
Chapter IV 

Chaotic Dynamics 
on Fractals 

The Addresses of Points on Fractals 

We begin by considering informally the concept of the addresses of points on the 
attractor of a hyperbolic IFS. Figure IV.92 shows the attractor of the IFS: 

{<C; WI (z) = (0.13 + 0.64i)z, w2(z) = (0.13 + 0.64i)z + 1 }. 

This attractor, A, is the union of two disjoint sets, WI (A) and w2 (A), lying to the 
left and right, respectively, of the dotted line ab. In tum, each of these two sets is 
made of two disjoint sets: 

This leads to the idea of addressing points in terms of the sequences of transfor-
mations, applied to A, which lead to them. All points belonging to A, in the subset 
w I ( w I (A)), are situated on the piece of the attractor that lies below d c and to the left 
of ab, and their addresses all begin 11 .... Clearly, the more precisely we specify ge-
ometrically where a point in A lies, the more bits to the address we can provide. For 
example, every point to the right of ab, below ef, to the left of gh, has an address 
that begins 212 .... In Theorem 2.1 we prove that, in examples such as this one, it is 
possible to assign a unique address to every point of A. In such cases we say that the 
IFS is "totally disconnected." 

Here is a different type of example. Consider the IFS 

1 1 1 1 1 
{<C; WI (z) = 2 z, wz(z) = 2z + 2' w3(z) = 2z + 2i}. 

The attractor, A, of IFS is a Sierpinski triangle with vertices at (0, 0), (1, 0), 
and (0, 1). Again we can. address points on A according to the sequences of trans-
formations that lead to them. This time there are at least three points in A that 
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Figure IV.92. Ad-
dresses of points on an 
attractor. The lines ab, cd, 
ef, and gh are not part of 
the attractor. 

Addresses begin 
22 ... 

f 

have two addresses, because there is a point in each of the sets WI (A) n w2(A), 

w 2(A) n w 3(A), and w3(A) n WI (A) , as illustrated in Figure IV.93. 
On the other hand, some points on the Sierpinski triangle have only one address, 

such as the three vertices (0, 0), (1, 0), and (0, 1). Although the attractor is con-
nected, the proportion of points with multiple addresses is "small," in a sense we 
do not yet make precise. In such cases as this we say that the IFS is "just-touching." 
Notice that this terminology refers to the IFS itself rather than to its attractor. 

Let us look at a third, fundamentally different example. Consider the hyperbolic 
IFS 

1 3 1 
{[0, 1]; 2x, 4x + 4}. 

The attractor is A= [0, 1], but now 
1 1 1 1 

WI(A) n w2(A) = [0, 2] n [4, 1] = [4, 2]; 

so WI (A) n w2(A) is a significant piece of the attractor. The attractor would look 
very different if the overlapping missing. Now observe that every 
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33333 

Find the 

point in [ has at least two addresses. On the other hand, the points 0 and 1 have 
only one address each. Nonetheless, it appears that the proportion of points with 
multiple addresses is large. In such cases we say that the IFS is "overlapping." 

The terminologies ';totally disconnected," "just-touching," and "overlapping" re-
fer to the IFS itself rather than to the attractor. The reason for this is that the same 
set may be the attractor of several different hyperbolic IFS 's. Consider, for example, 

Figure IV.93. Some 
points on this Sierpin-
ski triangle have two 
addresses, while others 
have only one address. 
Overlining on the last 
symbols, in an expres-
sion such as 311 TI, means 
that the overlined symbols 
are repeated endlessly. 
For example, 311 TI = 
31111111111111111 
1111 ... , and 31 ill= 
31123123123123: .. 
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0 1 0 1 

I •I I •I I I 

Figure IV.94. Differ-
ent IFS 's with the same 
attractor provide differ-
ent addressing schemes. 
Here the symbols {0, 1} 
are used in place of { 1, 2} 
for obvious reasons. 

0000 0011.. 0111 0111 I ill 0000 0010 .. 0100 10100 1000 
and and and and 

1000 1000 1100 11000 

Binary addressing of the 
interval (0,1) induced by the 
IFS {[0.1),0.5x,0.5x+0.5} 

Alternative addresses of the 
interval (0.1) induced by the 
IFS {(0,1),0.5x,-0.5x+1} 

the two IFS 's 

and 
1 1 

{[0, 1]; w1(x) = 2x, w2(x) = - 2x + 1}. 

The attractor of each one is the real interval [0, 1]. We can obtain two different 

addressing schemes for the points in [0, 1], as illustrated in Figure IV.94. 

These two IFS are just-touching. However, the IFS 

1 3 1 
{[0, 1]; WI(X) = 2x, W2(x) = 4x + 4} 

is overlapping, while its attractor is also [0, 1]. 

Examples & Exercises 
1.1. Figure IV.95 shows the attractor of an IFS of the form Wn, n = 1, 2, 3}, 

where each of the transformations Wn : 2 ----+ 2 is affine. The addresses of several 

points are given. Find the addresses of a, b, and c. 

1.2. In Figure IV.95 locate the point whose address is 111TI. 

1.3. A quadtree is an addressing scheme used in computer science for addressing 

small squares in the unit square • = {(x1, x2) E 0 s x1 s 1, 0 s x2 s 1} as fol-

lows. The square is broken into four quarters. Points in the first quarter have ad-

dresses that begin 0, points in the second quarter have addresses that begin 1, and 

so on, as illustrated in Figure IV.96. Find an IFS that gives rise to the addressing 

scheme suggested in Figure IV.96. Is this a totally disconnected, just-touching, or 

overlapping IFS? 

1.4. Addresses are assigned to the Sierpinski triangle, as in Figure IV.93. Character-

ize the addresses of the set of points that lie on the outermost boundary, the triangle 

with vertices TI, 22, and 33. 
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-- 2222 

3333 / 

1.5. Characterize the addresses of points belonging to the boundary of the largest 
hole in Figure IV.97. 

1.6. Consider a hyperbolic IFS with condensation set C. Suppose the condensation 
set is itself the attractor of another hyperbolic IFS. Design an addressing scheme for 
the attractor of the IFS with condensation. Can all possible addresses occur? 

1.7. Figure IV.98 shows an "overlapping" IFS attractor, for two affine transforma-
tions in []((2 . Choose one point in each of the marked regions on the attractor. Find the 
first four numbers in two different addresses for each of these points. The first few 
numbers in the addresses of some points on the attractor are included in the figure to 
remove possible ambiguities. 

1.8. * Identify the set of addresses of points on the attractor, A, of a hyperbolic 
IFS with code space. Argue that nearby codes correspond to points on A which are 
nearby. 

1.9. Address the real number 0.7513 in each of the two coding schemes given in 
1 

Figure IV.94. · 

In thinking about the addresses of points on fractals, already we have been led to 

Figure IV.95. Can you 
find the addresses of a, b, 
and c? 

33 32 23 22 

30 31 20 21 

03 02 13 12 

00 01 10 11 

Figure IV.96. Ad-
dresses at depth two in 
a quadtree. 
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Figure IV. 97. Can you 
describe the addresses of 
the points on the bound-
ary of the central white 
region? 

try to compare "how many" points have a certain property to how many have an-
other property. For example, in the case of the addressing scheme on the Sierpinski 
triangle described above, we wanted to compare the number of points with multiple 
addresses to the number of points with single addresses. It turns out that both num-
bers are infinite. Yet still we want to compare their numbers. One way in which this 
may be done is through the concept of countability. 

Definition 1.1 LetS be a set. S is countable if it is empty or if there is an onto 
transformation c : I ---+ S, where I is either one of the sets 

{1}, {1, 2}, {1, 2, 3}, ... , {1, 2, 3, ... , n}, ... , 

or the positive integers {1, 2, 3, 4, ... }. Sis uncountable if it is not countable. 

We think of an uncountable set as being larger than a countable set. 
We are going to make fundamental use of code space to formalize the concept of 

addresses. How many points does code space contain? 

Theorem 1 . 1 Code space on two or more symbols is uncountable. 

Proof We prove it here for the code space on the two symbols {1, 2}. Denote 
an element of code space I: by w = w1w2w3 ... , where each wi E {1, 2}. Define 
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ver appmg 
regions. 
Multiple 
addresses 
are available 

p: {1, 2}-+ {1, 2} by p(1) = 2 and p(2) = 1. Suppose code space is countable. Let 
the counting function be c: {1, 2, 3, ... } -+ :E. Consider the point a E :E defined by 

where an= p((c(n))n), and (c(n))n means the nth symbol of c(n). When does the 
counting function reach a? Never! For example, c(3) =/=-a because their third sym-
bols are different! This completes the proof. 

Examples & Exercises 
1 

1.1 0. The set of integers = {0, ± 1, ±2, ... , } is countable. Define c : N -+ by 
c(z) = (z- 1)/2 if z is odd, c(z) = -z/2 if z is even. 

Figure IV.98. Attrac-
tor of a hyperbolic IFS in 
the overlapping case. In 
the overlapping regions 
multiple addresses are 
available. 
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.. 
1. 11. Prove that a countable set of countable sets is countable. Show that an un-
countable set, take away a countable set, is uncountable. 

1. 12. The rational numbers are countable. A rational number can be written in the 
form pI q, where p and q are integers with q =1- 0. Figure IV.99 shows how to count 
the positive ones, some numbers being counted more than once. Make a rule that 
gets rid of the redundant countings. Also, show how to include the negative rationals 
in the scheme. 

1. 13. Show that a Sierpinski triangle contains countably many triangles. 

1. 14. Let S be a perfect subset of a metric space. Suppose that S contains more than 
one point. Prove that S is uncountable. 

1. 15. Characterize the addresses of the missing pieces in Figure IV.1 00. 

2 Continuous Transformations from Code Space to Fractals 

Definition 2.1 Let {X; w1, w2, ... , wN} be a hyperbolic IFS. The code space as-
sociated with the IFS, ( 'E, de), is defined to be the code space on N symbols 

{ 1, 2, ... , N}, with the metric de given by 

d 
e(w, (N + l)n for all w, a E 'E. 

Our goal is to construct a continuous transformation cp from the code space as-
sociated with an IFS onto the attractor of the IFS. This will allow us to formalize 
our notion of addresses. In order to make this construction we will need two lem-
mas. The first lemma tells us that if we have a hyperbolic IFS acting on a complete 
metric space, but we are only interested in studying how the IFS acts in relation to a 
fixed compact subset of X, then we can treat the IFS as though it were defined on a 
compact metric space. 

Lemma 2.1 Let {X; wn: n = 1, 2, ... , N} be a hyperbolic IFS, where (X, d) is a 
complete metric space. Let K E 1-i(X). Then there exists i< E 'H(X) such that K c K 
and Wn: K-+ K for n = 1, 2, ... , N. In other words, {K; Wn: n = 1; 2, 3, ... , N} 
is a hyperbolic IFS where the underlying space is compact. 

Proof Define W : 'H(X) -+ 'H(X) by 

for all B E 1-i(X). 

To construct K consider the IFS with condensation {X; Wn; n = 0, 1, 2, ... , N}, 
where the condensation map w 0 is associated with the condensation set K. By The-
orem 7.1 in Chapter III the attractor of this IFS belongs to 1i (X). By exercise 9.1 in 
Chapter III it can be written 

K =Closure of (K U W 01 (K) U W 02 (K) U W 03 (K) U ... U won(K) U ...... ). 
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It is readily seen that K c k artd that W(K) c k. This completes the proof. 

The next lemma makes the first step in linking code space to IFS attractors, by 

introducing a certain transformation l/J, which maps the Cartesian product space 

I: x N x X into X. By taking appropriate limits, in Theorem 2.1 below, we will 

eliminate the dependence on N and X to provide the desired connection between 'E 

and X. 

Lemma 2.2 Let {X; wn: n = 1, 2, ... , N} be a hyperbolic IFS of contractivity 

s, where (X, d) is a complete metric space. Let ('E, de) denote the code space 

associated with the IFS. For each a E 'E, n E N, and x E X, define 

l/J(a, n, X)= Wa1 o Wa2 0 ... 0 Wan(X). 

Let K denote a compact nonempty subset of X. Then there is a real constant D such 

that 

d(tjJ(a, m, Xt), l/J(a, n, x2)) DsmAn 

for all a E 'E, all m, n EN, and all x 1, x2 E K. 

Proof Let a, m, n, x 1, and x2 be as stated in the lemma. Construct k from K 

as in Lemma 2.1. Without any loss of generality we can suppose that m < n. Then 

observe that 

where 

Let x3 = ljJ (w, n - m, x2). Then x3 belongs to k. Hence we can write 

d(l/J(a, m, Xt), l/J(a, n, x2)) = d(ljJ(a, m, Xt), l/J(a, m, i3)) 

:S sd(Wa2 o ... 0 Wam(XJ), Wa2 o ... 0 Wam(x3)) 

:S s2d(Wa3 o ... 0 Wam(XI), Wa3 0 ... 0 Wam(X3)) 

:S smd(Xt, X3) :S sm D, 

where D = max{d(x 1, x3): x 1, x3 E K}. Dis finite because k is compact. This com-

pletes the proof. 

Theorem 2.1 Let (X, d) be a complete metric space. Let {X; Wn: n = 1, 2, ... , 

N} be a hyperbolic /FS. Let A denote the attractor of the IFS. Let ('E, de) denote 

the code space associated with the IFS. For each a E 'E, n EN, and x EX, let 

Then 

l/J(a) = lim l/J(a, n, x) 
n---+oo 

Figure IV. 99. How to 
count the positive rational 
numbers. What is c(24)? 
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Figure IV.lOO. Char-
acterize the addresses of 
the missing pieces. 

exists, belongs to A, and is independent of x E X. If K is a compact subset of X, 
then the convergence is uniform over x E K. The function cp : 'E A thus provided 
is continuous and onto. 

Proof Let x EX. Let K E 1t(X) be such that x E K. Construct k as in Lemma 
2.1. Define W: 1t(X) 1t(X) in the usual way. By Theorem 7.1 in Chapter III, W 
is a contraction mapping on the metric space (1t(X), h(d)); and we have 

A= lim {Won(K)}. n-+oo 
In particular {Won(K)} is a Cauchy sequence in Cit, h). Notice that cp(a, n, x) E 
won(K). It follows from Theorem 7.1 in Chapter II that if limn-+oo cp(a, n, x) exists, 
then it belongs to A. 

That the latter limit does exist follows from the fact that, for fixed a E I:, 
{l/J(a, n, is a Cauchy sequence: by Lemma 2.2 

d(cp(a, m, x), cp(a, n, x)) s Dsm!\n for all x E K, 

and the right-hand side here tends to zero as m and n tend to infinity. The uniformity 
of the convergence follows from the fact that the constant D is independent of 
X E K. 

Next we prove that cp : 'E A is continuous. Let E > 0 be given. Choose n so 
that sn D < E, and let a, w E 'E obey 

oo N 
de( a, w) < " = . (N + l)m (N + l)n+l 

Then one can verify that a must agree with w through n terms; that is, a 1 = w1, a2 = 
wz, ... , an = Wn. It follows that for each m n we can write 

d(cp(a, m, x), cp(w, m, x)) = d(cp(a, n, x 1), ¢(a, n, xz)), 
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for some pair x 1, x2 E K. By Lemma 2.2 the right-hand side here is smaller than sn D 
which is smaller than E. Taking the limit as m ·'-+ oo we find 

d(lj>(a), lj>(w)) <E. 

Finally, we prove that l/J is onto. Let a E A. Then, since 

A= lim won({x}), 
n--+oo 

it follows from Theorem 7.1 in Chapter II that there is a sequence {w<n) E I: : n = 
1, 2, 3, ... } such that 

lim l/J(w(n), n, x) =a. 
n--+oo 

Since (1:, de) is compact, it follows that {w(n): n = 1, 2, 3, ... } possesses a conver-
gent subsequence with limit wE 1:. Without loss of generality assume limn--+oo w<n) 
= w. Then the number of successive initial agreements between the components of 
w<n) and w increases without limit. That is, if 

a(n) = number of elements in {j EN: win)= wk for 1 :::; k:::; j}, 

where N = {1, 2, 3, ... }, then a(n)-+ oo as n-+ oo. It follows that 

d(lj>(w, n, x), l/J(w(n), n, x)):::; sa(n) D. 

By taking the limit both sides as ,. , oo we find d ( l/J ( w), a) = 0, which implies 
(j>(w) =a. Hence ljJ: I: -+ A is onto. This completes the proof. 

Definition 2.2 Let {X; Wn, n = 1, 2, 3, ... , N} be a hyperbolic IFS with associ-
ated code space I:. Let l/J : I: -+ A be the continuous function from code space onto 
the attract or of the IFS constructed in Theorem 1. An address of a point a E A is any 
member of the set 

lj>-1(A) ={wE I:: l/J(w) =a}. 

This set is called the set of addresses of a E A. The IFS is said to be totally discon-
nected if each point of its attractor possesses a unique address. The IFS is said to be 
just-touching if it is not totally disconnected yet its attract or contains an open set 0 
such that 

(1) wi(O) n wj(O) = 0Vi, j E {1, 2, ... , N} with i =1 j; 
(2) UN limi=l W;(0) C 0. 

An IFS whose attractor obeys (i) and (ii) is said to obey the open set condition. 
The IFS is said to be overlapping if it is neither just-touching nor disconnected. 

Theorem 2.2 Let {X; wn, n = 1, 2, ... , N} be a hyperbolic IFS with attractor 
A. The IFS is totally dis<;onnected if and only if 

wi(A) n wj(A) = 0Vi, j E {1, 2, ... , N} with i # }. (1) 
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Proof If the IFS is totally disconnected, then each point on its attractor possesses 
a unique address. This implies Equation 3. If the IFS is not totally disconnected, then 
some point on its attractor possesses two different addresses. These must disagree 
at some first place: choose inverse images to get this place out front, to produce a 
contradiction to Equation 3. This completes the proof. 

Examples & Exercises 
2.1. Show that the attractor of the IFS ix, ix + il is just-touching. Classify 
the attractor for the IFS { ! x, 1}. 

2.2. Prove that the attractor of the IFS !x, overlapping. 

2.3. Consider the IFS {[0, 1], Wn(X) = nu/ +-fox, n = 1, 2, 3, ... ' 10} and for the 
associated code space use the symbols {0, 1, 2, ... , 9}. Show that the attractor of 
the IFS is [0, 1] and that it is just-touching. Identify the addresses of points with 
multiple addresses. Show that the address of a point is just its decimal representation. 
Comment on the fact that some numbers have two decimal representations. 

2.4. Prove that the attractor to the IFS {[0, 1]; w 1(x) = w2(x) = + is 
totally disconnected. 

2.5. Prove that the IFS that generates the Black Spleenwort fern, given in Chapter 2, 
is just-touching. 

2.6. Show that the IFS {[0, 1]; w1(x) = 4, w2(x) = il is overlapping. 

We need to understand the structure of code space. Theorem 2.1 told us that the 
code space on N symbols is the mother of all hyperbolic IFS consisting of N maps. 
We will use the following theorem to show that the mother is metrically equivalent 
to a classical Cantor set. 

Theorem 2.3 Let :E denote the code space of theN symbols, {1, 2, ... , N}, and 
define two different metrics on :E by 

d x = 
00 

lxi - Yil 
1 ( 'y) 8 (N + 1)i' 

00 
d Xi- Yi 

2(X, y) = 18 (N + 1)i I. 

ThenCE, d 1) and (:E, d2 ) are equivalent metric spaces. 

Proof We give the proof for the case N = 10. Let x, y E :E be given. Clearly 
we have d2 (x, y) ::S d 1 (x, y). We must show that there is a constant C so that 
C d 1 (x, y) ::S d2 (x, y), where C is independent of x and y. Here we pick C = 
and show that it works. 

We can suppose that for some k E {1, 2, 3, ... }, x1 = Y1, x2 = Y2, ... , Xk-1 = 
Yk-1· Xk 1- Yk· Then 
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I 

NOTHING I 
LANDS 
HERE 

0 1/4 1/2 3/4 

1 Loo lx; - Yd 1 
>- =-d X -19 lli 19 I( ,y). 

n=I 
This completes the proof. 

1 

Figure IV.101. Noth-
ing lands here. 

We now show that code space is metrically equivalent to a totally disconnected 
Cantor subset of [0, 1]. Define a hyperbolic IFS by {[0, 1]; Wn(x) = + N:I : 
n = 1, 2, ... , N}. Thus 

n n + 1 
Wn([O, 1]) = [ N + l, N + l] for n = 1, 2, ... , N, 

as illustrated for N = 3 in Figure IV.l 0 1. 
The attractor for this IFS is totally disconnected, as illustrated in Figure IV.l 02 

for N = 3. 
In the case N = 3, the attractor is contained in [ t, 1]. The fixed points of the three 

transformations w1(x) = ix + i, w2(x) = ix + i, w2(x) = ix t, 1, 
respectively. Moreover, the address of any point on the attractor is exactly the same 
as the string of digits that represents it in base N + 1. What is happening here is 
this. At level zero we begin with all numbers in [0, 1] represented in base (N + 1). 
We remove all those po\nts whose first digit is 0. For example, in the case N = 3 
this eliminates the interval [0, iJ. At the second level we remove from the remaining 
points all those that have digit 0 in the second place. And so on. We end up with 
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Figure IV.102. A spe-
cial ternary Cantor set in 
the making. 

--- --- ---
L ___ 

those numbers whose expansion in base (N + 1) does not contain the digit 0. Now 
consider the continuous transformation ¢ : (:E, de) -+ (A, Euclidean). It follows 
from Theorem 2.3 that the two metric spaces are equivalent. ¢ is the transformation 
that provides the equivalence. Thus, we have a realization, a way of picturing code 
space. 

Examples & Exercises 
2. 7. Find the figure analogous to Figure IV.1 02, corresponding to the case N = 9. 

2.8. What is the smallest number in [0, 1] whose decimal expansion contains no 
zeros? 

We continue to discuss the relationship between the attractor A of a hyperbolic 
IFS {X; w 1, w2 , ... , WN} and its associated code space :E. Let¢: :E-+ X be the 
code space map constructed in Theorem 2.1. Let w = w 1 w2w3w4 ... be an address of 
a point x EA. Then 

is an address of wj(x), for each j E {1, 2, ... , N}. 

Definition 2.3 Let {X, w 1, w2 , •.. , w N} be a hyperbolic IFS with attract or A. 
A point a E A is called a periodic point of the IFS if there is a finite sequence of 
numbers {a(n) E {1, 2, ... , such that 

a= Wa(P) 0 Wa(P-1) 0 ... 0 Wa(l)(a). (2) 

If a E A is periodic, then the smallest integer P such that the latter statement is true 
is called the period of a. 

Thus, a point on an attractor is periodic if we can apply a sequence of Wn 's to it, 
in such a way as to get back to exactly the same point after finitely many steps. Let 
a E A be a periodic point that obeys (2). Let a be the point in the associated code 
space, defined by 

a= a(P)a(P- 1) ... a(l)a(P)a(P- 1) ... a(l)a(P)a(P- 1) ... 

= a(P)a(P- 1) ... a(l). (3) 
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Then, by considering limn--+oo ¢(a, n, a), we see that ¢(a)= a. 

Definition 2.4 A point in code space whose symbols are periodic, as in (3), is 

called a periodic address. A point in code space whose symbols are periodic after a 

finite initial set is omitted is called eventually periodic. 

Examples & Exercises 
2. 9. An example of a periodic address is 

1212121212121212121212121212121212121212121212121212121212 ... , 

where 12 is repeated endlessly. An example of an eventually periodic address is: 

1121111112111121111211112122121121212121212121212121212121 ... , 

where 21 is repeated endlessly. 

2.1 0. Prove the following theorem: "Let {X; w1, w2 , ... , w N} be a hyperbolic IFS 

with attractor A. Then the following statements are equivalent: 

( 1) x E A is a periodic point; 
(2) x E A possesses a periodic address; 
(3) x E A is a fixed point of an element of the semigroup of transformations 

generated by { w 1, w2, ... , w N} ." 

2.11. Show that a point x E [0, 1] is a periodic point of the IFS 

1 1 1 
{[0, 1]; 2x, 2x + 2} 

if and only if it can be written x = pI (2 N - 1) for some integer 0 :::; p :::; 2 N - 1 and 

some integer N E {1, 2, 3, ... }. 

2. 12. Let {X; w 1, w2, ... , w N} denote a hyperbolic IFS with attractor A. Define 

W(S) = when Sis a subset of X. Let P denotethe set of periodic points 

of the IFS. Show that W(P) = P. 

2.13. Locate all the periodic points of period 3 for the IFS + + 
1J. Mark the positions of these points on A. 

2.14. Locate all periodic points of the IFS w1 (x) = 0, w 2(x) = + }. 
Theorem 2.4 The attractor of an IFS is the closure of its periodic points. 

Proof Code space is the closure of the set of periodic codes. Lift this statement to 

A using the code space map 4> : :E --+ A. ( 4> is a continuous mapping from a metric 

space :E onto a metric space A. If S c :E is such that its closure equals :E, then the 

closure of f(S) equals A.) 

Examples & Exercises 
1 

2. 15. Prove that the attractor of a totally disconnected hyperbolic IFS of two or 

more maps is uncountable. 
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2. 16. Under what conditions does the attractor of a hyperbdlic IFS contain uncount-
ably many points with multiple addresses? Do not try to give a complete answer; just 
some conditions: think about the problem. 

2. 17. Under what conditions do there exist points in the attractor of a hyperbolic 
IFS with uncountably many addresses? As in 2.16, do not try to give a full answer. 

2.18. In the standard construction of the classical Cantor set C, described in exer-
cise 1.5 in Chapter III, a succession of open subintervals of [0, 1] is removed. The 
endpoints of each of these intervals belong to C. Show that the set of such interval 
endpoints is countable. Show that C itself is uncountable. C is the attractor of the IFS 
{[0, 1]; + the addresses of the set of interval endpoints in C. 

3 Introduction to Dynamical Systems 

We introduce the idea of a dynamical system and some of the associated terminol-
ogy. 

Definition 3. 1 A dynamical system is a transformation f : X --+ X on a metric 
space (X, d). It is denoted by {X; f}. The orbit of a point x EX is the sequence 
{fon(x) 

As we will discover, dynamical systems are sources of deterministic fractals. The 
reasons for this are deeply intertwined with IFS theory, as we will see. Later we 
will introduce a special type of dynamical system, called a shift dynamical system, 
which can be associated with an IFS. By studying the orbits of these systems we 
will learn more about fractals. One of our goals is to learn why the Random Iteration 
Algorithm, used in Program 2 in Chapter III, successfully calculates the images of 
attractors of IFS. More information about the deep structure of attractors of IFS will 
be discovered. 

Examples & Exercises 
3. 1. Define a function on code space, f : :E --+ :E, by 

f(XIX2X3X4 .. . ) = X2X3X4X5 •... 

Then {:E; f} is a dynamical system. 

3.2. {[0, 1]; f(x) = A.x(l- x)} is a dynamical system for each A. E [0, 4]. We say 
that we have a one-parameter family of dynamical systems. 

3.3. Let w (x) = Ax + t be an affine transformation in 2• Then { 2; w} is a dy-
namical system. 

3.4. Define T : C[O, 1]--+ C[O, 1] by 
1 1 1 1 1 

(Tf)(x) = 2 f(2x) + 2 f(2x + 2). 
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Then { C[O, 1]; T} is a dynamical system. 
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Figure IV. 1 03. An 
example of a "stretch, 
squeeze, and bend" dy-
namical system (Smale 
horseshoe function). 

3.5. Let w: (.-+ C be a Mobius transformation. That is w(z) = (az + b)f(cz +d), 

where a, b, c, d E <C, and (ad -be) ::j:. 0. Then {C; w(z)} is a dynamical system. 

3.6. {[0, 1]; 2xmod1} is a dynamical system. Here 2xmod1 = 2x- [2x], where 
[2x] denotes the greatest integer less than or equal to 2x. 

3. 7. Define a transformation f : • -+ • as illustrated in Figure IV.1 03. { •; f} is a 
dynamical system. 

In dynamical systems theory one is interested in what happens when one follows a 

typical orbit: is there some kind of attractor that usually occurs? Dynamical systems 

become interesting when the transformations involved are not contraction mappings, 
so that a single suffices to produce interesting behavior. The orbit of 
a single point may be a geometrically complex set. Some thought about horizontal 
slices through Figure IV.1 04 will quickly suggest to the inquisitive student that there 
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Figure IV. 1 04. One 
million iterations of a 
small black square in a 
"stretch, squeeze, and 
bend" dynamical system. 
Can you find a relation-
ship to IFS theory? 

is a close relationship between this noncontractive dynamical system and a hyper-
bolic IFS. 

Definition 3.2 Let {X; f} be a dynamical system. A periodic point off is a point 
x EX such that fon(x) = x for some n E {1, 2, 3, ... }. If x is a periodic point off, 
then an integer n such that Jon (x) = x, n E { 1, 2, 3, ... } is called a period of x. The 
least such integer is called the minimal period of the periodic point x. The orbit of 
a periodic point of f is called a cycle of f. The minimal period of a cycle is the 
number of distinct points it contains. A period of a cycle off is a period of a point 
in the cycle. 

Definition 3.3 Let {X; f} be a dynamical system and let x f E X be a fixed point 
off. The point x f is called an attractive fixed point off if there is a number E > 0 so 
that f maps the ball B (x f, E) into itself, and moreover f is a contraction mapping on 
B(x f• E). Here B(x f• E)= {y EX: d(x f• y) E}. The point x f is called a repulsive 
fixed point off if there are numbers E > 0 and C > 1 such that 

d(f(xf), f(y)) Cd(xf, y) for all y E B (x f, E). 

A periodic point of f of period n is attractive if it is an attractive fixed point of 
Jon. A cycle of period n is an attractive cycle of f if the cycle contains an attractive 
periodic point of f of period n. A periodic point of f of period n is repulsive if it 
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Figure IV.105. The 
dynamics of a simple 
Mobius transformation. 
Points spiral away from 
one fixed point and spiral 
in toward the other. What 
happens if the fixed points 
coincide? 

is a repulsive fixed point of Jon. A cycle of period n is a repulsive cycle of f if the 
cycle contains a repulsive periodic point of f of period n. 

Definition 3.4 Let {X, f} be a dynamical system. A point x EX is called an 
eventually periodic point off if !om (x) is periodic for some positve integer m. 

Remark: The definitions given here for attractive and repulsive points are con-
sistent with the definitions we use for metric equivalence and will be used through-
out the text. The definitions used in dynamical systems theory are usually more topo-
logical in nature. These are given later in exercises 5.4 and 5.5. 

Examples & Exercises 
3.8. The point x f = 0 is an attractive fixed point for the dynamical system { i x}, 
and a repulsive fixed point for the dynamical system { 2x}. 

3. 9. The point z = 0 is ah attractive fixed point, and z = oo is a repulsive fixed 
point, for the dynamical system 

{C; (cos 10° + i sin 10°)(0.9)z}. 

J 
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Figure IV. 1 06. Points 
belonging to an orbit of a 
Mobius transformation on 
a sphere. 

Figure IV. 1 07. This 
shows an example of 
a web diagram. A web 
diagram is a means for 
displaying and analyzing 
the orbit of a point x0 E 1R 
for a dynamical system 
(IR, f). The geometrical 
construction of a web 
diagram makes use of the 
graph of f(x). 

Y=X 

... . .. .... ········· 
... . . . . . . . . . . . .. 
. . . . . . . . . . . . . . . 
. . . . .. . . . . . . . . . 

. . . . . . . . . . . . . 
. . . . . . . . . . . . .. 
. . . . . .. 
. . . . . . . . . . . . . . 

A typical orbit, starting from near the point of infinity on the sphere, is shown in 
Figures IV.l 05 and IV.l 06. 

3. 1 0. The point x 1 = 111 ill is a repulsive fixed point for the dynamical system 
{I:; f} where f: I:---+ I: is defined by 
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Show that x = 121212 is a repulsive fixed point of period 2, and that { 1212, 2121 } is 
a repulsive cycle of period 2. 

3.11. The dynamical system {[0, 1]; 4 x (1 - x)} possesses the attractive fixed point 
x f = 0. Can you find a repulsive fixed point for this system? 

There is a delightful construction for representing orbits of a dynamical system 
of the special form { IR{; f (x)}. It utilizes the graph of the function f : IR{ ---+ IR{. We 
describe here how it is used to represent the orbit {xn = fon(x0) of a point 
XoE 

For simplicity we suppose that f: [0, 1]---+ [0, 1]. Draw the square {(x, y): 0 
x:::: 1, 0 y 1} and sketch the graphs of y = f(x) and y = x for x E [0, 1]. 
Start at the point (x0 , x0 ) and connect it by a straight-line segment to the point 
(xo, x1 = f(xo)). Connect this point by a straight-line segment to the point (x1, xi). 
Connect this point by a straight-line segment to the point (x1, x2 = f(x 1)); and con-
tinue. The orbit itself shows up on the 45° line y = x, as the sequence of points 
(xo, xo), (x1, x1), (x2, x2), .. .. We call the result of this geometrical construction a 
web diagram. 

It is straightforward to write computergraphical routines that plot web diagrams 
on the graphics display device of a microcomputer. The following program is written 
in BASIC. It runs without modification on an IBM PC with Color Graphics Adaptor 
and Turbobasic. On any line the words preceded by a ' are comments: they are not 
part of the program. 

Program 1. 
1=3.79 : xn=0.95 

def fnf(xn)=l*Xn*(1-xn) 

screen 1 : cls 
window (0,0)-(1,1) 

for k=1 to 400 
pset(k/400, fnf(k/400)) 
next k 
do 
n=n+1 
y=fnf(xn) 
line (xn,xn)-(xn,y), n 

line (xn,y)-(y,y), n 

xn=y 

'parameter value 3.79, orbit starts 
at 0.95 

'change this function f(x) for other 
dynamical systems. 

'initialize computer graphics 
'set plotting window to 0 < x < 1 , 
0 < y < 1 

'plot the graph of the f(x) 

'the main computational loop 
'increment the counter, $n$ 
'compute the next point on the orbit 
'draw a line from (xn,xn) to (xn,y) 
in color n 

'draw a line segment from (xn,y) to 
(y,y) in color n 

'set xn to be the most recently computed 
point on the orbit 

loop until instat end 'stop running if a key is pressed. 
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Two examples of some web diagrams computed using this program are shown in 
Figure IV.108. The dynamical system used in this case is {[0, 1]; f(x) = 3.79x(l-
x)}. 

Examples & Exercises 
3. 12. Rewrite Program 1 in a form suitable for your own computer environment. 
Use the resulting system to study the dynamical systems {[0, 1]; Ax(l- x)} for A= 
0.55, 1.3, 2.225, 3.014, 3.794. Try to classify the various species of web diagrams 
that occur for this one-parameter family of dynamical systems. 

3.13. Divide [0, 1] into 16 subintervals [0, ft), [ ft• ft), ... , [ [ 1]. Let 
J: [0, 1] [0, 1] be defined by f(x) = Ax(l - x), where A E [0, 4] is a parame-
ter. Compute {Jon(!): n = 0, 1, 2, ... , 5000} and keep track of theJrequency with 
which Jon(!) falls in the kth interval fork= 1, 2, 4, 8, 16, and A= 0.55, 1.3, 2.225, 
3.014, 3.794. Make histograms of your results. 

3. 14. Describe the behavior for the one-parameter family of dynamical system 
U {oo}; Ax}, where A is a real parameter, in the cases (i) A= 0; (ii) 0 < IAI < 1; 

(iii) A= -1; (iv) A= 1; (v) 1 <A < oo. 

3.15. Analyze possible behaviors of Ax+ t}, where Ax+ tis an affine trans-
formation. 

3.16. Study possible behaviors of orbits for the dynamical system {C;Mobius 
transformation}. You should make appropriate changes of coordinates to simplify 
the discussion. 

3. 17. Show that all points are eventually periodic for the slide-and-fold dynamical 
J}, where 

J(x) = { x + 1 -X+ 1 
This system is illustrated in Figure IV.1 09. 

if X ::S 0, 
if X ::: 0. 

3.18. Let {X; w 1, w2, ... , wN} be a hyperbolic IFS. Then {H(X); W} is a dynami-
cal system, where 

W(B) = for all BE H(X). 

Dynamical systems that act on sets in place of points are sometimes called set 
dynamical systems. Show that the attractor of the IFS is an attractive fixed point of 
the dynamical system {1t(X); W}. You should quote appropriate results from earlier 
theorems. 

3. 19. We consider again our two-dimensional code space, having both past and 
future, called the space of shifts (see exercise 1.12 in Chapter II). In this space, the 
operation of the shift transformation is a homeomorphism of the space to itself (it is 
frequently called the shift automorphism). There is a very geometrical interpretation 
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ORDER 

Figure IV. 1 08. Two 
examples of web di-
agrams computed us-
ing Program 1. The dy-
namical system in this 
case is {[0, 1]; j(x) = 
AX(l - x)}, for two dif-
ferent values of A E (0, 4). 
The system corresponding 
to the lower value of A is 
orderly; the other is close 
to being chaotic. 
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Figure IV.109. An or-
bit of the "slide-and-fold" 
dynamical system de-
scribed in example 3.17. 
Can you prove that all 
orbits are eventually peri-
odic? 

Y=l-X 

Y=l+X 

/ 
of the shift automorphism here. We arrive at this by looking at the action of the shift 
transformation with the metric dk with k = N, as in exercise 2.19, Chapter II. To 
simplify the discussion, assume N = 2. The space of shifts is a two dimensional 
code space with points 

on which we put the "Euclidean" metric (see exercise 2.6 in Chapter II), 

The shift transformation here is best described by writing 

(x, y) = ... Y3Y2YI·XtXzX3 .... 

We now shift by moving the dot one place to the right, to get 

T(x, y) = ... YzYtXt.XzX3X4 ... = (xzx3 ... , XtYIY2 .. . ). 

With the metric just mentioned, we can relate it to the square [0, 1] x [0, 1]. Each 
point in this square has a binary expansion in terms of ones and zeros, so that a 
point (x, y) can be written (.x1x2 ... , .y1yz .. . ), with precisely the same symbols 
and metric (Euclidean). The shift operation can now be seen as doing the following: 

stretch x: double x. This shifts the first digit up so that it is in the ones place. 
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Figure IV.110. A sign 
of things to come. 

squeeze y: halve y. This shifts a zero into the first digit and shifts all other digits 
down. 

raise half the interval: If the digit now in the ones place for x is a 1, replace the 
new 0 first digit of y with a 1. This adds a half to y. 

put it on top: If the digit in the ones place for x is a 1, discard it. This brings the 
x values to those between 0 and 1, so this half of the points is put above the 
other half. 

What we have done is stretch the square to twice its width (double x) and half its 
height (halve y ), cut the rectangle into two pieces at x = 1, and put the right half on 
top of the bottom half (ad4 1/2 toy if the new x is greater than 1). This operation 
of stretching out the square, cutting it, and stacking the pieces is called a baker's 
transformation, because it resembles a baker rolling, cutting, and stacking dough (to 
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make pastry, for example). It is identical to the shift transformation on the space of 

shifts so long as the dough remains in distinct layers (unlike IRI.2, Ol # 10). 

Definition 3.5 This transformation is famous because it is the heart of any 

invertible "mixing" function (one has to allow any number of cuts and for uneven 

rolling). A mixing function is a function f such that given any set A (from some 

class of sets; here let's say sets with an interior), and any other set B from the same 

class, there is anN such that fn(A) n B # 0for any n > N. 

The term mixing is appropriate: if A is red and B is blue, then eventually they 

are both somewhat purple (have both red and blue in them). A nice property of this 

mixing business is that there is at least one point in the space such that {fn(x) : n = 
1, 2, ... } is dense, that is, given an open set (), there is an n such that fn (x) E (). 

When f has this property, we say that it has a dense orbit. Tis mixing on the space 

of shifts and on code space, and it has a dense orbit as a result. 

Examples & Exercises 
3.20. Prove that for any code space on N symbols, there is a point a E 

such that a has a dense orbit under the shift transformation, that is {Tn(a) : n = 
1, 2, 3, ... } is dense 

3.21. Show that Tis mixing on code space for the class of open sets. 

4 Dynamics on Fractals: Or How to Compute Orbits by Looking at Pictures 

We continue with the main theme for this chapter, namely dynamical systems on 

fractals. We will need the following result. 

Lemma 4.1 Let {X; Wn, n = 1, 2, ... , N} be a hyperbolic IFS with attractor A. 

If the IFS is totally disconnected, thenfor each n E {1, 2, ... , N}, the transformation 

wn: A--+ A is one-to-one. 

Proof We use a code space argument. Suppose that there is an integer n E 

{1, 2, ... , N} and distinct points a1, a2 E A so that Wn(at) = Wn(a2) =a EA. If a1 

has address w and a2 has address a, then a has the two addresses nw and na. This is 

impossible because A is totally disconnected. This completes the proof. 

Lemma 4.1 shows that the following definition is good. 

Definition 4.1 Let {X; Wn, n = 1, 2, ... , N} be a totally disconnected hyper-

bolic IFS with attractor A. The associated shift transformation on A is the trans-

formation S : A --+ A defined by 

S(a) = w,-;- 1 (a) for a E Wn(A), 

where Wn is viewed as a transformation on A. The dynamical system {A; S} is called 

the shift dynamical system associated with the IFS. 
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Examples & Exercises 
4. 1. Figure IV.111 shows the attractor of tlie IFS 

{ 0.47 ( 0.47 ( + ( 0.47 ( + ( 
Figure IV.111 also shows an eventually periodic orbit {an= for the 

associated shift dynamical system. This ·orbit actually ends up at the fixed point 
¢(2222). The orbit reads a0 = ¢(13132222), a 1 = ¢(31312222), a2 = ¢(132222), 
a3 = ¢(32222), a 4 = ¢(2222), where¢: I: ---+ A is the associated code space map. 
a4 E A is clearly a repulsive fixed point of the dynamical system. Notice how one 
can read off the orbit of the point a0 from its address. Start from another point very 
close to a0 and see what happens. Notice how the dynamics depend not only on A 
itself, but also on the IFS. A different IFS with the same attractor will in general lead 
to different shift dynamics. 

4.2. Both Figures IV.112 and IV.113 show attractors of IFS 's. In each case the 
implied IFS is the obvious one. Give the addresses of the points {an= 
of the eventually periodic orbit in Figure IV.112. Show that the cycle to which the 

Figure IV.111. An 
orbit of a shift dynamical 
system on a fractal. 
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Figure IV.112. This 
orbit ends up in a cycle of 
period 3. 

PERIOD 
THREE 

orbit converges is a repulsive cycle of period 3. The orbit in Figure IV.l13 is either 

very long or infinitely long: why is it hard for us to know which? 

4.3. Figure IV.114 shows an orbit of a point under the shift dynamical system 

associated with a certain IFS w1, w2, w3}, where w1, w2, and w3 are affine 

transformations. Deduce the orbits of the points marked b and c in the figure. 

4.4. Figure IV.115 shows the start of an orbit of a point under the shift dy-

namical system associated with a certain hyperbolic IFS. The IFS is of the fonn 

w 1, w2 , w3 }, where the transformations Wn: affine and the attractor 

is [0, 1]. Sketch part of the orbit of the point labelled bin the figure. (Notice that this 

IFS is actually just-touching: nonetheless it is straightforward to define uniquely the 

associated shift dynamics on 0 n A where 0 is the open set referred to in Definition 

2.2.) 

We can sharpen up the definition of the overlapping IFS with the aid of the mixing 

properties discussed in section 3. Let {X; w1, ... , w N} be a hyperbolic IFS, and 

define the set 

M = U<wi(A) n w j(A)) 
i#j 
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Figure IV.113. A 
chaotic orbit getting 
started. The shift dy-
namics are often wild. 
Why? 

of points in various intersections of the maps of the IFS. Then the following proper-
ties hold: 

open interior: If there is a set 0, open with respect· to A, such that 0 c M, 
then the IFS is overlapping. This allows the IFS to be declared overlapping 
easily in some cases. The proof is not too difficult: Suppose this to be the 
case, namely that M contains an open set 0. Suppose that 0 1 were an open 
set that we thought might satisfy the open set condition for just-touching IFS. 
Then wn(01) n 0 = 0 for all n, since 01 can't contain points in the overlap, 
and maps inside itself. Using the continuous map cp: b--+ A, we know that 
we would then have cp- 1(01) and cp- 1(0) both open sets in code space. But 
Tn(cp- 1(0)) must intersect cp- 1(01) in code space for some n, due to mixing, 
and an address in the intersection corresponds to a point a on the attractor 
such that wn({a} thus intersects 0. Hence 0 1 cannot exist, and the IFS is 
overlapping. 

dense address: Not\ce that in order to prevent the IFS from being just-touching 
in the proof just given, the orbit of cp- 1(M) only needs to be dense in :E 
to end up with points in the image of any open set in A. Consequently, 
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Figure IV. 114. The 
orbit of the point a is 
shown. Can you plot 
the first few points of 
the orbits of b and c? 
Warning! The IFS here is 
not the usual one. See how 
the know ledge of some 
dynamics can imply some 
more! 

Figure IV.115. This 
figure shows a sketch of 
part of an orbit of an 
IFS {[0, 1]; WJ, Wz, W3} 

on its attractor [0, 1]. 
The transformation w 1 : 

[0, 1] [0, 1] is affine for 
i = 1, 2, 3. Sketch part of 
the orbit of b. 

1 

an IFS is overlapping if the orbit of cp-1(M) in code space under the shift 

transformation is dense. 

empty interiors: If the IFS is made up of affine maps, and it "looks" just-

touching, that is, M does not have an interior, then it is just-touching. The 

important property of affine maps used here is that they map boundary points 

to boundary points, and boundary points come from boundary points. 

4.5. The empty interiors property is not general, but is useful when it applies. To 

see why it is restricted, consider the following IFS, made of six translated copies of 

the following map: 
On the interval [-1, 1], let B(x) = Arccos(x), that is, map x to the point directly 

above it on the unit circle. Then take B(x) to the point B(x) -a sin B(x), where 

a E [0, 1/2). Then map the new point on the circle back to [-1, 1] by taking B(x) 

to x' =cos B(x). Now fold the interval over at 0 with the map x'2 , and ensure that it 



5 Equivalent Dynamical Systems 145 

is contractive by dividing by 3. The interval has now been mapped to [0, 1/3]. Call 
this map v(x). Explicitly, we have 

1 
v(x) = 3 cos2(Arccos(x)- sin(Arccos(x)). 

We now form 6 maps WI, ... , w6 by translations and inversions of v(x): 

WI(x) = v(x)- 1 

1 
w3(x) = v(x)- -

3 
1 

ws(x) = v(x) + -
3 

1 
w2(x) = -v(x)- -

3 
1 

w4(x) = -v(x) + -
3 

w6(x) = -v(x) + 1. 

The reader should be able to verify that the attractor of the IPS 

{[-1, 1]; WI, W2, W3, W4, W5, W6} 

is the interval [- 1, 1], and that each of these maps touches any neighbor at a single 
point. There is a point x0(a) such that 

Arccos(xo) - a sin Arccos(x0) = rr /2, 

whose image is the points 

{-1, -1/3, 1/3, 1}, 

and whose endpoints map to { -2/3, 0, 2/3}. By choosing a at different values we 
can move x0 around the interval [ -1/3, 0]. If we pick a E l: to be a dense orbit in 
I; under the shift transformation, we can successively approximate this address for 
xo such that the address of x0 is 3a, and we can do this for each such a E I:. We can 
also do this for a variety of periodic orbits, which are not dense. 

It turns out that for most values of x0 E [ -1/3, 0] (the probability of a value in this 
interval being one of these is 100% ), this IPS is overlapping, although between every 
two values for which it is overlapping, there is a value for which it is just-touching. 
The attractors of this family of IPS are identical, as are the intersection points. 
This is thus both an example of an IPS that has a finite set of intersection points 
and is (sometimes) overlapping, and an example of one that does not go smoothly 
through the success10n from totally disconnected to just-touching to overlapping. 
Small wonder these properties are defined for the IPS and not the attractor; they are 
really properties governing the behavior of addresses in code space. 

5 Equivalent Dynamical Systems 
.. 

Definition 5.1 Two metric spaces (XI, di) and (X2, d2) are said to be topologically 
equivalent if there is a homeomorphism[" XI-+ x2. Two subsets SIc XI and s2 c 
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Figure IV.116. A com-
mutative diagram that es-
tablishes the equivalence 
between the two dynami-
cal systems {X 1; Jd and 
{X2; fz}. The function 
h : X 1 ---* X2 is a home-
omorphism. 

X2 are topologically equivalent, or homeomorphic, if the metric spaces (S1, d1) and 
(S2, d2) are topologically equivalent. S1 and S2 are metrically equivalent if (SI, d1) 

and (S2 , d2) are equivalent metric spaces. 

The Cantor set and code space, discussed following Theorem 2.3 in Chapter IV, 
are metrically equivalent. Theorem 8.5 in Chapter II tells us that iff: X1 X2 is 
a continuous one-to-one mapping from a compact metric (X1, d1) onto a compact 
metric space (X2, d2 ) then f is a homeomorphism. So by means of the code space 
mapping </> : :E A (Theorem 2.1) one readily establishes that the attractor of a 
totally disconnected hyperbolic IFS is topologically equivalent to a classical Cantor 
set. 

Topological equivalence permits a great deal more "stretching" and "compres-
sion" to take place than is permitted by metric equivalence. Later we will define a 
quantity called the fractal dimension. The fractal dimension of a subset of a metric 
space such as ([R?.2 , Euclidean) provides a measure of the geometrical complexity of 
the set; it measures the wildness of the set, and it may be used to predict your ex-
citement and wonder when you look at a picture of the set. We will show that two 
metrically equivalent sets have the same fractal dimension. If they are merely topo-
logically equivalent, their fractal dimensions may be different. 

With the naturally implied metrics, [0, 1] is homeomorphic to [0, 2]. • is homeo-
>"'. ·{: 

morphic to •. What is is even homeomorphic to 

homeomorphic to 
In fractal geometry we are especially interested in the geometry of sets, and in the 

way they look, when they are represented by pictures. Thus we use the restrictive 
condition of metric equivalence to start to define mathematically what we mean 
when we say that two sets are alike. However, in dynamical systems theory we are 
interested in motion itself, in the dynamics, in the way points move, in the existence 
of periodic orbits, in the asymptotic behavior of orbits, and so on. These structures 
are not damaged by homeomorphisms, as we will see, and hence we say that two 
dynamical systems are alike if they are related via a homeomorphism. 

Definition 5.2 Two dynamical systems {XI; fd and {X2; /2} are said to be 
equivalent, or topologically conjugate, if there is a homeomorphism e : X I x2 

such that 

!I (XI)= e-I 0 h 0 B(XJ) for all XI E XJ, 

/2(x2) = e 0 !I 0 e- 1(x2) for all X2 E X2. 

In other words, the two dynamical systems are related by the commutative diagram 
shown in Figure IVJ16. 

The following theorem expresses formally what should already be clear intu-
itively from our experience with shift dynamics on fractals. 

l 
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Theorem 5. 1 Let {X; WI, w2, ... , w N} be a totally disconnected hyperbolic IFS 
and let {A; S} be the associated shift dynamical system. Let 'E be the associated code 
space of N symbols and let T : :E ---+ :E be defined by 

Then the two dynamical systems {A; S} and {:E; T} are equivalent. The homeomor-
phism that provides this equivalence is ¢: :E ---+ A, as defined in Theorem 4.2.1. 
Moreover, {ai, a2, ... , ap} is a repulsive cycle of period p for S if, and only if, 
{</>(ai), ¢(a2), ••• , ¢(ap)} is a repulsive cycle of period p forT. 

Examples & Exercises 
5.1. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor-
phism that provides this equivalence be denoted by() :XI ---+ X2. Show that 

{XI, X2, ••• , Xp} 

is a cycle of period p for {X I; [I} if and only if 

is a cycle of period p for {X2; [2}. Suppose that {xi, x2, ••• , Xp} is an attractive cycle 
for fi· Show that this does not imply that {O(xi), ... , ()(xp)} is an attractive cycle for 
h· 
5.2. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor-
phism that provides this equivalence be denoted by () : X I ---+ X2. Let { ftn (x)} be 
an eventually periodic orbit of [I. Show that is an eventually peri-
odic orbit of [2. 

5.3. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor-
phism that provides this eql:ivalence be denoted by () :XI ---+ X2. Let this homeo-
morphism be such as to make the two spaces (XI, di) and (X2, d2) metrically equiva-
lent. Construct an example where x f E X I is a repulsive fixed point of the dynamical 
system {XI, fd yet ()(x f) is not a repulsive fixed point of {X2, d2}. 

5.4. Let {XI; fd and {X2; [2} be equivalent metric spaces. Let a homeomorphism 
that provides their equivalence be denoted by () :XI ---+ x2. Let X f E XI be a fixed 
point of [I . Suppose there is an open set 0 that contains x f and is such that x E 0 
implies limn-+oo ftn (x) = x f. Show that there is an open neighborhood of() (x f) in 
x2 with a similar property. 

5.5. Our definition of attractive and repulsive fixed points and cycles, Definition 
3.4, has the feature tqat it depends heavily on the metric. It is motivated by the 
situation of analytic dynamics where small disks are almost mapped into disks. 
Show how one can use exercise 5.4 to make a definition of an attractive cycle in 
such a way that attractiveness of cycles is preserved under topological conjugacy. 
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Figure IV. 117. Attrac-
tive and repulsive fixed 
points in a web diagram 
for a differentiable dy-
namical system. Analyze 
the? points. 

5.6. Let A c !RL Then a function f : A A is differentiable at a point x 0 E A if 

lim { f(x)- f(xo)} 
X- Xo 

exists. If this limit exists it is denoted by f'(xo). w1, w2, ... , WN} be a to-
tally disconnected hyperbolic IFS acting on the metric space Euclidean). Sup-
pose that, for each n = 1, 2, ... , N, Wn (x) is differentiable, with I (x) I > 0 for all 
x E that the associated shift dynamical system {A; S} is such that Sis dif-
ferentiable at each point x0 E A and, moreover, IS'(xo)l > 1 for all x EA. 

5.7. f} g} be equivalent dynamical systems. Let a homeomorphism 
that provides their equivalence be denoted by f) : If f) (x) is differentiable for 
all x E the dynamical systems are said to be diffeomorphic. Prove that a 1 is 
an attractive fixed point off if and only if fJ(a 1) is an attractive fixed point of g. 

5.8. Let f} be a dynamical system such that f is differentiable for all x E !It 
Consider the web diagrams associated with this system. Show that the fixed points 
off are exactly the intersections of the line y = x with the graph y = f(x). Let a 
be a fixed point of f. Show that a is an attractive fixed point of f if and only if 
1/'(a)l < 1. Generalize this result to cycles. Note that if {a1, a2, ... , ap} is a cycle 
of period p, then fx (f 0 P(x)lx=a1 = f'(ai)f'(a2) ... f'(ap). Assure yourself that the 
situation is correctly summarized in the web diagram shown in Figure IV.117. 

5.9. Consider the dynamical system {[0, 1]; f(x)} where 
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{ 
1 - 2x when x E [0, 4 ], 

f(x) = 
2x - 1 when x E [ 4, 1]. 

Consideralsothejust-touchingiFS {[0, 1], 4x + 4, -4x + 4l. Showthatitispossi-

ble to define a "shift transformation," S, on the attractor, A, of this IFS in such a way 

that {[0, 1]; S} and {[0, 1]; f(x)} are equivalent dynamical systems. To do this you 

should define S : A A in the obvious manner for points with unique addresses; 

and you should make a suitable definition for the action of S on points with multiple 

addresses. 

5. 1 0. Let { 2; w 1' w2' W3} denote a one-parameter family of IFS, where 

Let the attractor of this IFS be denoted by A(p). Show that A(O) is a Cantor set 

and A (I) is a Sierpinski triangle. Consider the associated family of code space maps 

lf> (p) : I; A (p). Show that lf> (p) (a) is continuous in p for fixed a E I;; that is 

lf>(p)(a) : [0, 1] is a continuous path. Draw some of these paths, including 

ones that meet at p = 1. Interpret these observations in terms of the Cantor set be-

coming "joined to itself" at various points to make a Sierpinski triangle, as suggested 

in Figure IV.118. 
Since the IFS is totally disconnected when p = 0, lf> (p = 0) : I: A (0) is in-

vertible. Hence we can define a continuous transformation () : A(O) A(l) by 

8(x) = lf>(p = 1)(l/>-1(p = O)(x)). Show that if we define a set J(x) = {y E A(O): 

8(y) = x} for each x E A (I), then J(x) is the setofpoints in A(O) whose associated 

paths meet at x E A(1) when p = 1. Invent shift dynamics on paths. 

6 The Shadow of Deterministic Dynamics 

Our goal in this section is to extend the definition of the shift dynamical system 

associated with a totally disconnected hyperbolic IFS to cover the just-touching and 

overlapping cases. This will lead us to the idea of a random shift dynamical system 

and to the discovery of a beautiful theorem. This theorem will be called the Shadow 

Theorem. 1 
Let {X; w1, w2, ... , wN} denote a hyperbolic IFS, and let A denote its attractor. 

Assume that Wn : A A is invertible for each n = 1, 2, ... , N, but that the IFS is 
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Figure IV.118. Con-
tinuous transformation of 
a Cantor set into a Sierpin-
ski triangle. The inverse 
transformation would in-
volve some ripping. 

_ .... ..... ... _ .. _ .. ....... .... 

A(O.S) 
_ .. ... .... ..... ... _...... _,...,-"· 

--- A(0.25) 

- -- --- A(O) --- --- ---
.xi- x2 

.... :: .. 
.. .. _ ....... _ ... ...... _ ... 

_.. . .._, _ ... -:\ . 
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Figure IV.119. The 
two possible shift dynam-
ical systems associated 
with the just-touching IFS 
{[0, 1]; + are 
represented by the two 
possible graphs of S(x). 
"Most" orbits are unaf-
fected by the difference 
between the two systems. 

not totally disconnected. We want to define a dynamical system {A; S} analogous to 
the shift dynamical system defined earlier. Clearly, we should define 

when X E Wn(A), but X¢ Wm(A) form -=j:.n, 

for each n = 1, 2, ... , N. 
However, at least one of the intersections wm(A) n wn(A) is nonempty for some 

m -=f. n. One idea is simply to make an assignment of which inverse map is to be 
applied in the overlapping region. For the case N = 2 we might define, for example, 

S(x) = { w1 1(x) whenx E w1(A), 
w2 1(x) whenx E A\ w 1(A). 

In the just -touching case the assignment of where S takes points that lie in the 
overlapping regions does not play a very important role: only a relatively small 
proportion of points will have somewhat arbitrarily specified orbits. We look at some 
examples, just to get the flavor. 

Examples Be Exercises 
6. 1. Consider the shift dynamical systems associated with the IFS 

1 1 1 
{[0, 1]; 2x, 2x + 2 }. 

We have S(x) = 2x for x E [0, 4) and S(x) = 2x- 1 for x E (4, 1]. We can define 

the value of S(4) to be either 1 or 0. The two possible graphs for S(x) are shown in 
Figure IV.l19. The only points x E [0, 1] =A whose orbits are affected by the defi-
nition are those rational numbers whose binary expansions end ... 01TI or ... 1000, 
the dyadic rationals. 

6.2. Show that if we follow the ideas introduced above, there is only one dynami-
cal system {A; S} that can be associated with the just-touching IFS {[0, 1]; -4x + 
4, 4x}. The key here that w1 1(x) = w21(x) for all x E w1(A) n w2(A). 

6.3. Consider some possible "shift" dynamical systems {A; S} that can be associ-
ated with the IFS 
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Figure IV. 120. Two 
possible shift dynamical 
systems that can be associ-
ated with the overlapping 
IFS {[0, 1]; 4x, + il· 
In what ways are they 
alike? 

0 

1 1 1 1 i 
. {C; 2z, 2z + 2' 2z + 2 }. 

0 

The attractor, £, is overlapping at the three points a = w I ( £) n w2 ( £), b = 
w 2(£) n w3(£), and c = w3(£) n WI(£). We might define S(a) = w!I(a) or 
w2I(a), S(b) = w2 1(b) or w3 1(b), and S(c) = w3I(c) or w!I(c). Show that re-
gardless of which definition is made, the orbits of a, b, and care eventually periodic. 

6.4. Consider a just-touching IFS of the form WI, w2 , w3} whose attractor is 
an equilateral Sierpinski triangle £. Assume that each of the maps is a simili-
tude of scaling factor 0.5. Consider the possibility that each map involves a rota-
tion through oo, 120°, or 240°. The attractor, £, is overlapping at the three points 
a= w1 (£) n w2(£), b = w2(£) n w3(£), and c = w3(£) n WI(£). Show that it 
is possible to choose the maps so that w!I(a) = w2 1(a), w2I(b) = w3 1(b), and 
w3I(c) = w!I(c). 

6.5. Is code space on two symbols topologically equivalent to code space on three 
symbols? Yes! Construct a homeomorphism that establishes this equivalence. 

6.6. Consider the hyperbolic IFS { b; t 1, t2, ... , fN}, where b is code space on N 
symbols {1, 2, ... , N} and 

for all a E b. 

Show that the associated shift dynamical system is exactly {b; T} defined in Theo-
rem 4.5.1. Can two such shift dynamical systems be equivalent for different values 
of N? To answer this question consider how many fixed points the dynamical system 
{b; T} possesses for different values of N. 

6.7. Consider the overlapping hyperbolic IFS {[0, 1]; + Compare the 
two associated shift dynamical systems whose graphs are shown in Figure IV.120. 
What features do they share in common? 

6.8. Demonstrate that code space on two symbols is not metrically equivalent to 
code space on three symbols. 

In considering exercises such as 6. 7, where two different dynamical systems are 
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OVERLAPPING 
NON-OVERLAPPING NON-OVERLAPPING 

Figure IV.121. A par-
tially random and par-
tially deterministic shift 
dynamical system as-
sociated with the IFS 
{[0, 1); 

1 

0 
UNIQUE 

DYNAMICS 
RANDOM 

DYNAMICS 
UNIQUE 

DYNAMICS 

1 

associated with an IPS in the overlapping case, we are tempted to entertain the idea 
that no particular definition of the shift dynamics in the overlapping regions is to 
be preferred. This suggests that we define the dynamics in overlapping regions in 
a somewhat random manner. Whenever a point on an orbit lands in an overlapping 
region we should allow the possibility that the next point on the orbit is obtained by 
applying any one of the available inverse transformations. This idea is illustrated in 
Figure IV.l21, which should be compared with Figure IV.120. 

Definition 6.1 Let {X; WI, w2} be a hyperbolic IFS. Let A denote the attractor 

of the IFS. Assume that both WI: A--+ A and wz: A--+ A are invertible. A sequence 
of points in A is called an orbit of the random shift dynamical system 
associated with the IFS if 

when Xn E WI (A) and Xn f/_ WI (A) n Wz(A), 

{ 

w!I(Xn) 
Xn+I = W2I(Xn) when Xn E Wz(A) and Xn f/_ WI (A) n Wz(A), 

one of {w!I(xn), w2I(xn)} when Xn E WI(A) n Wz(A), 

for each n E {0, 1, 2, ... }. We will use the notation Xn+I = S(xn) although there may 
be no well-defined transformation S : A --+ A that makes this true. Also we will write 

{A; S} to denote the collection of possible orbits defined here, and we will call {A; S} 

the random shift dynamical system associated with the IFS. 
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Notice that if WI (A) n w2(A) = 0 then the IFS is totally disconnected and the 

orbits defined here are simply those of the shift dynamical system {A; S} defined 

earlier. 
We now show that there is a completely deterministic dynamical system acting 

on a higher-dimensional space, whose projection into the original space X yields the 

"random dynamics" we have just described. Our random dynamics are seen as the 

shadow of deterministic dynamics. To achieve this we tum the IFS into a totally 

disconnected system by introducing an additional variable. To keep the notation 

succinct we restrict the following discussion to IFS 's of two maps. 

Definition 6.2 The lifted IFS associated with a hyperbolic IFS {X; WI, w2} is 

the hyperbolic IFS {X x :E; WI, w2}, where :E is the code space on two symbols 

{1, 2}, and 

WI (x, a)= (wi (x), la) 

wz(x, a)= (wz(x), 2a) 

for all (x, a) EX x :E; 

for all (x, a) EX x :E. 

What is the nature of the attractor A c X x :E of the lifted IFS? It should be clear 

that 

A= {x E A: (x, a) E A} and :E ={a E :E: (x, a) E A}. 
In other words, the projection of the attractor of the lifted IFS into the original space 

X is simply the attractor A of the original IFS. The projection of A into :E is 'E. 

Recall that :E is equivalent to a classical Cantor set. This tells us that the attractor of 

the lifted IFS is totally disconnected. 

Lemma 6.1 Let {X; WI, w2} be a hyperbolic IFS with attractor A. Let the two 

transformations WI : A--+ A and wz: A --+ A be invertible. Then the associated 

lifted IFS is hyperbolic and totally disconnected. 

Definition 6.3 Let {X; WI, w2} be a hyperbolic IFS. Let the two transformations 

WI : A --+ A and wz : A --+ A be invertible. Let A denote the attractor of the associ-

ated lzfted IFS. Then the shift dynamical system {A; S} associated with the lifted IFS 

is called the lifted shift dynamical system associated with the IFS. 

Notice that 

S(x, a)= T(a)) for all(X, a) E A, 
where 

Theorem 6.1 [(The Shadow Theorem).] Let {X; WI, wz} be a hyperbolic IFS of 

invertible transformations WI and wz and attractor A. Let be any orbit of the 

associated random shift dynamical system {A; S} . Then there is an orbit {in}:o of 

the lzfted dynamical system {A; S} such that the first component of Xn is Xn for all n. 
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SEEN 
FROM 
THE 
SIDE 
THE 
SET 
IS 
TOTALLY 
DISCONNECTED 

LIGHT 

Cantor set of 
infinitesimal 

leaflets 
grouped 
in fours 

Each "leaflet" 
is a microcosm 
of the whole 

·· leaflet stack 

/ THE SHADOW OF THE CANTOR SET 
IS A LEAF, THE ATTRACTOR OF AN IFS. 

We leave the proofs of Lemma 6.1 and Theorem 6.1 as exercises. It is fun, how-
ever, and instructive to look in a couple of different geometrical ways at what is 
going on here. 

Examples & Exercises 
6.9. Consider the IFS { C; w 1 (z), w2(z), w3(z), w4(z)} where, in complex notation, 

Wt (z) = (0.5)(cos 45o - -J=-1 sin 45°)Z + (0.4- 0.2-J=-1), 

w2(z) = (0.5)(cos 45° + -J=-1 sin 45°)Z- (0.4 + 0.2-J=-1), 

W3(z) = (0.5)z + -J=-1(0.3), 

W4(z) = (0.5)z- -J=-1(0.3). 

A sketch of its attractor is included in Figure IV. 122. It looks like a maple leaf. The 
leaf is made of four overlapping leaflets, which we think of as separate entities, at 
different heights "above" the attractor. In tum, we think of each leaflet as consisting 

of four smaller leaflets, again at different heights. One quickly gets the idea: one 
ends up with a set of heights distributed on a Cantor set in such a way that the 
shadow of the whole collection of infinitesimal leaflets is the leaf attractor in the 
C plane. The Cantor set is essentially I:. The lifted attractor is totally disconnected; 
it supports deterministic shift dynamics, as illustrated in Figure IV.123. 

Figure IV.122. The lift 
of the overlapping leaf 
attractor is totally dis-
connected. Deterministic 
shift dynamics become 
possible. See also Fig-
ure IV.l23. 
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Figure IV. 123. A pic-
ture of the Shadow The-
orem. Deterministic dy-
namics on a totally discon-
nected dust has a shadow 
that is dancing random 
shift dynamics on a leaf 
attractor. 

A 

/ 
2 

DETERMINISTIC 
SHIFT DYNAMICS 
ON THE 
LIFTED 
lEAF 

RANDOM 
SHIFT DYNAMICS 
ON THE lEAF 

6. 10. Consider the overlapping hyperbolic IFS { !R?.; i x, x + We can lift this to 

the hyperbolic IFS {!R?.2 ; w1(x), w2(x)}, where 

The attractor A of this lifted system is shown in Figure IV.124, which also 

shows an orbit of the associated shift dynamical system. The shadow of this orbit 

is an apparently random orbit of the original system. The Shadow Theorem asserts 

that any orbit of a random shift dynamical system associated with the IFS 

{ !R?.; i x, x + is the projection, or shadow, of some orbit for the shift dynamical 
system associated with the lifted IFS. 

6. 11 . As a compelling illustration of the Shadow Theorem, consider the IFS 

1 3 1 
{IR?.; 2x, 4x + 4}. 

Let us look at the orbits of the shift dynamical system specified in the 

left-hand graph of Figure IV.120. In this case we always choose S(x) = w21(x) 

in the overlapping region. What orbits of the lifted system, described in 

exercise 6.7, are these orbits the shadows of? Look again at Figure IV.124! Define 
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t 
y 

A looks like 
a Classical 
Cantor Set 
when seen 
from the 
side. 

OVERLAPPING 
REGION 

A 

the top of A as 

Atop= {(x, y) E A: (z, y) E A=} z ::=:: x, andy E [0, 1]}. 

Notice that S: Atop· It is easy to see that there is a one-to-one correspon-
dence between orbits of the lifted system {Atop; S} and orbits of the original system 
specified through the left-hand graph of Figure IV.120. Indeed, 

{ (xn, Yn)} :,0 is an orbit of the lifted system and (xo, Yo) E Atop 

is an orbit of the left-hand graph of Figure IV.120 

6.12. Draw some pictures to illustrate the Shadow Theorem in the case of the just-
touching IFS {[0, 1]; + 
6.13. Illustrate the Shadow Theorem using the overlapping IFS {[0, 1]; + 

x + i}. Find an orbit of period 2 whose lift has minimal period 4. Do there exist 
periodic orbits whose lifts are not periodic? 

6.14. Prove Lemma 6.1. 

6. 15. Prove Theorem 6.1. 

Figure IV.124. The 
Shadow Theorem asserts 
that the random shift 
dynamical system orbit on 
the overlapping attractor 
A is the shadow of a 
deterministic orbit on A. 
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6.16. The IFS p::;; w1(a), ... , WN(a)} given by 

Wn(a) = na 

for each n = 1, 2, ... , N, has an interesting lift. Show that the lift of this IFS, with 
a suitably defined inverse, is the shift automorphism on the space of shifts and 
therefore equivalent to the baker's transformation. 

6. 1 7. In section 5 it was shown that the associated shift dynamical system of any 
totally disconnected IFS is equivalent to the shift transformation on code space. 
Then we may replace the second map in the lift for the Shadow Theorem with such 
a totally disconnected IFS. That is, we could take a map like the leaf shown in 
Figures IV.122 and IV.123, and define the map 

{IW.2 X A; WI(X, y), ... W4(X, y)}, 

where wi = (wj1(x, y), vi(x, y)), where vi are the maps of the totally disconnected 
IFS 

Since this IFS produces an attractor that is totally disconnected, and therefore a copy 
of code space, the resulting lift is totally disconnected. What would a rendition of the 
lifted system look like if the maple leaf were lifted using a totally disconnected tree? 

7 The Meaningfulness of Inaccurately Computed Orbits Is Established by 
Means of a Shadowing Theorem 

Let {X; w 1, w2 , .•• , w N} be a hyperbolic IFS of contractivity 0 < s < 1. Let A de-
note the attractor of the IFS, and assume that Wn A is invertible for each 
n = 1, 2, ... , N. If the IFS is totally disconnected, let {A; S} denote the associated 
shift dynamical system; otherwise let {A; S} denote the associated random shift dy-
namical system. Consider the following model for the inaccurate calculation of an 
orbit of a point x0 E A. This model will surely describe the reader's experiences 
in computing shift dynamics directly on pictures of fractals. Moreover, it is a rea-
sonable model for the occurrence of numerical errors when machine computation is 
used to compute an orbit. 
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Let an exact orbit of the point Xo E A be denoted by where Xn = son(xo) 
for each n. Let an approximate orbit of the point x0 E A be denoted by where 
io = x0. Then we suppose that at each step there is made an error of at most () for 
some 0 ,:::: () < oo; that is, 

forn = 0, 1, 2, .... 

We proceed to analyze this model. It is clear that the inaccurate orbit will 
usually start out by diverging from the exact orbit at an exponential rate. 
It may well occur "accidentally" that d(xn, Xn) is small for various large values 
of n, due to the compactness of A. But typically, if d(xn, Xn) is small enough, 
then d (xn+ j, Xn+ j) will again grow exponentially with increasing j. To be precise, 
suppose d(i1, S(i0)) = () and that we make no further errors. Suppose also that for 
some integer M, and some integers a 1, a 2 , ... , aM E {1, 2, ... , N}, we have 

Xn and Xn E WaJA), for n = 0, 1, 2, ... , M. 

Moreover, suppose that 

- 1( ) d - - 1(- ) o: 0 1 2 M Xn+1 =Wan Xn an Xn+1 =Wan Xn , 10f n = , , , ... , . 

Then we have 

d(xn+1· Xn+1) s-ne, for n = 0, 1, 2, ... , M. 

For some integer J > M it is likely to be the case that 

XJ+1 = wa- 1(xn) and Xn+1 = w:=- 1(xn), for some a1 =f. Of 
J a, 

Then, without further assumptions, we cannot say anything more about the correla-
tion between the exact orbit and the approximate orbit. Of course, we always have 
the error bound 

d(xn, Xn) :S diam(A) = max{d(x, y): x E A, yEA}, for all n = 1, 2, 3, .... 

Do the above comments make the situation hopeless? Are all of the calculations 
of shift dynamics we have done in this chapter without point because they are riddled 
with errors? No! The following wonderful theorem tells us that however many errors 
we make, there is an exact orbit that lies at every step within a small distance of our 
errorful one. This orbit shadows the errorful orbit. This type of theorem is extremely 
important in dynamics, and in any class of dynamical systems that has one (such as 
IFS) behavior that can be accurately analyzed using graphics on computers. Here we 
are use the word "shadows" in the sense of a secret agent who shadows a spy. The 
agent is always just out of sight, not too far away, usually not too close, but forever 
he follows the spy. 

Theorem 7.1 The Shadowing Theorem. Let {X; Wj' Wz, ... ' w N} be a hy-
perbolic IFS of s, where 0 < s < 1. Let A denote the attractor of the 
IFS and suppose that each of the transformations Wn : A ---+ A is invertible. Let 
{A; S} denote the associated shift dynamical system in the case that the IFS is totally 
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disconnected; otherwise let {A; S} denote the associated random shift dynamical 
system. Let C A be an approximate orbit of S, such that 

for all n = 0, 1, 2, 3, ... , 

for some fixed constant() with 0 () diam(A). Then there is an exact orbit {xn = 
some Xo E A, such that 

- s() 
d(xn+1• Xn+1) (1 _ s) for all n = 0, 1, 2, .... 

Proof As usual we exploit code space! For n = 1, 2, 3, ... , let an E {1, 
2, ... , N} be chosen so that w;;,/, w;;/, ... , is the actual sequence of inverse 
maps used to compute S(x0 ), S(x1), S(x2 ), .. .. Let 4>: denote the code space 
map associated with the IFS. Then define 

xo = 4>(a1a2a3 .. . ). 

Then we compare the exact orbit of the point x0 , 

{Xn = Son(Xo) cj>(an+1an+2 · · 

with the errorful orbit 
Let M be a large positive integer. Then, since XM and S(.XM_1) both belong to A, 

we have 

d(S(xM-1), S(xM_1) diam(A) < 00. 

Since S(xM-l) and S(xM-d are both computed with the same inverse map it 
follows that 

Hence 
d(S(xM-2), S(.XM-2)) = d(XM-1· S(.XM-2)) 

d(xM-1· .xM-d + d(.XM-1. sc.xM-2)) 
() + s diam(A); 

and repeating the argument used above we now find 

d(XM-2· XM-2)) .S s(() + s diam(A)). 

Repeating the same argument k times we arrive at 

d(xM-k. XM-k) s() + s2() + · · · + sk- 1() + sk diam(A). 

Hence for any positive integer M and any integer n such that 0 < n < M, we have 

d(xn, Xn) s() + s2() + · · · + sM-n-1() + sM-n diam(A). 

Now take the limit of both sides of this equation as M oo to obtain 
s() 

d(xn, Xn) s()(l + s + s2 + · · ·) = ---, for all n = 1, 2, .... 
(1- s) 

This completes the proof. 
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Examples & Exercises 
7.1. Let us apply the Shadowing Theorem to an orbit on the Sierpinski triangle, 
using the random shift dynamical system associated with the IFS 

1 1 1 1 i 
{C; 2z, 2z + 2' 2z + 2}. 

Since the system is just-touching we must assign values to the shift transformation 
applied to the just-touching points. We do this by defining 

S(x1 + ixz) = 2xt mod 1 + i (2xz mod 1). 

We consider the orbit of the point x0 = (0.2147, 0.0353). We compute the first 11 
points on the exact orbit of this point, and compare it to the results obtained when a 
deliberate error()= 0.0001 is introduced at each step. We obtain: 

Errorful 
io = (0.2147, 0.0353) 
XI= (0.4295, 0.0705) 
i2 = (0.8591, 0.1409) 
i3 = (0.7183, 0.2817) 
i4 = (0.4365, 0.5635) 
is = (0.8731, 0.1269) 
i6 = (0.7463, 0.2537) 
i1 = (0.4927, 0.5073) 
i 8 = (0.9855, 0.0145) 
i 9 = (0.9711, 0.0289) 
iw = (0.9423, 0.0577) 

Exact 
S00 (io) = (0.2147, 0.0353) 
soi(io) = (0.4294, 0.0706) 
S02 (io) = (0.8588, 0.1412) 
S03 (io) = (0.7176, 0.2824) 
S04 (io) = (0.4352, 0.5648) 
S05 (io) = (0.8704, 0.1296) 
S06 (io) = (0.7408, 0.2592) 
S07 (io) = (0.4816, 0.5184) 
S08 (io) = (0.9632, 0.0368) 
S09 (io) = (0.9264, 0.0736) 
S010 (io) = (0.8528, 0.1472) 

Notice how the orbit with errors diverges from the exact orbit of x0 . Nonetheless, 
the shadowing theorem asserts that there is. an exact orbit {xn} such that 

1 

d(Xn, Xn) = 0.0001, 
1- 2 

where d ( ·, ·) denotes the Manhattan metric. This really seems unlikely; but it must 
be true! an example of such a shadowing orbit, also computed exactly. 

Exact Shadowing Orbit Xn = son (xo) 
x0 = (0.21478740234375, 0.03521259765625) 
XI= (0.4295748046875, 0.0704251953125) 
X2 = (0.8591496093750, 0.1408503906250) 
X3 = (0.7182992187500, 0.2817007812500) 
X4 = (0.4365984375000, 0.5634015625000) 
x5 = (0.8731968750000, 0.1268031250000) 
X6 = (0.7463937500000,fl.2536062500000) 
X7 = (0.4927875000000, 0.5072125000000) 
Xg = (0.9855750000000, 0.0144250000000) 

d(Xn, Xn):::: 0.0001 
0.00009 
0.00008 
0.00005 
0.000001 
0.0001 
0.0001 
0.0001 
0.00009 
0.00008 
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Figure IV.125. The 
Shadowing Theorem tells 
us there is an exact orbit 
closer to {xn} than 0.03 for 
all n. 

1 

TRUE ORBIT OF x0 
COMPUTED ORBIT OF x

0
_.,., __ 

All errors are less than 0.03 

True orbit of x0 already 
far from the computed orbit 

0 

X9 = (0.9711500000000, 0.0288500000000) 
x 10 = (0.9423000000000, 0.0577000000000) 

Figure IV.125 illustrates the idea. 

0.00005 
0.000000 

1 

7 .2. Consider the shift dynamical system { 'E; T} on the code space of two symbols 

{1, 2}. Show that the sequence of points {in} given by 

io = 212, and Xn = 12 for all n = 1, 2, 3, ... 

is an errorful orbit for the system. Illustrate the divergence of ron x0 from in. Find 

a shadowing orbit and verify the error estimate provided by the Shadowing 
Theorem. 

7 .3. Illustrate the Shadowing Theorem by constructing an erroneous orbit, and an 

orbit that shadows it, for the shift dynamical system { [0, 1]; 1 x, 1 x + 1}. 
7 .4. Compute an orbit for a random shift dynamical system associated with the 

overlapping IFS {[0, 1]; 1x + 1l· 
7 .5. An orbit of the shift dynamical system associated with the IFS 
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X 1 

Figure IV.126. An ex-
act orbit shadows the orbit 
"computed" by "drawing" 
in this web diagram for 
a random shift dynamical 
system. 

is computed to accuracy 0.0005. How close a shadowing orbit does there exist? Use 
the Manhattan metric. 

7 .6. In Figure IV.126 an orbit of the random shift dynamical system associated with 
the overlapping IPS {[0, 1], w 1(x), w2(x)} is computed by drawing a web diagram. 
The computer in this case consists of a pencil and a drafting table. Estimate the 
errors in the drawing and then deduce how closely an exact orbit shadows the plotted 
one. You will need to estimate the contractivity of the IPS. Also draw a tube around 
the plotted orbit, within which an exact orbit lies. 

7.7. Figure IV.127 shows an orbit {xn} of the random shift dynamical system associ-
ated with the IPS {[0, 1]; w 1(x), w2(x)}.lt was obtained by defining S(x) = w2 1(x) 
for x E w1 (A) n w 2(A). A contractivity factor for the IPS is readily estimated from 
the drawing to be Hence if the web diagram is accurate to within 1 mm at each 
iteration, that is 

then there is an exact orbit {xn = such that 

d( - ) 1 5 Xn, Xn < - 2- = . mm. 
- (5) 

? 
Thus there is an actual orbit that remains within the "orbit tube" shown in Fig-
ure IV.127. 
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Figure IV.127. Only 1.--------.---------...-------------, 

the Shadow knows. Inside 
the "orbit tube" there is an 
exact orbit { Xn} of the 
random shift dynamical 
system associated with the 
IPS. 

8 Chaotic Dynamics on Fractals 

y 

0 X 

The shift dynamical system {A; S} associated with a totally disconnected hyperbolic 

IFS is equivalent to the shift dynamical system {:E, T}, where :E is the code space 

associated with the IFS. As we have seen, this equivalence means that the two 

systems have a number of properties in common; for example, the two systems have 

the same number of cycles of minimal period 7. A particularly important property 

that they share is that they are both "chaotic" dynamical systems, a concept that we 

explain in this section. First, however, we want to underline that the two systems are 

deeply different from the point of view of the interplay of their dynanics with the 

geometry of the underlying spaces. 

Consider the case of an IFS of three transformations. Let :E denote the code space 

of the three symbols {1, 2, 3}, and look at the orbit of the point a E :E given by 

a= 
1231112132122233132331111 
12113121122123131132133211212213 
22122222323123223331131231332132 
23233313323331111111211131121112 
21123113111321133121112121213122 
11222122312311232123313 
1113121212 ............ FOREVER. 
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This orbit {Ton a may be plotted on a Cantor set of three symbols, as sketched 
in Figure IV.l28. This can be compared with the orbit of the shift 
dynamical system {A, S} associated with an IFS of three maps, as plotted in Fig-
ure IV.129. Figure IV.130 shows an equivalent orbit, but this time for the just-
touching IFS {[0, 1]; %x, %x + using a web diagram. 

In each case the "same" dynamics look entirely different. The qualities of beauty 
and harmony present in the observed orbits are different. This is not suprising: the 
equivalence of the dynamical systems is a topological equivalence. It does not pro-
vide much information about the interplay of the dynamics with the geometries of 
the spaces on which they act. This interplay is an open area for research. For ex-
ample, what are the special conserved properties of two metrically equivalent dy-
namical systems? Can you quantify the grace and delicacy of a dancing orbit on a 
fractal? 

This said, we tum our attention back to an important collection of properties 
shared by all shift dynamical systems. For simplicity we formalize the discussion for 
the case of the shift dynamical system {A, S} associated with a totally disconnected 
hyperbolic IFS. 

Definition 8.1 Let (X, d) be a metric space. A subset B c X is said to be dense 
in X if the closure of B equals X. A sequence of points in X is said to be 
dense in X if, for each point a E X, there is an subsequence that converges 
to a. In particular an orbit of a dynamical system {X, f} is said to be dense 
in X if the sequence { Xn} is dense in X. 

By now you will have had some experience with using the random iteration al-
gorithm, Program 2 of Chapter III, for computing images of the attractor A of IFS 
in If you run the algorithm starting from a point x0 E A, then all of the com-
puted points lie on A. Apparently, the sequences of points we plot are examples of 
sequences that are dense in the metric space (A, d). 

The property of being dense is invariant under homeomorphism : if B is dense in 
a metric space (X, d) ll!lld if e : X -+ Y is a homeomorphism, then e (B) is dense in 
Y. If {X; f} and {Y, g} are equivalent dynamical systems under 8; and if {xn} is an 
orbit off dense in X, then {8(xn)} is an orbit of g dense in Y. 

Figure IV. 128. The 
start of a chaotic orbit on a 
Ternary Cantor set. 
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Figure IV. 129. The 
start of an orbit of a de-
terministic shift dynami-
cal system. This orbit is 
chaotic. It will visit the 
part of the attractor inside 
each of these little circles 
infinitely many times. 

Figure IV.130. Equiv-
alent orbit to the one 
in Figures IV.l28 and 
IV.129, this time ploted 
using a web diagram. The 
starting point has address 
12311121321222331 .... 
This manifestation of an 
orbit, which goes arbi-
trarily close to any point, 
takes place on a just-
touching attractor. 

1 

y 

0 

I'll visit you again and again! 

X 1 
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Definition 8.2 A dynamical system {X, f} is transitive if, whenever U and V are 

open subsets of the metric space (X, d), there exists a finite integer n such that 

The dynamical system {[0, 1]; f(x) = min{2x, 2- 2x}} is topologically transi-
tive. To verify this just let U and V be any pair of open intervals in the metric 
space ([0, 1], Euclidean). Clearly, each application of the transformation increases 
the length of the interval U in such a way that it eventually overlaps V. 

Definition 8.3 The dynamical system {X; f} is sensitive to initial conditions if 
there exists 8 > 0 such that, for any x EX and any ball B(x, E) with radius E > 0, 
there is y E B (x, E) and an integer n :?: 0 such that d (Jon (x), Jon (y)) > 8. 

Roughly, orbits that begin close together get pushed apart by the action of the 
dynamical system. For example, the dynamical system { [0, 1]; 2x mod 1} is sensitive 
to initial conditions. 

Examples & Exercises 
8.1. Show that the rational numbers are dense in the metric space (II({, Euclidean). 

8.2. Let C (n) be a counting function that counts all of the rational numbers that lie 
in the interval [0, 1]. Let rc(n) denote the nth rational number in [0, 1]. Prove that the 

sequence of real numbers {rc(n) E [0, 1]: n = 1, 2, 3, ... }is dense in the metric space 
([0, 1], Euclidean). 

8.3. Consider the dynamical system {[0, 1]; f(x) = 2x mod 1}. Find a point x0 E 

[0, 1] whose orbit is dense in [0, 1]. 

8.4. Show that the dynamical system {[0, oo) : f (x) = 2x} is sensitive to initial 
conditions, but that the dynamical system {[0, oo) : f (x) = (0.5)x} is not. 

8.5. Show that the shift dynamical system { :E; T}, where :E is the code space of two 
symbols, is transitive and sensitive to initial conditions. 

8.6. Let {X, f} and {Y, g} be equivalent dynamical systems. Show that {X, f} is 
transitive if and only if {Y, g} is transitive. In other words, the property of being 
transitive is preserved between equivalent dynamical systems. 

Definition 8.4 A dynamical system {X, f} is chaotic if 

( 1) it is transitive; 
(2) it is sensitive to initial conditions; 
( 3) the set of periodic orbits off is dense in X. 

Theorem 8. 1 The shift dynamical system associated with a totally disconnected 

hyperbolic IFS of two or more transformations is chaotic . 
. i 

Sketch of Proof" First one establishes that the shift dynamical system { :E; T} is 
chaotic where :E is the code space of N symbols, with N =::: 2. One then uses the code 
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space map ¢ : :E -+ A to carry the results over to the equivalent dynamical system 
{A; S}. 

Theorem 1 applies to the lifted IFS associated with a hyperbolic IFS. Hence the 
lifted shift dynamical system associated with an IFS of two or more transformations 
is chaotic. In turn this implies certain characteristics to the behavior of the projection 
of a lifted shift dynamical system, namely a random shift dynamical system. 

Let us consider now why the random iteration algorithm works, from an intuitive 
point of view. Consider the hyperbolic IFS { 2 ; w I, w2}. Let a E A; suppose that the 
address of a is a E :E, the associated code space. That is 

a= ¢(a). 

With the aid of a random-number generator, a sequence of one million ones and 
twos is selected. For example, suppose that the the actual sequence produced is the 
following one, which has been written from right to left, 

21 ... 12121121121211121112111111211211121111211212122211 

By this we mean that the first number chosen is a 1, then a 1, then three 2's, and so 
on. Then the following sequence of points on the attractor is computed: 

a= ¢(a) 

WI(a) = ¢(1a) 

WI o WI(a) = f/J(lla) 

W2 o WI 0 WI(a) = f/J(21la) 

W2 0 W2 0 WI 0 WI (a)= f/J(2211a) 

W2 o W2 0 W2 0 WI 0 WI (a)= f/J(22211a) 

WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(122211a) 

W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(2122211a) 

WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(12122211a) 

W2 0 WI 0 W2 0 WI 0 W2 o W2 0 W2 0 WI 0 WI (a)= f/J(212122211a) 

WI 0 W2 0 WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(1212122211a) 

WI o WI o W2 0 WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(11212122211a) 

W2 o WI o ... WI 0 WI 0 W2 0 WI o W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= ¢(21 ... 1121212221la) 
We imagine that instead of plotting the points as they are computed, we keep a list of 
the one million computed points. This done, we plot the points in the reverse order 
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from the order in which they were computed. That is, we begin by plotting the point 
</>(21 ... 11212122211a) and we finish by plotting the point cp(a). What will we 
see? We will see a million points on the orbit of the shift dynamical system {A; S}; 
namely, {S0 n(c/J(21 ... 

Now from our experience with shift dynamics and from our theoretical knowl-
edge and intuitions what do we expect of such an orbit? We expect it to be chaotic 
and to visit a widely distributed collection of points on the attractor. We are looking 
at part of a "randomly chosen" orbit of the shift dynamical system; we expect it to 
be dense in the attractor. 

For example, suppose that you are doing shift dynamics on a picture of a totally 
disconnected fractal, or a fern. You should be convinced that by making sly adjust-
ments in the orbit at each step, as in the Shadowing Theorem, you can most easily 
coerce an orbit into visiting, to within a distance E > 0, each point in the image. But 
then the Shadowing Theorem ensures that there is an actual orbit close to our artifi-
cial one, and it too goes close to every point on the fractal, say to within a distance of 
2E of each point on the image. This suggests that "most" orbits of the shift dynamical 
system are dense in the attractor. 

Examples & Exercises 
8.7. Make experiments on a picture of the attractor of a totally disconnected hyper-
bolic IFS to verify the assertion in the last paragraph that "by making sly adjustments 
in an orbit ... you can most easily coerce the orbit into visiting to within a distance 
E > 0 of each point in the image." Can you make some experimental estimates of 
how many orbits go to within a distance E > 0, for several values of E, of every point 
in the picture? One way to do this might be to work with a discretized image and to 
try to count the number of available orbits. 

8.8. Run the Random Iteration Algorithm, Program 2 in Chapter III, to produce an 
image of a fractal, for example a fern without a stem as used in Figure IV.129. As 
the points are calculated and plotted, keep a list of them. Then plot the points over 
again in reverse order, this time making them flash on and off on the picture of the 
attractor on the screen, so that you can see where they land. This way you will see 
the interplay of the geometry with the shift dynamics on the attractor. See if the orbit 
is beautiful. If you think that it is, try to make your impression objective. 

We want to begin to formulate the idea that "most" orbits of the shift dynamical 
system associated with a totally disconnected IFS are dense in the attractor. The 
following lemma counts the number of cycles of minimal period p. 

Lemma 8.1 Let {A; S} be the shift dynamical system associated with a totally 
disconnected hyperbolic IFS {X; w1, wz, ... , wN}. Let N(p) denote the number of 
distinct cycles ofminimhl period p,for p E {1, 2, 3, ... }. Then 
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( 

p-1 ) 
N(p) = NP- kN(k) /p 

k divides p 

for p = 1, 2, 3, .... 

Proof It suffices to restrict attention to code space, and to give the main idea, 

consider only the case N = 2. For p = 1, the cycles of period 1 are the fixed points 

of T. The equation 

Ta =aa E b 

implies a = 1111 or a = 2222. Thus N (1) = 2. For p = 2, any point that lies on a 

cycle of period 2 must be a fixed point of T 02' namely 

To2CJ = CJ, 

where a = TI, 12, 21, or 22. The only cycles here that are not of minimal period 2 

must have minimal period 1. Furthermore, there are two distinct points on a cycle of 

minimal period 2, so 

N(2) = (22 - N(l))/2 = 2/2 = 1. 

One quickly gets the idea. Mathematical induction on p completes the proof for 

N=2. 
For N = 2, we find, for example, N(2) = 1, N(3) = 2, N(4) = 3, N(5) = 

6, N(6) = 9, N(7) = 18, N(8) = 30, N(9) =56, NOO) = 99, N01) = 186, 

N(l2) = 335, N(13) = 630, N(l4) = 1161, N(15) = 2182, N(16) = 4080, 

N(l7) = 7710, N(18) = 14532, N(l9) = 27594, N(20) = 52377. In particular, 

99.9% of all points lying on cycles of period 20 lie on cycles of minimal period 20. 

Here is the idea we are getting at. We know that the set of periodic cycles are 

dense in the attractor of a hyperbolic IFS. It follows that we may approximate the 

attractor by the set of all cycles of some finite period, say period 12 billion. Thus we 

replace the attractor A by such an approximation A, which consists of 212·000·000·000 

points. Suppose we pick one of these points at random. Then this point is extremely 

likely to lie on a cycle of minimal period 12 billion. Hence the orbit of a point 

chosen "at random" on the approximate attractor A is extremely likely to consist 

of 12 billion distinct points on A. 
In fact one can show that a statistically random sequence of symbols contains 

every possible finite subsequence. So we expect that the set of 12 billion distinct 

points on A is likely to contain at least one representative from each part of the 

attractor! 


