS {!R{2 ; w1, w2 }. 

9.8. Explain why removing the command that clears the screen ("cls") from Pro-

gram 1 will result in the computation of an image associated with an IFS with con-

densation. Identify the condensation set. Run your version of Program 1 with the 

"cls" command removed. 

10 How to Make Fractal Models with the Help of the Collage Theorem 

The following theorem is central to the design of IFS 's whose attractors are close to 

given sets. 

Theorem 10. 1 (The Collage Theorem, (Barnsley 1985b)). Let (X, d) be 

a complete metric space. Let L E 1t(X) be given, and let E 0 be given. Choose an 

IFS (or IFS with condensation) {X; (wo), Wt, w2, ... , Wn} with contractivity factor 
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0 :::: s < 1, so that 

h(L, unn=l Wn(L)):::: E, 
(n=O) 

where h(d) is the Hausdorff metric. Then 

h(L, A):::=: E/(1- s), 

where A is the attractor of the IFS. Equivalently, 

h(L, A):::: (1 - s)- 1h(L, un n=l Wn(L)) 
(n=O) 

for all L E 'H(X). 

The proof of the Collage Theorem is given in the next section. The theorem 
tells us that to find an IFS whose attractor is "close to" or "looks like" a given 
set, one must endeavor to find a set of transformations--contraction mappings on a 
suitable space within which the given set lies-such that the union, or collage, of the 
images of the given set under the transformations is near to the given set. Nearness 
is measured using the Hausdorff metric. 

Examples & Exercises 
10.1. This example takes place Euclidean). Observe that [0, 1] = [0, U 

1]. Hence the attractor is [0, 1] for any pair of contraction mappings w 1 : 

and w2 : that w 1 ([0, 1]) = [0, w2([0, 1]) = 1]. For example, 
w 1 (x) = x and w2 (x) = x + does the trick. The unit interval is a collage of two 
smaller "copies" of itself. 

10.2. Suppose we are using a trial-and-error procedure to adjust the coefficients 
in two affine transformations w 1(x) =ax+ b, w2(x) =ex+ d, where a, b, c, dE 

to look for an IFS w 1, w2} whose attractor is [0, 1]. We might come up 
with w 1 (x) = 0.51x- 0.01 and w 2(x) = 0.47x + 0.53. How far from [0, 1] will the 
attractor for the IFS be? To find out compute 

h ([O, 1], uf= 1 w; ([O, 1])) = h([O, 1], [ -O.Ol, 0.5] u [0.53, 1]) = 0.015 

and observe that the contractivity factor of the IFS is s = 0.51. So by the Collage 
Theorem, if A is the attractor, 

h([O, 1], A) ::S 0.015/0.49 < 0.04. 

10.3. Figure 111.70 shows a target set L c a leaf, represented by the polygonal-
ized boundary of the leaf. Four affine transformations, contractive, have been applied 
to the boundary at lower left, producing the four smaller deformed leaf boundaries. 
The Hausdorff distance between the union of the four copies and the original is ap-
proximately 1.0 units, where the width of the whole frame is taken to be 10 units. 
The contractivity of the associated IFS w 1, w2 , w 3, w4 } is approximately 0.6. 
Hence the Hausdorff distance h(Euclidean) between the original target leaf L and 
the attractor A of the IFS will be less than 2.5 units. (This is not promising much!) 
The actual attractor, translated to the right, is shown at lower right. Not surprisingly, 
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Figure 111.70. The Col-
lage Theorem applied to 
a region bounded by a 
polygonalized leaf bound-
ary. 

Figure Ill. 71. The re-
gion bounded by a right-
angle triangle is the union 
of the results of two simil-
itudes applied to it. 

b 

a 

it does not look much like the original leaf! An improved collage is shown at the 

upper left. The distance h(L, wn(L)) is now less than 0.02 units, while the con-

tractivity of the IFS is still approximately 0.6. Hence h(L, A) should now be less 

than 0.05 units, and we expect that the attractor should look quite like L at the reso-

lution of the figure. A, translated to the right, is shown at the upper right. 

1 0.4. To find an IFS whose attractor is a region bounded by a right-angle triangle, 

observe the collage in Figure III. 71. 

l 
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Figure 111.72. Use the 
Collage Theorem to help 
you find an IFS consisting 
of two affine maps in 2 

whose attractor is close to 
this set. 

1 0.5. A nice proof of Pythagoras' Theorem is obtained from the collage in Fig-
ure III. 71. Clearly both transformations involved are similitudes. The contractivity 
factors of these similitudes involved are (b/c) and (ajc). Hence the area A obeys 
A= (bjc) 2 A+ (ajc) 2 A. This implies c2 = a2 + b2 since A> 0. 

10.6. Figures III.72-III.76 provide exercises in the application of the Collage The-
orem. Condensation sets are not allowed in working these examples! 

1 0. 7. It is straightforward to see how the Collage Theorem gives us sets of maps for 

IPS's that generate A. A Menger Sponge looks like Find an IFS 

for which it is the attractor. 

1 0.8. The IFS that generates the Black Spleenwort fern, shown in Figure III. 77, 
consists of four affine maps in the form 

w; ( x ) = ( r c?s () 
y r sm() 

-s sin() ) ( x ) ( h ) (. = 1 2 3 4). () + k l '''' s cos y 

see Table 111.5. 

10.9. Find a collage of affine transformations in corresponding to Figure III.78. 

10. 10. A collage of a leaf is shown in Figure III. 79 (a). This collage implies the IFS 
{(; w1, w2 , w3 , w4} where, in complex notation, 

w;(z) = s;z + (1- s;)a; 
? 

fori = 1, 2, 3, 4. 

Verify that in this formula a; is the fixed point of the transformation. The values 
found for s; and a; are listed in Table III.6. Check that these make sense in relation 
to the collage. The attractor for the IFS is shown in Figure III. 79 (b). 
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Figure 111.73. This image represents the attractor of 14 affine transformations in Use 

the Collage Theorem to help you find them. 

Figure 111.74. Use the 
Collage Theorem to help 
find a hyperbolic IFS of 
the form w1. w2. w3}, 
where w1, w2 , and W3 are 
similitudes in 2, whose 
attractor is represented 
here. You choose the 
coordinate system. 
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10. 11. The attractor in Figure III.80 is determined by two affine maps. Locate the 
fixed points of two such affine transformations on IR{. 2• 

10. 12. Figure 111.81 shows the attract or for an IFS { IR{. 2 ; wi, i = 1, 2, 3, 4} where 
each wi is a three-dimensional affine transformation. See also Color Plate 3. The 
attractor is contained in the region {(xi, x2 , x 3) E IR{.3 : -10 ::=:: XI ::=:: 10, 0 ::=:: x2 ::=:: 

10, -10 :::S X3 :S 10}. 

10. 13. Find an IFS of similitudes in IR{. 2 such that the attractor is represented by the 
shaded region in Figure 111.82. The collage should be "just-touching," by which we 
mean that the transforms of the region provide a tiling of the region: they should fit 
together like the pieces of a jigsaw puzzle. 

10.14. This exercise suggests how to change the coordinates of an IFS. Let {X 1, d1} 
and {X2 , d2} be metric spaces. Let {XI; WI, w2, ... , WN} be a hyperbolic IFS with 
attract or A I· Let e : X I ---+ x2 be an invertible continuous. transformation. Consider 
the IFS {X2; e 0 WI 0 e-I' e 0 W2 0 e-I' ... 'e 0 WN 0 e-I }. Usee to define a metric 
on X2 such that the new IFS is indeed a hyperbolic IFS. Prove that if A2 E 1t(X2) is 

Table 111.5. The IFS code for the Black Spleenwort, expressed in scale and angle formats. 

Translations Rotations Scalings 

Map h k () c/> r s 

0.0 0.0 0 0 0.0 0.16 
2 0.0 1.6 -2.5 -2.5 0.85 0.85 
3 0.0 1.6 49 49 0.3 0.34 
4 0.0 0.44 120 -50 0.3 0.37 
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Figure 111.75. Find an IFS of the form w1, w2 , w 3 , w4 }, where the wi 's are affine 

transformations on whose attractor when rendered contains this image. Check your 

conclusion using Program 2. 

the attractor of the new IFS, then A2 = 8(A 1). Thus we can readily construct an IFS 

whose attractor is a transform of the attractor of another IFS. 

1 0.15. Find some of the affine transformations used in the design of the fractal 

scene in Figure III.83. 

10.16. Use the Collage Theorem to find an IFS whose attractor approximates the 

set in Figure III.84. 
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10.17. Solve the problems proposed in the captions of (a) Figure 111.85, (b) Fig-
ure 111.86, (c) Figure 111.87. 

11 Blowing in the Wind: The Continuous Dependence 
of Fractals on Parameters 

1 
The Collage Theorem provides a way of approaching the inverse problem: given a 
set L, find an IFS for which Lis the attractor. The underlying mathematical principle 

Figure 111.76. How 
many affine transforma-
tions in 2 are needed 
to generate this attractor? 
You do not need to use a 
condensation set. 
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Figure 111.77. The 
Black Spleenwort fern. 
The top image illustrates 
one of the four affine 
transformations in the IFS 
whose attractor was used 
to render the fern. The 
transformation takes the 
triangle ABC to triangle 
abc. The Collage Theorem 
provides the other three 
transformations. The IFS 
coded for this image is 
given in Table III.3. Ob-
serve that the stem is the 
image of the whole set un-
der one of the transforma-
tions. Determine to which 
map number in Table III.3 
the stem corresponds.The 
bottom image shows the 
Black Spleenwort fern and 
a close-up. 

is very easy: the proof of the Collage Theorem is just the proof of the following 
lemma. 

Lemma 11.1 Let (X, d) be a complete metric space. Let f: X-+ X be a con-
traction mapping with contractivity factor 0 ::::; s < 1 , and let the fixed point off be 
Xf EX. Then 

d(x, X f)::::; (1- s)- 1 • d(x, f(x)) for all x EX. 
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Proof The distance function d(a, b), for fixed a EX, is continuous in bE X. 
Hence 

d(x, X J) = d (x, lim fon(x)) = lim d(x, fon(x)) 
n---+00 n--+oo 

n 
::=:: lim '"""d(fo(m-l)(x), fo(m)(x)) 

n---+00 
m=l 

::=:: lim d(x, f(x))(l + s + · · · + sn-l) ::=:: (1- s)- 1d(x, f(x)). 
n--+oo 

This completes the proof. 

The following results are important and closely related to the above material. 
They establish the continuous dependence of the attractor of a hyperbolic IFS on 
parameters in the maps that constitute the IFS. 

Table 111.6. Scaling factors and fixed points for the collage in Figure III.79. 

s a 
0.6 0.45 + 0.9i 
0.6 0.45 + 0.3i 

0.4 - 0.3i 0.60 + 0.3i 
0.4 + 0.3i 0.30 + 0.3i 

Figure 111.78. Use the 
Collage Theorem to find 
the four affine transfor-
mations corresponding to 
this image. Can you find 
a transformation which 
will put in the "missing 
comer"? 

(a) Collage 

(b) Attractor 

Figure 111.79. A col-
lage of a leaf is obtained 
using four similitudes, 
as illustrated in (a). The 
corresponding IFS is pre-
sented in complex nota-
tion in Table 111.6. The 
attractor of the IFS is ren-
dered in (b). 
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Lemma 11.2 Let (P, dp) and (X, d) be metric spaces, the latter being com-

plete. Let w : P x X--+ X be a family of contraction mappings on X with contrac-

tivity factor 0 :S s < 1. That is, for each p E P, w (p, ·) is a contraction mapping on 

X. For each fixed x E X let w be continuous on P. Then the fixed point of w depends 

continuously on p. That is, x 1 : P --+ X is continuous. 

Proof Let x 1 (p) denote the fixed point of w for fixed p E P. Let p E P and 

E > 0 be given. Then for all q E P, 

d(Xj(p), Xj(q)) = d(w(p, Xj(p)), w(q, Xj(q))) 

:::: d(w(p, Xf(p)), w(q, x1(p))) 

+ d(w(q, x 1(p)), w(q, x 1 (q))) 

:S d(w(p, x 1(p)), w(q, x 1(p))) + sd(x f(p), x 1(q)), 

which implies 

d(x 1(p), x f(q)) :S (1 - s)- 1d(w(p, x f(p)), w(q, x 1 (p))). 

The right-hand side here can be made arbitrarily small by restricting q to be suffi-

ciently close top. (Notice that if there is a real constant C such that 

d(w(p, x), w(q, x)) :S Cd(p, q) for all p, q E P, for all x EX, 

then d(x1 (p), x1 (q)) :S (1- s)- 1 • C · d(p, q), which is a useful estimate.) This 

completes the proof. 

Examples & Exercises 
11.1. The fixed point of the contraction mapping w : defined by w(x) = 

1x + p depends continuously on the real parameter p. Indeed, x f = 2p. 

Figure 111.80. Locate 
the fixed points of a pair 
of affine transformations 
in !RI.2 whose attractor is 
rendered here. 

4.5 X 
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Figure 111.81. Single 
three-dimensional fern. 
The attractor of an IPS of 
affine maps in 3 . 

Figure 111.82. Find a 
"just-touching" collage of 
the area under this Devil's 
Staircase. 
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Figure 111.83. Determine some of the affine transformations used in the design of this 

fractal scene. For example, where do the dark sides of the largest mountain come from? 

11.2. Show that the fixed function for the transformation w : C0 [0, 1] ---+ C0[0, 1] 

defined by w(f(x)) = pf(2xmod1) + x(l- x) is continuous in p for p E (-1, 1). 

Here, C0[0, 1] = {/ E C[O, 1]: /(0) = f(l) = 0} and the distance is d(f, g)= 

max{if(x)- g(x)l: x E [0, 1]}. 

In order for this to be of use to us, we need some method of moving the con-

tinuous dependence on the parameter p to H(X). We cannot do this just because the 

image of a point in some set B depends continuously on p, since, although this gives 
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Figure 111.84. "Typi-
cal" fractals are not pretty: 
use the Collage Theorem 
to find an IFS whose at-
tractor approximates this 
set. 

Figure 111.85. Deter-
mine the affine transfor-
mations for an IFS corre-
sponding to this fractal. 
Can you see, just by look-
ing at the picture, if the 
linear part of any of the 
transformations has a neg-
ative determinant? 
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Figure 111.86. Use the 
Collage Theorem to ana-
lyze this fractal. On how 
many different scales is 
the whole image appar-
ently repeated here? How 
many times is the smallest 
clearly discernible copy 
repeated? 

us a 8 to constrain p with in order that w (p, x) moves by less than E, this relation 
is still dependent on the point (p, x). A set B E H(X), which is interesting, contains 
an infinite number of such points, giving us no 8 greater than 0 to constrain p with to 
limit the change in the whole set. We can get such a condition by further restricting 
w(p, x). Many constraints will do this; we pick one that is simple to understand. For 
our IFS, parametrized by p E P, that is {X: w 1 p, ••• , w N), we want the conditions 
under which given E > 0, we can find a 8 > 0 such that 

dp(p, q) < 8 => h(wp(B), Wq(B)) <E. 
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Figure 111.87. Consider 
the white areas in this fig-
ure to represent a set S in 
IR\. 2• Locate the boundary 
of the largest pathwise-
connected subset of S. It 
is recommended that you 
work with a photocopy 
of the image, a magnify-
ing glass, and a fine red 
felt-tip pen. 
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Suppose that for every p E P, Wi/X) is a continuous function on X. Furthermore, 
we ask that there is a k > 0, independent of x and p such that for each fixed x EX 
and for each wi,, the condition 

holds. This condition is called Lipshitz continuity. It is not the most general con-
dition to prove what we need; we really only need some continuous function of 
d(p, q) which is independent of x on the right-hand side. We choose Lipshitz con-
tinuity here because for the maps we are interested in, it is the easiest condition to 
check. If we can show that for any set BE H(X) we have 

then we can easily get the condition we want from the Collage Theorem. Proving 
this is simply a matter of writing down the definitions for the metric h. 

h(wp(B), wq(B)) = d(wp(B), wq(B)) v d(wq(B), wp(B)), 

where 
d(wp(B), wq(B)) = max (d(x, wq(B))) 

xEw,(B) 

d(x, wq(B)) = min (d(x, y)). 
yEwq(B) 

Now, x E wp(B) implies that there is an x E B such that x = wp(x). Then there is a 
point wq(x) E wq(B), which is the image of x under wq. For this point, our condition 
holds, and 

d(x, wq(x))::::: k · dp(p, q) =? min (d(x, y))::::: d(x, wq(x))::::: k · dp(p, q) 
yEwq(B) 

Since this condition holds, for every x E wp(B) the maximum over these points is at 
most k · dp(p, q), and we have 

d(wp(B), wq(B))::::: k · dp(p, q). 

The argument is nearly identical for d(wq(B), wp(B)), so we have 

h(wp(B), wq(B))::::: k · dp(p, q), 

and a small change in the parameter on a particular map produces a small change 
in the image of any set B E H(X). For a finite set of maps,w 1,, ••. , wN,• and 
their corresponding constants k1, ••• , kN, it is then certainly the case that if k = 
maxi=l, ... ,N(ki), we have 

Now the union of such image sets cannot vary from parameter to parameter by more 
than the maximum Hausdorff distance above, consequently, 
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h(Wp(B), Wq(B)) :S k · dp(p, q). 

We now apply the results of Lemma 11.2 to the complete metric space 1i(X), 
yielding 

Theorem 11.1 Let (X, d) be a complete metric space. Let {X; w 1, ... , wN} be 
a hyperbolic IFS with contractivity s. For n = I, 2, ... , N, let Wn depend on the 
parameter p E (P, dp) subject to the condition d(wn/X), Wnq(x)) :=:: k · dp(p, q)for 
all x EX with k independent ofn, p, or x. Then the attractor A(p) E 1i(X) depends 
continuously on the parameter p E P with respect to the Hausdorff metric h(d). 

In other words, small changes in the parameters will lead to small changes in the 
attractor, provided that the system remains hyperbolic. This is very important be-
cause it tells us that we can continuously control the attractor of an IFS by adjusting 
parameters in the transformations, as is done in image compression applications. It 
also means we can smoothly interpolate between attractors: this is useful for image 
animation, for example. 

Examples & Exercises 
11.3. Construct a one-parameter family of IFS, of the form w 1, w2, w3}, 
where each w; is affine and the parameter p lies in the interval [0, 24]. The attrac-
tor should tell the time, as illustrated in Figure 111.88. A (p) denotes the attractor at 
time p. 

11.4. Imagine a slightly more complicated clockface, generated by using a one-
parameter family of IFS of the form w0, w 1, w2, w 3}, p E [0, 24]. w0 creates 
the clockface, w 1 and w2 are as in Exercise 11.3, and w3 is a similitude that places 
a copy of the clockface at the end of the hour hand, as illustrated in Figure 111.89. 
Then as p goes from 0 to 12 the hour hand sweeps through 360°, the hour hand on 
the smaller clockface sweeps through 720°, and the hour hand on the yet smaller 
clockface sweeps through 1080°, and so on. Thus as p advances, there exist lines 
on the attractor which are rotating at arbitrarily great speeds. Nonetheless we have 
continuous dependence of the image on p in the Hausdorff metric! At what times do 
all of the hour hands point in the same direction? 

11.5. Find a one-parameter family of IFS in whose attractors include the three 
trees in Figure III.90. 

11.6. Run your version of Program 1 or Program 2, making small changes in the 
IFS code. Convince yourself that resulting rendered images "vary continuously" 
with respect to these changes. 

11.7. Solve the following problems with regard to the images (a)-(f) in Fig-., 
ure III.91. Recall that a''just-touching" collage in is one where the transforms 
of the target set do not overlap. They fit together like the pieces of a jigsaw puzzle. 
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Figure 111.88. A one-
parameter family of IFS 
that tells the time! 

Figure 111.89. This 
fractal clockface depends 
continuously on time in 
the Hausdorff metric. 

60° 

30° 

A(2 a.m.) 

, 

2 

A(2.75 a.m.) 

90° 

A(3 a.m.) 
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(a) Find a one-parameter family collage of affine transformations. 
(b) Find a "just-touching" collage of affine transformations. 
(c) Find a collage using similitudes only. What is the smallest number of affine 

transformations in 2 , such that the boundary is the attract or? 
(d) Find a one-parameter family collage of affine transformations. 
(e) Find a "just-touching" collage, using similitudes only, parameterized by the 

real number p. 
(f) Find a collage for circles and disks. 

Figure 111.90. Blowing 
in the wind. Find a one-
parameter family of IFS 
whose attractors include 
the trees shown here. 
The Random Iteration 
Algorithm was used to 
compute these images. 
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Figure 111.91. Classical 
collages. Can you find 
an IFS corresponding to 
each of these classical 
geometrical objects? 

(a) 

3.5 

e 
3 ... 

(c) 

(d) 

(0, 2P ) (P, 2P ) ----------
.. (_P_, P_) ___ .. (2 P, P) 

(0, 0) (e) (2 P, 0) 

(b) 

3.5 ------7 

_ _,/1 

3 

(f) 


