
Chapter IX 

Measures on Fractals 

1 Introduction to Invariant Measures on Fractals 

330 

In this section we give an intuitive introduction to measures. We focus on measures 
that arise from iterated function systems in 

In Chapter III, section 8 we introduced the Random Iteration Algorithm. This 
algorithm is a means for computing the attractor of a hyperbolic IFS in In order 
to run the algorithm one needs a set of probabilities, in addition to the IFS. 

Definition 1. 1 An iterated function system with probabilities consists of an IFS 

{X; Wt, W2, ... , WN} 

together with an ordered set of numbers {pt. p2, ... , PNL such that 

PI + P2 + P3 + · · · + PN = 1 and Pi > 0 fori = 1, 2, ... , N. 

The probability p; is associated with the transformation w;. The nomenclature 
"IFS with probabilities" is used for "iterated function system with probabilites." The 
full notation for such an IFS is 

Explicit reference to the probabilities may be suppressed. 
An example of an IFS with probabilities is 

{C; Wt(Z), W2(z), W3(z), W4(z); 0.1, 0.2, 0.3, 0.4}, 

where 
Wt (z) = 0.5z, w2(z) = 0.5z + 0.5, 

W3(z) = 0.5z + (0.5)i, W4(z) = 0.5z + 0.5 + (0.5)i. 
It can be represented by the IFS code in Table IX.1. The attractor is the filled square 
•. with comers at (0, 0), (1, 0), (1, 1), and (0, 1). 

Here is how the Random Iteration Algorithm proceeds in the present case. An 
initial point, zo E C, is chosen. One of the transformations is selected "at random" 
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Table IX.l. IFS code for a measure on •· 

w a b c d e f p 

1 0.5 0 0 0.5 0.1 

2 0.5 0 0 0.5 50 1 0.2 

3 0.5 0 0 0.5 50 0.3 

4 0.5 0 0 0.5 50 50 0.4 

from the set {w1, w 2 , w 3 , w4 }. The probability that wi is selected is pi, for i = 

1, 2, 3, 4. The selected transformation is applied to zo to produce a new point z1 E 

C. Again a transformation is selected, in the same manner, independently of the 

previous choice, and applied to z1 to produce a new point z2• The process is repeated 

a number of times, resulting in a finite sequence of points {zn : n = 1, 2, ... ,numits}, 

where numits is a positive integer. For simplicity, we assume that zo E •· Then, since 

wi(•) C •, fori= 1, 2, 3, 4, the "orbit" {Zn: n = 1, 2, ... ,numits} lies in •· 

Consider what happens when we apply the algorithm to the IFS code in Table 

IX.1. If the number of iterations is sufficiently large, a picture of • will be the 

result. That is, every pixel corresponding to • is visited by the "orbit" {zn : n = 

1, 2, ... ,numits}. The rate at which a picture of• is produced depends on the prob-

abilities. If numits = 10, 000, then we expect that because the images of • are just-

touching, 

the number of computed points in w 1 (•) 1000, 

the number of computed points in w2(•) 1000, 

the number of computed points in w3(•) 1000, 

the number of computed points in w4 (•) 1000. 

These estimates are supported by Figure IX.247, which shows the result of running 

a modified version of Program 2 in Chapter III, with the IFS code in Table IX.l, and 

numits = 100, 000. 
In Figure IX.248 we show the result of running a modified version of Program 2 

in Chapter III, for the IFS code in Table IX.l, with various choices for the proba-

bilities. In each case we have halted the program after a relatively small number of 

iterations, to stop the image from becoming "saturated." The results are diverse tex-

tures. In each case the attractor of the IFS is the same set, •· However, the points 

produced by the Random Iteration Algorithm "rain down" on • with different fre-

quencies at different places. Places where the "rainfall" is highest appear "darker" 

or "more dense" than those places where the "rainfall" is lower. In the end all places 

on the attractor get wet. 
1 

The pictures in Figure IX.248 (a)-(c) suggest a wonderful idea. They suggest 

that associated with an IFS with probabilities there is a unique "density" on the 
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Figure IX.247. The 
Random Iteration Algo-
rithm, Program 1 in Chap-
ter III, is applied to the 
IFS code in Table IX.l, 
with numits = 100,000. 
Verify that the number of 
points that lie in w; (•) is 
approximately (numits) p;, 
fori= 1,2,3,4. .• ..... --· 

• -; .'.! ...... - '.6: . . . . - ; ... , .- .. 

--

··rE:, ':' 
.. . .. 

attractor of the IFS. The Random Iteration Algorithm gives one a glimpse of this 
"density," but one loses sight of it as the number of iterations is increased. This is 
true, and much more as well! As we will see, the "density" is so beautiful that we 
need a new mathematical concept to describe it. The concept is that of a measure. 
Measures can be used to describe intricate distributions of "mass" on metric spaces. 
They are introduced formally further on in this chapter. The present section provides 
an intuitive understanding of what measures are and of how an interesting class of 
measures arises from IFS 's with probabilities. 

As a second example, consider the IFS with probabilities 

{<C; w1 (z) = 0.5z + 24 + 24i, w2(z) = 0.5z + 24i, w3 (z) = 0.5z; 0.25, 0.25, 0.5}. 

The attractor is a Sierpinski triangle £. The probability associated with w 3 is twice 
that associated with either w 1 or w2• In Figure IX.249 we show the result of applying 
the Random Iteration Algorithm, with these probabilities, to compute 10,000 points 
belonging to A. There appear to be different "densities" at different places on A. For 
example, w3(A) appears to have more "mass" than either w1 (A) or w2 (A). 

In Figure IX.250 we show the result of applying the Random Iteration Algorithm 
to another IFS with probabilities, for three different sets of probabilities. The IFS 
is w 1, w 2 , w 3 , w4 }, where wi is an affine transformation fori= 1, 2, 3, 4. The 
attractor of the IFS is a leaf-like subset of In each case we see a different pattern 
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Figure IX.248. The 
Random Iteration Algo-
rithm is applied to the IFS 
code in Table IX.l, but 
with various different sets 
of probabilities. The result 
is that points rain down on 
the attractor of the IFS at 
different rates at different 
places. What we are see-
ing are the faint traces of 
wonderful mathematical 
entities called measures. 
These are the true fractals. 
Their supports, the aurae-
tors of IFS, are sets 
upon which the measures 
live. 

Figure IX.248. (b) 
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Figure IX.248. (c) 

of "mass" on the attractor of the IFS. It appears that each "density" is itself a fractal 
object. 

Examples & Exercises 
1. 1. Carry out the following numerical experiment. Apply the Random Iteration 
Algorithm to the IFS code in Table IX.1, for numits = 1000, 2000, 3000, .... In 
each case record the number, N, of computed points that land in B = { (x, y) E 

2 : (x - 1 )2 + (y - 1 )2 :::: 1}, and make a table of your results. Verify that the ratio 
N I numits appears to approach a constant. 

1.2. Repeat the computergraphical experiment that produced Figure IX.247. Verify 
that you obtain "similar-looking" output to that shown in Figure IX.247, even though 
you (probably) use a different random-number sequence. 

1.3. The Random Iteration Algorithm is used to compute 100,000 points belonging 
to •, using the IFS code in Table IX.1. How many of these points, do you expect, 
would belong to w1 o w3(•)? Why? 

Let (X, d) be a complete metric space. Let {X; w1, ... , wN; p1, ... , PN} be an 
IFS with probabilities. Let A denote the attractor of the IFS. Then there exists a 
thing called the invariant measure of the IFS, which we denote here by J.L. J.L assigns 
"mass" to many subsets of X. For example, J.L(A) = 1 and J.L(0) = 0. That is, the 
"mass" of the attractor is one unit, and the "mass" of the empty set is zero. Also 
J.L(X) = 1, which says that the whole space has the same "mass" as the attractor of 
the IFS; the "mass" is located on the attractor. 
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Not all subsets of X have a "mass" assigned to them. The subsets of X that do 
have a "mass" are called the Borel subsets of X, denoted by B(X). The Borel subsets 
of X include the compact nonempty subsets of X, so that 1-l(X) c B(X). Also, if 0 is 
an open subset of X, then 0 E B(X). So there are plenty of sets that have "mass." Let 
B denote a closed ball in X. Here is how to calculate the "mass" of the ball, JL(B). 
Apply the Random Iteration Algorithm to the IFS with probabilities, to produce a 
sequence of points Let 

N(B, n) = number of points in {zo, z1, zz, Z3, ... , Zn} n B, for n = 0, 1, 2, .... 

Then, almost always, 

JL(B) = lim { N(B, n)}. 
n--+oo (n + 1) 

That is, the "mass" of the ball B is the proportion of points, produced by the Random 
Iteration Algorithm, which land in B. (To be precise we also have to require that the 
"mass" of the boundary of B is zero; see Corollary 7.1.) 

By now you should be bursting with questions. How do we know that this formula 
"almost always" gives the same answer? What are Borel sets? Why don't all sets 
have "mass"? Welcome;o measure theory! 

As an example, we evaluate the measure of some subsets of C, for the IFS with 
probabilities 

Figure IX.249. The 
Random Iteration Algo-
rithm is used to compute 
an image of the Sierpinski 
triangle A. The probabil-
ity associated with w3 is 
twice that associated with 
w1 or w2 • One thousand 
pointshave been com-
puted. The result is that 
w3 (A) appears denser than 
w 1 (A) or w2(A). This ap-
pearance is lost when the 
number of iterations is in-
creased. We are led to the 
idea of a "mass" or mea-
sure that is supported on 
the fractal. 
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Figure IX.250. The Random Iteration Algorithm is used to compute an image of a leaf. 
Different sets of probabilities lead to different distributions of "mass" on the leaf. 

{<C; w1 (z) = 0.5z, w2(z) = 0.5z + (0.5)i, w3(z) = 0.5z + 0.5; 0.33, 0.31, 0.34}. 

The attractor is a Sierpinski triangle £ with vertices at 0, i, and 1. We compute the 
measures of the following sets: 

B1 = {z E <C: lzl ::::: 0.5} 
B2 = {z E <C: lz- (0.5 + 0.5i)l ::::: 0.2} 
B3 = {z E <C: lz- (0.5 + 0.5i)l ::::: 0.5} 

B4 = {z E <C: lz- (2 + i)l :S -J2}. 
The results are presented in Table IX.2. 

Figure IX.251 illustrates the ideas introduced here. 

Examples & Exercises 
1.4. Explain why J.1,(B4) 0 in Table IX.2. 

1.5. What value, approximately, would have been obtained for f.J,(B1) in Table 
IX.2, if the probabilities on the three maps had been p 1 = 0.275, p 2 = 0.125, and 
P3 = 0.5? 
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Table IX.2. The measures of some subsets of A are computed by random iteration. 

n n)jn N(B2, n)/n 

5,000 0.3313 0.1036 
10,000 0.3314 0.1050 
15,000 0.3323 0.1041 
20,000 0.3330 0.1030 
50,000 0.3326 0.1041 

100,000 0.3325 0.1054 

N(B3 , n)jn N(B4, n)jn 

0.6385 0.0004 
0.6500 0.0002 
0.6512 0.0001 
0.6525 0.0000 
0.6527 0.0000 
0.6497 0.0000 

The "mass" of B is the 
proportion of time 
spent in B 

Figure IX.251. Di-
agram of the Random 
Iteration Algorithm run-
ning, and a dancing point 
coming and going from 
the ball B. The "mass" 
or measure of the ball is 
J-t(B). It is equal to the 
proportion of points that 
land in B. 

1.6. Why, do you think, is the phrase "almost always" written in connection with 

the formula for f..L(B), given above? 

2 Fields and Sigma-Fields 

Definition 2.1 Let X be a space. Let F denote a nonempty class of subsets of a 

space X, such that 
1 

(1) A,BEF=tAUBEF; 
(2) A E F =t X\ A E F. 
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Then :F is called a field. 
(In exercise 2.12 you will be asked to prove that X E F.) 
Theorem 2.1 Let X be a space. Let Q be a nonempty set of subsets of X. Let :F 

be the set of subsets of X which can be built up from finitely many sets in Q using the 
operations of union, intersection, and complementation with respect to X. Then :F is 
afield. 

Proof Elements of :F consist of sets such as 

X\ (((X\ (G1 U G2)) n G3) U (Gs n G6)), 

where G 1, G 2, G 3, G 3, ... denote elements of Q. That is, :F is made of all those 
sets that can be expressed using a finite chain of parentheses, \, U, n, elements of 
Q, and X. (In fact, using de Morgan's laws one can prove that it is not necessary to 
use the intersection operation.) If we form the union of any two such expressions 
we obtain another one. Similarly, if we form the complement of such an expression 
with respect to X, we obtain another such expression. So conditions (i) and (ii) in 
Definition 2.1 are satisfied. This completes the proof. 

Definition 2.2 The field referred to in Theorem 2.1 is called the field generated 
byQ. 

Examples & Exercises 
2.1. Let X be a space and let A c X. Then :F ={X, A, X\ A, 0} is a field. 
2.2. Let X be the set of all leaves on a certain tree and let :F be the set of all subsets 
of X. Then :F is a field. Let A denote the set of all the leaves on the lowest branch of 
the tree. Then A E F. Prove that :F is generated by the leaves. 
2.3. Let X= [0, 1] c lR?.. Let g denote the set of all subintervals (open, closed, half-
open) of [0, 1]. Let :F denote the field generated by Q. Examples of members ofF 
are [0.5, 0.6) U (0.7, 0.81); [0, 1]; [1, 1]; 1) U i) U .. · U ( 16o, 
that 

U00 
(-

1 
= 1) u u u ... n=l (n + 1)' n 2' 3' 2 4' 3 

is a subset of X but it is not a member of :F. 
2.4. Let X= • c 0<?. 2 . Let g denote the set of closed rectangles contained in X, 
whose sides are parallel to the coordinate axes and whose comers have rational 
coordinates. Let :F denote the field generated by Q. An example of an element of 
:F is 

where R1, R2 , R3 , R4 , and R5 are rectangles in Q. LetS E F. Prove that the area of 
S is a rational number. Deduce that :F does not contain the ball B ( 0, 1) = { (x, y) E 
•: x2 + l 1}. 
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2.5. Let X denote the set of pixels corresponding to a certain computer graphics 
display device. The set of all monochrome images that can be produced on this 
device forms a field. Figure IX.252 shows an example of a small field of subsets of 
X. It is generated by the pair of images, G 1 and G2, in the middle of the second row, 
together with the set X. X is represented by the black rectangle. The empty set is 
represented by a blank screen. Find formulas for all of the images in Figure IX.252, 
in terms of G1, G2, and X. 

2.6. Let 'E denote the code space on two symbols 1 and 2. Let n E {1, 2, 3, ... } and 
e; E {1, 2} fori= 1, 2, ... , n. Let 

C(e1, e2, ... , en)= {x E 'E: X;= e; fori= 1, 2, ... , n} . 

.f\ny subset of 'E that can be written in this form is called a cylinder subset of 'E. Let 
F denote the field generated by the cylinder subsets of 'E. Find a subset of 'E that is 
not in :F. 

2. 7. Let X be a space. Let :F denote the set of all subsets of X. The customary 
notation for this field is :F = 2x. Show that :F is a field. 

Definition 2.3 Lh :F be a field such that 

A; E :Ffor i E l, 2, 3, ... => E :F. 

Figure IX.252. A field 
whose elements are sets 
of pixels. Can you find 
two elements of the field 
which generate the field? 
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Then F is called a a-field (sigma-field). 

Given any field, there always is a minimal, or smallest, a-field which contains it. 

Theorem 2.2 Let X be a space and let g be a set of subsets of X. Let {Fa : a E 

I} denote the set of all a -fields on X which contain g. Then F = naFa is a a -field. 

Proof Note that there is at least one a-field that contains Q, namely 2x, the field 
consisting of all subsets of X. We have to show that naFa is a a-field if each Fa is a 
a-field that contains 9. Suppose that A; E naFa; then, for each a, A; is an element 
of the a -field Fa and so E Fa. Suppose A E naFa; then, for each a, A E Fa 
and so X\ A E Fa. Hence X\ A E naFa. This completes the proof. 

Definition 2.4 Let 9 be a set of subsets of a space X. The minimal a -field which 
contains Q, defined in Theorem 2.2, is called the a-field generated by Q. 

Definition 2.5 Let (X, d) be a metric space. Let B denote the a-field generated 
by the open subsets of X. B is called the Borel field associated with the metric space. 
An element of B is called a Borel·subset of X. 

The following theorem gives the flavor of ways in which the Borel field can be 
generated. 

Theorem 2.3 Let (X, d) be a compact metric space. Then the associated Borel 
field B is generated by a countable set of balls. 

Proof We prove a more general result first. Let g = {bn c X: n = 1, 2, 3, 
... ; bn open } be a countable base for the open subsets of X. That is, every open 
set in X can be written as a union of sets in g. Then B is generated by g. To see 
this, let B denote the a-field generated by g. Then B c B because g is contained in 
the set of open subsets of X. On the other hand, B c B because i3 contains all the 
generators of B. Hence B = B. 

It remains to construct a countable base for the open subsets of X using balls. For 
R > 0 let 

B(x, R) = {y EX: d(x, y) < R}. 

Let n be a positive integer. Then X= UxExB(x, {B(x, x EX} is an 
open covering of X. Since X is compact it contains a finite subcovering { B (xf:), : 
m = 1, 2, ... , M(n)} for some integer M(n). We claim that 

V = {B(x;:), m = 1, 2, ... , M(n); n = 1, 2, 3, ... } 
n 

is a countable base for the open subsets of X. Let 0 be an open subset of X, and let 
x E 0. Then there is an open ball, of radius R > 0, such that B(x, R) c 0. Let n be 
large enough that < Then there is m E { 1, 2, ... , M (n)} so that x is in the ball 
B(xf:), ), and this ball is contained in 0. Each x in 0 is contained in such a ball, 
belonging to V. Hence V is indeed a countable base for the open subsets of X. This 
completes the proof. 



Examples & Exercises 
2.8. Let B denote the a-field generated by the field in exercise 2.4. Then B contains 
the ball B ( 0, 1). Similarly it contains all balls in • c Show that B is the Borel 
field associated with ( •, Manhattan). 

2.9. Let I: denote the code space on the two symbols {0, 1}. Show that the Borel 
field associated with (I:, code space metric) is generated by the cylinder subsets of 

in exercise 2.5. 

2. 10. Let .A c denote a Sierpinski triangle. Let g denote the set of connected 
components of \.A. Let F denote the a-field generated by Q. Show that F is 
contained in, but not equal to, the Borel field associated with 

2.11. Let X be a space and let g be a set of subsets of X. Let F 1 be the field 
generated by Q, let F2 be the a-field generated by Q, and let F3 be the a-field 
generated by F 1• Prove that F 3 = F2. 

2.12. Let F be a field of subsets of a space X. Prove that X E F. 

3 Measures 

A measure is defined on a field. Each member of the field is assigned a nonnegative 
real number, which tells us its "mass." 

Definition 3. 1 A measure J-L, on a field F, is a real nonnegative function 11- : 
F-+ [0, oo) c that whenever Ai E F fori= 1, 2, 3, ... , with Ai n AJ = 0 
fori =f. j and E F, we have 

00 

Ai) = L J-t(Aj). 
i=l 

(In other texts a measure as defined here is usually referred to as a finite measure.) 

Definition 3.2 Let (X, d) be a metric space. Let B denote the Borel subsets of 
X. Let 11- be a measure on B. Then 11- is called a Borel measure. 

Some basic properties of measures are summarized below. 

Theorem 3.1 Let F be afield and let 11-: F--+ a measure. Then 

(1) If B :) A, then J-t(B) = J-t(B \A)+ J-t(B),for A, BE F; 
(2) If B :) A, then J-t(B)::::: J-t(A); 
(3) J-L(0) = 0; 
(4) If Ai E F fori= 1, 2, 3, ... , and E F, then 11-

J-t(Ai); 1 

(5) If {Ai E F} obeys At C A2 C A3 C ... , and if E F, then J-t(Ai)--+ 
Ai). 

3 Measures 341 
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(6) If {Ai E F} obeys A1 :::> A2 :::> A3 :::> •.• ,.and if E F, then J.L(Ai)-+ 

Proof [Rudin 1966] Theorem 1.19, p. 17. These are fun to prove for yourself! 

We are concerned with measures on compact subsets of metric spaces such as 
Euclidean). The natural underlying a-field is the Borel field, generated by the 

open subsets of the metric space. The following theorem allows us to work with the 
restriction of the measure to any field that generates the a-field. 

Theorem 3.2 [Caratheodory] Let J.L denote a measure on a field F. Let J: 
denote the a-field generated by F. Then there exists a unique measure [Lon J: such 
that J.L(A) = [L(A) for all A E F. 

Sketch of proof The proof can be found in most books on measure theory; see 
[Eisen 1969] Theorem 5, P.· 180, Chapter 6, for example. First J.L is used to define an 
"outer measure" J.Lo on the set of subsets of X. J.L0 is defined by 

JL0 (A) = inf JL(A.): A C An E :FVn E z+}. 
J.L0 is not usually a measure. However, one can show that the class .rD of subsets A 
of X such that-this was Caratheodory's smart idea-

for all E E 2x 

is a a-field that contains F. One can also show that J.L0 is a measure on J=fl. Note that 
.rD :::> J:. [Lis defined by restricting J.Lo to J:. Finally one shows that this extension of 
J.L to J: is unique. This completes the sketch. 

In the above sketch we have discovered how to evaluate the extended measure [l 
in terms of its values on the original field. 

Theorem 3.3 Let a measure J.L on a field F be extended to a measure [L on the 
minimal a-field J: that contains F. Then, for all A E J:, 

{t(A) = inf JL(A.): A C An E :FVn =I, 2, ... }. 

Examples & Exercises 
3. 1. Consider the field F = {X, A, X \ A, 0}, where A =1- X and A =1- 0. A measure 
J.L: F-+ is defined by J.L(X) = 7.2, J.L(A) = 3.5, J.L(X \A) = 3.7, and J.L(0) = 
0. F is also a a-field. The extension of the measure promised by Caratheodory's 
theorem is just the measure itself. 

3.2. Let F be the field made of sets of leaves on a certain tree, at a certain instant 
in time, and let J.L(A) be the number of aphids on all the leaves in A E F. Then J-t is 
a measure on a finite a-field. 



3.3. Let X= [0, 1] C IR. Let F be the field generated by the set of subintervals 
of [0, 1]. Let a, bE [0, 1] and define p,((a, b))= p,([a, b]) = b- a, for b; and 
more generally let 

Jl(element of F)= sum of lengths of subintervals which comprise the element. 

Show that p, is a measure on F. The a -field !J:: generated by F is the Borel field for 

([0, 1],Euclidean). Show that S = {x E [0, 1] : x is a rational number} belongs to !J:: 
but not to F. Evaluate jl(S), where fl is the extension of p, to !J::. 

3.4. Let X = :E, the code space on the two symbols 1 and 2. Let F denote the field 

generated by the cylinder subsets of :E, as defined in exercise 2.5. Let 0 1 

and P2 = 1 - PI· Define 

p,(C(ei, e2, ... , en))= PetPe2 ···Pen' 

for each cylinder subset C(ei, e2, ... , en) of :E. Show how p, can be defined on the 
other elements of F in such a way as to provide a measure on F. Evaluate 

p,({x E :E : x7 = 1}) and p,(:E). 

Extend F to the field !J:: generated by F, and correspondingly extend p, to fl. Show 
that 

S = {x E :E : Xood = 1} E j:: 

and evaluate jl(S). 

3.5. This example takes place in the metric space ([0, 1],Euclidean). Consider the 
IFS with probabilities 

1 1 2 
{[0, 1]; WI (x) = 3x, w2(x) = 3x + 3; PI, P2}. 

Let F denote the field generated by the set of intervals that can be expressed in the 
form 

We 1 0 We2 0 ... 0 Wen([O, 1]), 

where n E { 1, 2, ... } and e; E { 1, 2} for each i = 1, 2, ... , n. Let 0 PI 1 and 
p2 = 1 - p 1• Show that one can define a measure on F so that, for every such 
interval, 

P,(We1 0 We2 0 · · · 0 Wen ([0, 1])) = Pe1Pe2 •• • Pen• 

Let A denote the attract or of the IFS. Evaluate p, (A), p, (X \ A), and p, ( [ , 

3.6. What happens in exercise 3.5 if the IFS is replaced by 

1 1 1 
{[0, 1]; WI (x) = -x, w2(x) = -x + -

2
; PI, P2l? 

i 2 2 
For what value of p 1 is the extension of the measure to the a-fieldgenerated by F 
the same as the Borel measure defined in exercise 3.3? 

3 Measures 343 
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4 Integration 

Definition 3.3 Let (X, d) be a metric space, and let f..L be a Borel measure. Then 
the support of f..L is the set of points x EX such that J.L(B(x, E))> 0 for all E > 0, 
where B(x, E)= {y EX: d(y, x) < E}. 

The support of a measure is the set on which the measure lives. The following is 
an easy exercise. 

Theorem 3.4 Let (X, d) be a metric space, and let f..L be a Borel measure. Then 
the support of f..L is closed. 

Examples & Exercises 
3.7. Let (X, d) be a compact metric space and let f..L be a Borel measure on X such 
that J.L(X) I= 0. Show that the support of f..L belongs to 1i(X), the space of nonempty 
compact subsets of X. 

3.8. Prove the following. "Let f..L be a measure on a a-field :F, and let :F be the 
class of all sets of the form A U B where A E :F and B is a subset of a set of measure 
zero. Then :F is a a-field and the function Ti: :F-+ by Ji(A U B) = Ji(A) 
is a measure." The measure Ti referred to here is called the completion of J.L. The 
completion of the measure in exercise 3.3 is called the Lebesgue measure on [0, 1]. 

In the next section we will introduce a remarkable compact metric space. It is a space 
whose points are measures! In order to define the metric on this space we need to 
be able to integrate continuous real-valued functions with respect to measures. Can 
one integrate a continuous function defined on a fractal? How does one evaluate the 
"average" temperature of the coastline of Sweden? Here we learn how to integrate 
functions with respect to measures. Let (X, d) be a compact metric space. Let f..L be 
a Borel measure on X. Let f : X -+ be a continuous function. We will explain the 
meaning of integrals such as 

i f(x) dJ.L(x). 

Definition 4.1 We reserve the notation XA for the characteristic function of a 
set A C X. It is defined by 

{ 
1 for x E A, 

XA(x) = O for x EX\ A. 

A function f : X -+ is called simple if it can be written in the form 
N 

f(x) = LYiXIi(x), 
i=l 



where N is a positive integer, I; E B and Y; E i = 1, 2, ... , N, /; = X, 
and I; n /i = 0for i =f: j. 

The graphs of several simple functions, associated with different spaces, are 

shown in Figures IX.253 and IX.254. 

Definition 4.2 The integral (with respect to JL) of the simple function f in 

Definition 4.1, is 

!. f(x) dJL(x) = J. f dJL = t Y;JL(/;). 
X X i=l 

Examples & Exercises 
4.1. Let f: [0, 1] a piecewise constant function, with finitely many dis-

continuities. Show that f is a simple function. Let 1-L denote the Borel measure on 

[0, 1] such that JL(/) =length of I, when I is a subinterval of [0, 1]. Show that 

{
1 

f(x) dx = { f(x) dJL(X), 
lo J[O,l] 

where the right-hand side denotes the area under the graph of f. 
4.2. This example takes place in the metric space (•, Euclidean). Let g denote the 

set of rectangular subsets of •· Let :F denote the field generated by g. Show that 

there is a unique measure JL on :F such that JL(A) =area of A, for all A E Q. Notice 

that the a-field generated by :F is precisely the Borel field B associated with (•, 

Euclidean). Let [L denote the extension of 1-L to B. Let A denote a Sierpinski triangle 

contained in •· Show that A E B, and 

f. XA d[L = {L(A) = 0. 

4.3. This example concerns the IFS with probabilities 

{C; w1 (z), w2(z), w3(z); P1 = 0.2, P2 = 0.3, P3 = 0.5}, 

where 

w1 (z) = 0.5z, W2(Z) = 0.5z + (0.5)i, W3(z) = 0.5z + 0.5. 

Let A denote the attractor of the IFS, and B the.Borel subsets of (A, Euclidean). Let 

J.L denote the unique measure on B such that 

JL(A) = 1 
JL(W;(A)) = p; fori E {1, 2, 3}; 

JL(W; o Wj(A)) = PiPj fori, j E {1, 2, 3}; 

for i, j, ... , k E { 1, 2, 3}; 
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Figure IX.253. The 
graph of a simple function 
on a Sierpinski triangle. 
The domain is a Sierpinski 
triangle in the (x, y) 
plane. The function values 
are represented by the z-
coordinates. 

Figure IX.254. The 
graph of a function whose 
domain is a fractal fern. 
If, instead, the function 
values were represented 
by colors, a painted fern 
would replace the graph. 

z 

X 



Define a simple function on A by 

. 11 f(x + zy) = _ 1 
for x + iy E A and 1/3 :s x :s 1, 
for X+ iy E A and 0 :S X :S 2/3. 

Calculate J A f(z)dJ.L(z), accurate to two decimal places. 
Based on the ideas in section 1 of this chapter, can you guess a method for 

calculating the integral that makes use of the Random Iteration Algorithm? Try it! 

4.4. Show that if a, f3 E !Pi and f, g are simple functions then af + f3g is a simple 
function, and 

4.5. Black ink is printed to make this page. Let • c !Pi 2 be a model for the page, 
and represent the ink by means of a Borel measure J.L, so that J.L(A) is the mass of ink 
associated with the set A c •· Let A E F denote the smallest Borel set that contains 
all of the letters "a"on the page. Assume that the total mass of ink on the page is one 
unit. Estimate f. XAdJ.l. 

4.6. Let :E denote code space on two symbols { 1, 2}. B denotes the Borel field 
associated with ( :E, code space metric). Consider the IFS { :E; w I (x) = 1x, w2 (x) = 
2x; PI = 0.4, P2 = 0.6}, where "1x" means the string "1xix2x3 •• • "and "2x" means 
the string "2xix2x3 •. •• " The attractor of the IFS is :E. Let J.l denote the unique 
measure on B such that 

J.L(Wi 0 Wj ... 0 Wk(:E)) = PiPj ... Pk 

Define sets A and B in B by 

for i, j, ... , k E { 1 , 2}. 

A= {x E B: XI= 0} and B = {x E B: x2 = 1}. 

Define f : :E -+ !Pi by 

f(x) = XA(x) + (2.3)XB(x) for all x E :E. 

Evaluate the integral 

l f(x) dJ.L(X). 

Definition 4.3 Let (X, d) be a compact metric space, and let B denote the 
associated Borel field. Let J.l be a Borel measure. A partition of X is a finite set of 
nonempty Borel sets, {Ai E B: i = 1, 2, ... , M}, such that X= uf!I Ai, and Ai n 
Aj = 0for i # j. The diameter of the partition is max{sup{d(x, y): x, y E Ad: i = 
1, 2, ... , M}. 

Theorem 4. 1 Let (X, d) be a compact metric space. Let B denote the asso-.. 
ciated Borel field. Let Jl be a Borel measure on X. Let f: X-+ !Pi be continuous. 
(i) Let n be a positive integer. Then there exists a partition Bn = {An,m E B: m = 
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1, 2, ... , M(n)} of diameter 1/n. (ii) Let Xn,m E An,mfor m = 1, 2, 3, ... , and define 
a sequence of simple functions by 

M(n) 
fn (x) = L f (Xn,m) XAn,m (x) forn=1,2,3, .... 

m=l 

Then {fn} converges uniformly to f(x). (iii) The sequence {fx fndJ.L} converges. (iv) 
The value of the limit is independent of the particular sequence of partitions, and of 
the choices of Xn,m E An,m· 

Sketch of proof 

(i) Since X is compact it is possible to cover X by a finite set of closed balls 
of diameter 1/n, say bn,l• bn,2· ... , bn,M(n)· We can assume that each ball 
contains a point not in any of the other balls. Then define An,l = bn,l, and 

' 1 
An,j = bn,j \ An,b for j = 2, 3, ... , M(n). Then Bn = {An,m E B: m = 
1, 2, ... , M(n)} is a partition of X of diameter 1/n. 

(ii) Let E > 0. f is continuous on a compact space, so it is uniformly continuous. 
It follows that there exists an integer N (E) so that if x, y E X and d (x, y) :s 
1/ N(E) then lf(x) - f(y)l :S E. It follows that lf(x)- fn(x)l :S E when 
n N(E). 

(iii) It is readily proved that {fx fndJ.L} is a Cauchy sequence. Indeed, for all 
n, m N(E) we have 

I fx fn dJL - fx fm dJLI :0: fx lfn - fm I dJL :0: 2fJL(X). 

It follows that the sequence converges. 
(iv) Let {fn} be a sequence of simple functions, constructed as above. Then there 

is an integer N(E) such that lf(x) - fn(x)l :S E when n N(E). It follows 
that for all n max{N(E), N(E)}, 

I fx fn d 1-' - fx j. d 1-' I :0: fx I fn - j. I d JL :0: 2€ JL (X). 

This completes the sketch of the proof. 

Definition 4.4 The limit in Theorem 4.1 is called the integral off (with respect 
to J.L). It is denoted by 

lim { fndJ.L = { f dJ.L. 
n-+oo lx lx 

Examples & Exercises 
4.7. Let (X, d) be a metric space. Let a EX. Define a Borel measure 8a by 8a(B) = 
1 if a E Band 8a(B) = 0 if a¢ B, for all Borel sets B C X. This measure is referred 
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to as a "a delta function" and "a point mass at a." Let f: X----+ be continuous. 
Show that 

fx f(x) d8a(X) = f(a). 

4.8. This example takes place in the metric space (•, Euclidean). Let J..L be the 

measure defined in exercise 4.2, and define f : • ----+ by f (x, y) = x 2 + 2xy + 3. 
Evaluate 

LtdJ..L. 

4.9. Make an approximate evaluation of the integral J £ x 2dJ..L(x) where J..L and £ 

are as defined in exercise 4.3. 

4.1 0. Let X denote the set of pixels corresponding to a certain computer graphics 

display device. Define a metric d on X so that (X, d) is a compact metric space. Give 

an example of a Borel subset of X and of a nontrivial Borel measure on X. Show that 

any function f :-X ----+ is continuous. Give a specific example of such a function, 

and evaluate fx f dJ..L. 

5 The Compact Metric Space (P(X), d) 

We introduce the most exciting metric space in the book. It is the space where 
fractals really live. 

Definition 5. 1 Let (X, d) be a compact metric space. Let J..L be a Borel measure 
on X. If J..L(X) = 1, then J..L is said to be normalized. 

Definition 5.2 Let (X, d) be a compact metric space. Let P(X) denote the set 
of normalized Borel measures on X. The Hutchinson metric dH on P(X) is defined 
by 

dH(M, v) = sup {fx f dJJ,- fx f dv: f: X-+ IRI.f continuous, 

lf(x)- f(y)l ::0 d(x, y)Vx, y EX }• 

for all f..L, v E P(X). 

Theorem 5.1 Let (X, d) be a compact metric space. Let P(X) denote the set 
of normalized Borel measures on X and let dH denote the Hutchinson metric. Then 
(P(X), dH) is a compact metric space. 

i 
Skatch of proof A direct proof, using the tools in this book, is cumbersome. 

It is straightforward to verify that dH is a metric. It is most efficient to use the 
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concept of the "weak topology" on P(X) to prove compactness. One shows that this 
topology is the same as the one induced by the Hutchinson metric, and then applies 
Alaoglu's theorem. See [Hutchinson 1981] and [Dunford 1966]. 

Examples & Exercises 
5.1. Let K be a positive integer. Let X= {(i, j): i, j = 1, 2, ... , K}. Define a 
metric on X by d((i1, j}), (iz, h))= lit- izl + lh -hi. Then (X, d) is a compact 
metric space. Let J.L E P(X) be such that J.L((i, j)) = (i + j)f(K3 + K 2) and let v E 
P(X) be such that v(i, j) = 1/ K 2, for all i, j E {1, 2, ... , N}. Calculate dH(J.L, v). 

5.2. Let (X, d) be a compact metric space. Let J.L E P(X). Prove that the support of 
J.L belongs to 1t(X). 

6 A Contraction Mapping on P(X) 

Let (X, d) denote a compact metric space. Let B denote the Borel subsets of X. Let 
w: X--+ X be continuous. Then one can prove that w- 1 : B--+ B. It follows that if v 
is a normalized Borel measure on X then so is v o w- 1• In tum, this implies that the 
function defined next indeed takes P(X) into itself. 

Definition 6. 1 Let (X, d) be a compact metric space and let P(X) denote the 
space of normalized Borel measures on X. Let 

be a hyperbolic IFS with probabilities. The Markov operator associated with the IFS 
is the function M : P(X) --+ P(X) defined by 

M(v) = P1V o w1 1 + pzv o w;- 1 + · · · + PNV o w"N1 

for all v E P(X). 

Lemma 6.1 Let M denote the Markov operator associated with a hyperbolic 
IFS, as in Definition 6.1. Let f : X--+ be either a simple function or a continuous 
function. Let v E P(X). Then 

{ fd(M(v)) = t Pi { f o wi dv. lx i=1 lx 

Proof Suppose that f: X--+ is continuous. By Theorem 5.1 we can find a 
sequence of simple functions {fn} which converges uniformly to f. Let n be a 
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positive integer. It is readily verified that 

{ fnd(M(v)) = t Pi { fn dv o w;- 1 

lx i=1 lx 
N 

= LPi { fndv o w;- 1 

i=1 lw;(X) 

= t p; f. fnow;dv. 
i=1 X 

The sequence {j fnd(M(v))} converges to J fd(M(v)). 

For each i E { 1, 2, ... , N} and each positive integer n, fn o wi is a simple func-

tion. The sequence {fn o converges uniformly to f o Wi· It follows that 

{j fn o converges to J f o Wi· It follows that Pi J fn o 

converges to Pi J f o widv. This completes the proof. 

Theorem 6.1 Let (X, d) be a compact metric space. Let 

be a hyperbolic IFS with probabilities. Let s E (0, 1) be a contractivity factor for 

the IFS. Let M: P(X)--+ P(X) be the associated Markov operator. Then M is a 

contraction mapping, with contractivity factor s, with respect to the Hutchinson 

metric on P(X). That is, 

for all v, J-L E P(X). 

In particular, there is a unique measure J-L E P(X) such that 

Proof Let L denote the set of continuous functions f : X --+ such that If (x) -

f(y)l :=:: d(x, y)Vx, y EX. Then 

dH(M(v), M(J-L)) =sup{/ fd(M(J-L))- f fd(M(v)): f E L} 

=sup{/ t p;j o W;dJ.t- f t p;j o W;dv: f E L). 
i=1 i=1 

- -1 N - - - • - -1 N 
.Let f =s Li=1 Pi! o Wi· Then f E L. Let L = {/ E L. f =s Li=1 Pi! o wi, 

some f E L}. Then we can write 

dH(M(v), M(J-L)) = sup{s J ]dJ-L- s J ]dv:] E i}. 

Since i c L, it follows that 
1 
· dH(M(v), M(J-L)) :S sdH(v, J-L). 

This completes the proof. 
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Definition 6.2 Let JL denote the fixed point of theM arkov operator, promised by 
Theorem 6.1. JL is called the invariant measure of the IFS with probabilities. 

We have arrived at our goal! This invariant measure is the object we discussed 
informally in section 1 of this chapter. Now we know what fractals are. 

Examples & Exercises 
6. 1. Verify that the Markov operator associated with a hyperbolic IFS on a compact 
metric space indeed maps the space into itself. 

6.2. This example uses the notation in the proof of Theorem 6.1. Let f E L and let 
- -I N -f = s Li=I p;f ow;. Prove that f E L. 

6.3. Consider the hyperbolic IFS 

{• C WI, w2, W3, w4; PI, P2, p3, P4} 

corresponding to the collage in Figure IX.255(a). Let M be the associated Markov 
operator. Let JLo E P(X), so that JLo(•) = 1. For example, JLo could be the uni-
form measure, for which JLo(S) is the area of S E P{•). We look at the sequence 
of measures {JLn = Mon(JLo)}. The measure JLI = M(JLo) is such that JL(w;(•)) = p; 
fori= 1, 2, 3, 4, as illustrated in Figure IX.255(b). It follows that JL2 = M 02 (JLo) 
obeys JL(w; o Wj(•)) = PiPj fori, j = 1, 2, 3, 4, as illustrated in Figure IX.255(c). 
We quickly get the idea. When the Markov operator is applied, the "mass" in 
a cell •ij ... k = w; o w j o · · · o wk(•) is redistributed among the four smaller cells 
WI (•ij ... k), w2(•ij ... d. w3(•ij ... k), and w4(•ij ... k). Also, mass from other cells is 
mapped into subcells of •ij ... k in such a way that the total mass of •ij ... k remains 
the same as before the Markov operator was applied. In this manner the distribution 
of "mass" is defined on finer and finer scales as the Markov operator is repeatedly 
applied. What a wonderful idea. We have also illustrated this idea in Figures IX.256 
and IX.257. 

6.4. Apply the Random Iteration Algorithm to an IFS of the form considered in 
example 6.3. Choose the probabilities PI, p2, p3, and P4 so as to obtain a "picture" 
of the invariant measure that would occur at the end of the sequence that commences 
in Figure IX.257(a), (b), (c), and (d). 

6.5. Consider the IFS 

{[0, 1] C WI (x) = (0.5)x, w2(x) = (0.7)x + 0.3; PI = 0.45, P2 = 0.55}. 
The attractor of the IFS is [0, 1]. Let M denote the associated Markov operator. 
Let JLo E P([O, 1]) be the uniform measure on [0, 1]. In Figure IX.258(a), JLo is 
represented by a rectangle, whose base is [0, 1] and whose area is 1. The successive 
iterates M(JLo), M 02 (JLo), M 03 (JLo) are represented in Figure IX.258(b), (c) and (d). 
Each measure is represented by a collection of rectangles whose bases are contained 
in the interval [0, 1]. The area of a rectangle equals the measure of the base of the 
rectangle. Although the sequence of measures converges { Mon (JLo)} in the metric 
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Figure IX.255. A col-
lage for an IPS of four 
maps. The attractor of the 
IPS is •, and the prob-
ability of the map w; 
is p; for i = 1, 2, 3, 4. 
Let M denote the as-
sociated Markov oper-
ator. Let /-to = 1. Then 
1-t 1 = M is a measure 
such that J-t(W;(•)) =Pi 
fori = 1, 2, 3, 4, as illus-
trated in (b). The measure 

= is such that 
J-t(W; o Wj(•)) = p;pj for 
i, j = 1, 2, 3, 4, as illus-
trated in (c). See also Fig-
ures IX.256 and IX.257. 

Figure IX.255. (b) 
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Figure IX.255. (c) (c) 

p4p4 p4p3 p3p4 p3p3 

p4pl p4p2 p3pl p3p2 

plp4 plp3 p2p4 p2p3 

plpl plp2 p2pl p2p2 

space{P([O, 1], dH}, some of the rectangles would become infinitely tall as n tends 
to infinity. 

6.6. Make a sequence of figures, analagous to Figure IX.258(a)-(d), to represent 
the Markov operator applied to the uniform measure f-Lo, for each of the following 
IFS 's with probabilities: 

(i){[O, 1] C WI (x) = (0.5)x, w2(x) = (0.5)x + 0.5; PI = 0.5, P2 = 0.5}; 
(ii){[O, 1] C WI (x) = (0.5)x, w2(x) = (0.5)x + 0.5; 

PI= 0.99, P2 = 0.01}; 
(iii){[O, 1] C WI(x) = (0.9)x, w2(x) = (0.9)x + 0.1; PI= 0.45, P2 = 0.55}. 

In each case describe the associated invariant measure. 

6.7. Let X= {A, B, C} denote a space that consists of three points. Let B denote 
the a-field that consists of all subsets of X. Consider the IFS with probabilities 

{X; WI, W2; PI = 0.6, P2 = 0.4}, 

where WI: X is defined by wi(A) = B, wi(B) = B, WI(C) = B, and w2: 
X is defined by w2(A) = C, W2(B) =A, and w2(C) =C. Let P(X) denote the 

set of normalized measures on B. Let f-Lo E P(X) be defined by f-Lo(A) =f-Lo( B)= 
f-Lo( C) = Let M denote the Markov operator associated with the IFS, and let 
1-Ln = Mon(/-Lo) for n = 1, 2, 3, .... Determine real numbers a, b, c, d, e, J, g, h, 
i such that for each n, 

[
/-Ln(A)] [a b c] [1-Ln-I(A)] 
1-Ln (B) = d e f 1-Ln-I (B) . 
/-Ln(C) g h i f-Ln-I(C) 

r 
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Figure IX.256. This il-
lustrates the action of the 
Markov operator on one 
of the sequence of mea-
sures {Man (J.Lo)}, where 
J.Lo(•) = 1. When the 
Markov operator is ap-
plied, the "mass" in a cell 
.ij ... k = w i 0 w j 0 ... 0 

wk (•) is redistributed 
among the four cells 
w1 (•iJ ... k), w2(•iJ ... k), 
w3(•i) ... d, and w4(•i.i .. k). 
Also, mass from other 
cells is mapped into sub-
cells of •i.i ... k in such a 
way that the total mass of 
•iJ ... k remains the same as 
before the Markov oper-
ator was applied. In this 
manner the distribution 
of "mass" is defined on 
finer and finer scales as 
the Markov operator is 
repeatedly applied. 
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Figure IX.257. This 
sequence of figures repre-
sents successive measures 
produced by iterative ap-
plications of a Markov 
operator of the type con-
sidered in Figures IX.255 
and IX.256. The result 
of one application of the 
operator to the uniform 
measure on • is repre-
sented in (a). Figures (b), 
(c),· and (d) show the re-
sults of further successive 
applications of the Markov 
operator. The measures are 
represented in such a way 
as to keep the total number 
of dots constant. The mea-
sure of a set corresponds 
approximately to the num-
ber of dots it contains. 
This represents the first 
few of a sequence of mea-
sures that converges in the 
metric space (P(•), dH) 
to the invariant measure of 
the IFS. 

Figure IX.257. (b) 
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Figure IX.257. (c) 

Figure IX.257. (d) 
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Figure IX.258. This 
sequence of images re-
lates to the IPS {[0, 1] c 
IR; w1 (x) = (0.5)x, w2(x) 

= (0.7)x + 0.3, PI = 
0.45, p2 = 0.55}. The at-
tractor of the IPS is [0, 1]. 
Let M denote the associ-
ated Markov operator. Let 

fl-oE P([O, 1]) be the uni-
form measure on [0, 1]. 
The successive iterates 
M(/1-o), M 02 (/1-o), (a) 

Mo3(/1-o), and Mo4(J1-o) 

are represented in parts 
(a),(b),(c), and (d). Each 
measure is represented by 
a collection of rectangles 
whose bases are contained 

in the interval [0, 1]. The 
area of a rectangle equals 

the measure of the base of 

the rectangle. 

(b) 

(c) 
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Figure IX.258. (d) 
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Let M denote the 3 x 3 matrix here. Explain how M is related to M, and show that 
the invariant measure of the IFS can be described in terms of an eigenvector of M. 
6.8. Let 

{X; WI, Wz, ... , wN; PI, pz, ... , PN} 

be a hyperbolic IFS with probabilities. Let J-L denote the associated invariant mea-
sure. Let A denote the attractor of the IFS. Let f-LoE P(X) be such that J-Lo(A) = 1. 
By considering the sequence of measures {J-Ln = Man (J-Lo)}, prove that 

for all i, j, ... , k E { 1 , 2, ... , N} . 

Show that if the IFS is totally disconnected then the equality sign holds. 

Theorem 6.2 Let (X, d) be a compact metric space. Let 

{X; WI, wz, ... , wN; PI, pz, ... , PN} 

be a hyperbolic IFS with probabilities. Let J-L be the associated invariant measure. 
Then the support of 1-L is the attractor of the IFS {X; WI, w2, ... , w N}. 

Proof Let B denote the support of f-L. Then B is a nonempty compact subset of 
X. Let A denote the attractor of the IFS. Then 

{A; WI, Wz, ... , wN; PI, pz, ... , PN} 

is a hyperbolic IFS. Let v denote the invariant measure of the latter. Then v is also an 
invariant measure for the original IFS. So, since 1-L is unique, v =f-L. It follows that 
Be A. 

Let a EA. Let 0 be an open set that contains a. We will use the notation of 
Theorem 2.1 in Chal\ter IV. Let I; denote the code space associated with the IFS 
and let a E I; denote the address of a. It follows from Theorem 2.1 in Chapter IV 
that limn-+oo t/>(a, n, A)= a, where the convergence is in the Hausdorff metric. It 
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follows that there is a positive integer n so that <f>(a, n, A) c 0. But 

J.L(<f>(a, n, Pa1Pa2 •• ·Pan > 0. 

It follows that J.L(O) > 0. It follows that a is in the support of J.L. It follows that 
a E B. It follows that A c B. This completes the proof. 

Theorem 6.3 The Collage Theorem for Measures .. Let 

be a hyperbolic IFS with probabilities. Let J.L be the associated invariant measure. 
Lets E (0, 1) be a contractivity factor for the IFS. Let M: P(X)---+ P(X) be the 

associated Markov operator. Let v E P(X). Then 

. d (v ) < dH(v, M(v)). 
H ,J.L- (1-s) 

Proof This is a corollary of Theorem 6.1. 

We conclude this section with a description of the application of Theorem 6.3 to 
an inverse problem. The problem is to find an IFS with probabilities whose invariant 
measure, when represented by a set of dots, looks like a given texture. 

A measure supported on a subset of 2 such as • can be represented by a lot of 
black dots on a piece of white paper. Figures IX.248 and IX.250 provide examples. 
The dots may be granules of carbon attached to the paper by means of a laser printer. 
The number of dots inside any circle of radius t inch, say, should be approximately 
proportional to the measure of the corresponding ball in A gray-tone image in a 
newspaper is made of small dots and can be thought of as representing a measure. 

Let two such images, each consisting of the same number of points, be given. 
Then we expect that the degree to which they look alike corresponds to the Hutchin-
son distance between the corresponding measures. Let such an image, L, be given. 
We imagine that it corresponds to a measure v. Theorem 6.3 can be used to help to 
find a hyperbolic IFS with probabilities whose invariant measure, represented with 
dots, approximates the given image. Let N be a positive integer. Let w; : 

be an affine transformation, for i = 1, 2, ... , N. Let 

denote the sought-after IFS. Let M denote the associated Markov operator. 
Let p;&L mean the set of dots L after the "density of dots" has been decreased 

by a factor p;. For example 0.5&L means L after "every second dot" in L has been 
removed. The action of the Markov operator on vis represented by uf":: 1 w;(p;&L). 
This set consists of approximately the same number of dots as L. Then we seek 
contractive affine transformations and probabilities such that 

uf":: 1 w;(p;&L) L. (1) 
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That is, the coefficients that define the affine transformations and the probabilities 
must be adjusted so that the left-hand side "looks like" the original image. 

Suppose we have found an IFS with probabilities so that equation 1 is true. Then 
generate an image i of the invariant measure of the IFS, containing the same number 
of points as L. We expect that 

(2) 

If the maps are sufficiently contractive, then the meaning of should be the same 
in both equations 1 and 2. These ideas are illustrated in Figure IX.259. 

Examples & Exercises 
1 

6.9. Use the Collage Theorem for Measures to help find an IFS with probabilities 
for each of the images in Figures IX.260, IX.261, and IX.262. 

Figure IX.259. This 
illustration relates to the 
Collage Theorem for 
Measures. The shades 
of gray "add up" in the 
overlapping regions. 
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Figure IX.260. Can 
you find the IPS and prob-
abilities corresponding to 
this texture? 

Figure IX.261. Deter-
mine the IPS and probabil-
ities for this cloud texture. 
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Figure IX.262. Find 
the four affine maps and 
probabilities for this tex-
ture. 

6. 10. Estimate the probabilities and transformations used to make each part of 
Figure IX.248. 

6.11. Let 

be a hyperbolic IFS. Let 11- denote the invariant measure. Let A denote the attractor. 
Let :E denote the associated code space on the N symbols {1, 2, ... , N}. Let 1j: 
E--+ :E be defined by Ij(a) = ia, for all a E :E, fori= 1, 2, 3, 4. Let p denote the 
invariant measure for the hyperbolic IFS 

Let ¢ : :E --+ A denote the continuous map between code space and the attractor of 
the IFS intoduced in Theorem 4.2.1. Prove that p(¢-I(B)) = M(B) for all Borel 
subsets B of X. 

6.12. Figure IX.263 depicts the invariant measure for the IFS {[0, 1] C (x) = 
aix, w2(x) = a2x + e2; PI, 
P2}, where ai, a2, and e2 are real constants such that the attractor is contained in 

1 
[0, 1]. The measure of a Borel subset of [0, 1] is approximately the amount of black 
that lies "vertically" above it. Find a I, a2, and e2• 
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Figure IX.263. This 
figure depicts the invari-
ant measure for the IFS 
{[0, 1] c IR; w 1 (x) = 
a1x, Wz = azx + ez; 
PI· pz}, where a1, az, and 
e2 are real constants such 
that the attractor is con-
tained in [0, 1]. The mea-
sure of a Borel subset of 
[0, 1] is approximately the 
amount of black that lies 
"vertically" above it. Can 
you find a 1, a2, and ez? 

7 Elton's Theorem 

Both the following theorem and its corollary claim that certain events occur "with 

probability one." Although this has a very precise technical meaning, it is fineto in-

terpret it in the same way as you would interpret the statement "There is a 100% 

chance of rain tomorrow." After the statements we mention the mathematical frame-

work used for dealing with probabilistic statements. To go further we recommend 

reading parts of [Eisen 1969]. 
The theorem below is actually true when the Pi's are functions of x, the Wi 's are 

only contraction mappings "on the average," and the space is "locally" compact. 

Theorem 7. 1 Let (X, d) be· a compact metric space. Let 

be a hyperbolic IFS with probabilities. Let (X, d) be a compact metric space. Let 

denote an orbit of the IFS produced by the Random Iteration Algorithm, 

starting at xo. That is, 

where the maps are chosen independently according to the probabilities 

for n = 1, 2, 3, .... 
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Let J-L be the unique invariant measure for the /FS. Then with probability one (that 
is ,for all code sequences a 1, a2, ••• exceptfor a set of sequences having probability 
zero), 

1 n !. lim --L f(xk) = f(x) dJJ-(X) 
n-Hx:; n + 1 k=O x 

for all continuous functions f : X -+ IR{ and all xo. 

Proof See [Elton 1987]. 

Corollary 7.1 Let B be a Borel subset of X and let JJ-(boundary of B) = 0. Let 

N(B, n) = number of points in {xo, XI, x2, x 3, ... , Xn} n B, for n = 0, 1, 2, .... 

Then, with probability one, 

JJ-(B) = lim { N(B, n)} 
n-+oo (n + 1) 

for all starting points x0 . That is, the "mass" of B is the proportion of iteration steps, 
when running the Random Iteration Algorithm, which produce points in B. 

Let's explain more deeply the context of the statement "with probability one." Let 
I: denote the code space on theN symbols {1, 2, ... , N}. Let p denote the unique 
Borel measure on :E such that 

p(C(a1, a2, ... , am))= Pa1Pa2 ···Pam 

for each positive integer m and all a 1, a2, ... , am E {1, 2, ... , N}, where 

Then p E P(:E). This measure provides a means for assigning probabilities to sets 
of possible outcomes of applying the Random Iteration Algorithm. Let us see how 
this works. 

When the Random Iteration Algorithm is applied, an infinite sequence of symbols 
Wt. w2, w 3 , .. . , namely a code w = w 1w2w3 ... E :E, is generated. Provided that we 
keep x0 EX fixed, we can describe the probabilities of orbits {xn} in terms of the 
probabilities of codes w. So we examine how probabilities are associated to sets of 
codes. 

The Random Iteration Algorithm is applied and produces a code w E :E. What is 
the probability that WI = 1? Clearly it is p 1 = p(C(l)). What is the probability that 
WI = a I, w2 = a2, ... , and Wn = an? Because the symbols are chosen independently, 
it is 

p(C(a1, a2, ... , am))= Pa1Paz ···Pam· 
1 

Let B denote a Borel· subset of :E. What is the probability that the Random Itera-
tion Algorithm produces a code a E B? It is at least intuitively reasonable that it is 
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p(B). This can be formalized, see, for example [Eisen 1969]. The measure p pro-
vides a means of describing the probabilities of outcomes of the Random Iteration 
Algorithm. 

Here is a heavy way of stating the central part of Theorem 7 .1. " ... Let x0 E X. 
Let B c I: denote the set of codes a E I: such that 

1 n f. lim --L f(xk) = f(x) dJL(x), 
n---'>oo n + 1 k=O x 

for all x0 E X and all continuous functions f : X -+ IR(, where 

Then B is a Borel subset of I: and p(B) = 1." A similar heavy restatement of the 
corollary can be made. 

Examples & Exercises 
7. 1 . This example concerns the IPS 

1 1 1 
{[0, 1]; 2x, 2x + 2; 0.5, 0.5}. 

Show that the invariant measure JL is such that JL([x, x + 8]) = 6. when [x, x + 8] is 
a subinterval of [0, 1]. Deduce that iff : [0, 1] -+ IR( is a continuous function then 

{
1 
f(x) dx = { f dJL. lo lro.lJ 

Let f (x) = 1 + x 2 • Compute approximations to the latter integral with the aid of 
Elton's theorem and the Random Iteration Algorithm. Compare your results with the 
exact value 

7 .2. This example concerns the IPS 

{• C IR(2 ; W1, W2, W3, W4; 0.25, 0.25, 0.25, 0.25} 

corresponding to the collage in Figure IX.255(a). Let JL denote the invariant mea-
sure. Argue that JL is the uniform measure that assigns "measure" dxdy to an in-
finitesimal rectangularcell of side lengths dx and dy. Use Elton's theorem and the 
Random Iteration Algorithm to evaluate approximations to 

L (x 2 + 2xy + 3y2
) dxdy. 

Compare your approximations with the exact value. 

7 .3. This example concerns the IPS 

2. . 1 1 1 
{A C IR( , W1, W2, W3, 3' 3' 3 }, 

where 
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and A is the attractor of the IFS, our old friend. Let f.L denote the invariant measure 
ofthe IFS. Argue that JL provides a good concept of a "uniform" measure on A. Use 
Elton's theorem and the Random Iteration Algorithm to compute approximations to 

In Chapters II, III, and IV, we introduced the space 'EN of shifts on N symbols. 
It was mentioned in passing in Chapter IV that any invertible mixing function could 
be represented by a baker's transformation with "uneven cutting and stretching." We 
are now in a position to show how this comes about using an example involving two 
simple IFS. The same model with some necessary refinements yields the code space 
mixing model used to justify the representations. It is easier to visualize without the 
refinements, as we present it here. It is one of the most important properties involved 
with the modelling of physical chaos. 

We begin with perhaps the most simple of all IFS with probabilities. On the 
interval [0, 1], we define the just-touching IFS with N maps and with probabilities 

where 

1 
w1(x) = -x 

N 
1 1 

w2(x) = -x +-N N 
1 3 

W3(X) =-X+-N N 

and the probabilities are arbitrary, subject to the usual condition 

Associated with this IFS there is an invariant measure on [0, 1], which we denote 
by v. 

Now we define another IFS on [0, 1], this time without probabilities, using the p; 

from above. On [0, 1] define the IFS 

where 
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vi (x) =PIX 

v2(x) = P2X +PI 
V3(x) = P3X +(PI + P2) 

k-I 

vk(x) = PkX + L Pi 
i=l 

N-1 

VN(x) = PNX + L Pi· 
i=I 

This IFS is also just-touching by construction and, because the probabilities from the 

first IFS sum to one, has as its attractor the interval [0, 1] as well. We are going to 

use it to define an equivalent metric on [0, 1] as follows: 

Each point has a unique address under this IFS in code space, except the points 

vi(A), whose multiple addresses correspond to 

a = iN - 1 = (i + 1 )0. 

These are precisely the points in a base N. expansion of a real number which 

are equated to form the real line. We denote the value of a point x with address 

xix2x3 ... in this new metric space to be the real number with N-ary expansion 

.xix2x3 .. .. In effect we have given each point the numeric value that would corre-

spond to having measured its distance from say 0 with a ruler on which the spacing 

of the tick marks had been made uneven in a very specific way by the IFS. 

With these values, the space is still [0, 1], but we put a metric on it by assigning 

the distance between two real numbers to be the distance measured with a "normal" 

ruler. Another way to put it is that we take the normal interval [0, 1] and assign the 

distance between two points to be the distance between the addresses corresponding 

to their N-ary expansions in the above IFS. Thus if N = 10 for instance, the distance 

between .251 and .137 is not .251 - .137, but rather the distance between the points 

with addresses 2510 and 1370 in the IFS {[0, 1]; v1, v2 , .•. , v10}. We will call this 

space [0, 1]p, and the distance function dp to avoid confusion. 

We have a metric space, so we will now assign a Borel measure to it by defining 

fl,([a, b]) = M((a, b))= dp(a, b), which is uniform for this metric space. And to 

proceed with the example, we need a function, f: [0, 1]-+ [0, 1]p which we define 

by f(x) =(point with value x in [0, 1]p). Because the definition was very careful to 

preserve the ordering of the real line and its conventions about multiple addressing, 

f is both a homeomorphism and a metric equivalence. Because it is continuous, it 

is also what is called a measurable function in that if A E B([O, 1]p) then f-I(A) E 

B([O, 1 ]). 

7 .4. Show that f is measure-preserving with respect to the invariant measure on v 
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associated with 

{[0, 1]; WI, w2, ... , wN; PI, P2, ... , PN}; 

that is, that for any Borel subset A E [0, 1], we have v(A) = M(f(J\)). 

We now have the machinery to cast the Random Iteration Algorithm entirely in 
terms of IFS with no recourse to randomness. It is really a deterministic model, with 
the random part coming in to help when a very simple statement made all the time 
in mathematics turns out to be something a computer cannot do. 

The exact transfer of the Random Iteration Algorithm to the model using the 
space ([0, 1]p, dp) looks like this: define the function g: [0, 1] [0, l]p by 

dp(g(x), 0) = x. 

Define the map h: [0, 1]p {0, 1, 2, ... , N- 1} defined by h(p) = [Np] where 
[ ·] is the greatest integer function. In other words, take the first N-ary digit of the 
value of the point p E [0, 1]p. Define the map y : [0, 1] [0, 1] given by y(x) = 
N x mod N. Then the Random Iteration Algorithm is precisely the iteration of the 
map R: [0, 1] x X given by 

R(p, x) = (y(p), Whog(p)(x)). 

Where does the random part of the algorithm come in? We need it to "pick a real 
number." One can think of the random number at each iteration as a function to get 
the next digit of the real number we "picked." In the above expression, we get a 
random number and find out which function to use via h(g(p)). Then we iterate the 
IFS using whog(p)(x), and in order to have a new "random number" the next time, we 
advance p to the next digit using y(p ). 

Now, consider the space [0, 1]p x [0, 1]. Think of it as a square with coordinates 
spaced unevenly in the x direction and evenly in they direction. Your "usual" point 
in the square (where here usual means with probability one) has anN -ary expansion 
for y in which every digit occurs with equal probability, while the x value has an N-
ary expansion in which 0 occurs with probability PI, 1 occurs with probability p2, 
etc. 

7.5. Draw a diagonal from (0, 0) to (1, 1) on this square. Show that this statement 
is still true if we pick a "usual point" from this diagonal. 

7.6. Draw a smooth curve from (0, 0) to (1, 1) on the square. Then the statement is 
still true if we pick a "usual point" from this curve. 

By using the diagonal in exercise 7.5, we can take a point x in [0, 1] and map it to 
a new point x, by putting x along the vertical coordinate and reading the horizontal 
coordinate like a web diagram. In terms of all the functions we have defined, this 
operation is x = f-I (g(i)). Under the original IFS with probabilities, this new point 
will, with probability 1, have an orbit under the shift dynamical system {A; S} with a 
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distribution of dots identical to the one we would get by using the Random Iteration 

Algorithm with probabilities {p1, P2· ... , PNl· 

There seems to be a lot of mileage in this square with the strange coordinates. 

There should be; the uneven coordinates correspond to future cuts and stretches for 

the baker's transformation with uneven stretches and cuts. (A real baker's transfor-

mation would not use the just-touching IFS used here, but it's easier to visualize, 

·and for the most general case N is allowed to be infinite.) It is a mixing function, so 

it automatically satisfies the equation that results from Elton's theorem (a property 

called ergodicity). The theorem takes care of how little "hyperbolicity" an IFS can 

have and still retain this property. Alternatively, Elton's theorem can be viewed as a 

set of minimal requirements on the wi such that the baker's transformation as set up 

here accurately reflects the behavior of the IFS on addresses. 

8 Application to Computer Graphics 

We begin by illustrating how a color image of tbe invariant measure of an IFS with 

probabilities can be produced. The idea is very simple. We start from an IFS such as 

{C; 0.5z + 24 + 24i, 0.5z + 24i, 0.5z; 0.25, 0.25, 0.5}. 

A viewing window and a corresponding array of pixels Pij is specified. The Random 

Iteration Algorithm is applied to the IFS, to produce an orbit {Zn : n = 0, 1, ... , 

numits}, where numits is the number of iterations. For each (i, j) the number of 

points, N(Pij), which lie in the pixel Pij are counted. The pixel Pij is assigned the 

value N(Pij)jnumits. By Elton's theorem, if numits is large, this value should be a 

good approximation to the measure of the pixel. The pixels are plotted on the screen 

in colors determined from their measures. 

The following program implements this procedure. It is is written in BASIC. 

It runs without modification on an IBM PC with Enhanced Graphics Adaptor and 

Turbobasic. 

Program 1. (Uses the Random Iteration Algorithm to Make a "Picture" of the Invariant 

Measure Associated with an IFS with Probabilities) 

screen 9 : cls 'Initialize graphics. 

dim s(51,51) 'Allocate array of pixels. 

'IFS code for a Sierpinski triangle. 

a(1)=0.5 b(1)=0 c(1)=0 d(1)=0.5 

a(2)=0.5 b(2)=0 c(2)=0 d(2)=0.5 

e(1)=24 : f(1)=24 

e(2)=0 : f(2)=24 
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a(3)=0.5 : b(3)=0 : c(3)=0 : d(3)=0.5 : e(3)=0 : f(3)=0 

'Probabilities for the IFS; they must add to one! 
p(1)=0.25 : p(2)=.25 p(3)=.5 

mag=l 'Magnification factor. 

'Increase the number of iterations as you magnify. 
numits=5000 

factor =100 'Scales pixel values to color values. 

'This is the number of colors you are able to use. 
numcols=8 

for n=1 to numits 'Random iteration begins! 

r=rnd : k=1 'Pick a number in [0,1] at random. 

if r > p(1) then k=2 

if r > p(1)+p(2) then k=3 

'Map k is picked with probability p(k). 
newx=a[k]*x + b[k]*y + e[k] 
newy=c[k]*x + d[k]*y + f[k] 

x=newx : y=newy 

i=int(mag*x) : j=int(mag*y) 'Scale by magnification factor. 

if (((i < 50) and (i>=O))and((O=<j) and (j<50))) then 

'If the scaled value is· 

s ( i , j ) =s ( i , j ) + 1 
' ... in the array add one to pixel (i,j). 

end if 

pset(i,j) 'Plot the point. 

if instat then end 'Stop if a key is pressed. 

next 
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for i=O to 49 'Normalize values in pixel array, and plot ... 

for j=O to 49 ' ... in colors corresponding to the normalized ... 

' ... values of the numbers s(i,j). 
col=s(i,j)*numcols*factor*mag*mag/numits 

'Plot the pixel (i,j) in the color determined by ... 
pset(i,j),col 

next j ' ... its measure. 

next i 

end 

The program allows the user to zoom in on a piece of the rendered measure 
by altering the value of the magnification parameter mag. The result of running 
an adaptation of this program on a Masscomp workstation and then printing the 
contents of the graphics screen is shown in Figure IX.264. 

Rendered invariant measures for IFS's acting in are also shown in Fig-
ure IX.265. 

By carrying out some simple computergraphical experiments, using a program 
such as the one above, we discover that "pictures" of invariant measures of IFS's 
possess a number of properties. (i) Once the viewing window and color assignments 
have been fixed, the image produced is stable with respect to the number of itera-
tions, provided that the number of iterations is sufficiently large. (ii) Images vary 
consistently with respect to translation and rotation of the viewing window, and 
with respect to changes in resolution. In particular they vary consistently when they 
are magnified. (iii) The images depend continuously on the IFS code, including the 
probabilities. Property (i) ensures that the images are well defined. The properties in 
(ii) are also true for views of the real world seen through the viewfinder of a cam-
era. Property (iii) means that images can be controlled interactively. These properties 
suggest that IFS theory is applicable to computer graphics. 

We should, if we have done our measure theory homework, understand the rea-
sons for (i) and (ii). They are consequences of corresponding properties of Borel of 
measures on Property (iii) follows from a theorem by Withers [Withers 1987]. 

Examples & Exercises 
8. 1. Rewrite Program 1, section 8, in a form suitable for your own computer envi-
ronment. Adjust numits and factor to ensure that a stable image results. Then make 
experiments to verify that the conditions (i)-(iii) above are verified. For example, to 
test the consistency of images with respect to changes in resolution you should try 
mag= 0.5, 1, and 1.5. Unless you have a very powerful system, do not make ex-
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Figure IX.264. The 
result of running a mod-
ified version of Program 
9.8.1 and then printing 
the contents of the graph-
ics screen in gray tones. 
A rendered picture of a 
measure is the result. 

treme adjustments. For example, do not choose mag too small, otherwise you will 
need a very large value for numits . 

. Applications of fractal geometry to computer graphics have been investigated 
by a number of authors including Mandelbrot [Mandelbrot 1982], Kawaguchi 
[Kawaguchi 1982], Oppenheimer [Oppenheimer 1986], Fournier eta/. [Fournier 
1982], Smith [Smith 1984], Miller [Miller 1986], and Amburn eta/. [Amburn 1986]. 
In all cases the focus has been on the modelling of natural objects and scenes. Both 
deterministic and random geometries have been used. The application of IFS theory 
to computer graphics was first reviewed in [Demk 85]. It provides a single frame-
work that can reach an unlimited range of images. It is distinguished from other 
fractal approaches because it is the only one that uses measure theory. 

The-modelling of natural scenes is an important area of computer graphics. Pho-
tographs of natural sceqes contain redundant information in the form of subtle pat-
terns and variations. There are two characteristic features: (i) the presence of com-
plex geometrical structure and distributions of color and brightness at many scales; 
and (ii) the hierarchical layout of objects. (i) Natural boundaries and textures are not 

_j 



3 7 4 Chapter IX Measures on Fractals 

Figure IX.265. Ren-
dered invariant measures 
for IFS 's of two maps. 

(a) 

smoothed out under magnification; they preserve some degree of geometrical com-
plexity. (ii) Natural scenes are organized in hierarchical structures. For example, a 
forest is made of trees; a tree is a collection of boughs and limbs along a trunk; on 
each branch there are clusters of leaves; and a single leaf is filled with veins and 
covered with fine hairs. It appears often in a natural scene that a recognizable en-
tity is built up from numerous near repetitions of some smaller structure. These two 
observations can be integrated into systems for modelling images using IFS theory. 

Examples & Exercises 
8.2. Examine a good-quality color photograph of a natural scene, such as can be 
found in a Sierra Club calender, or an issue of National Geographic. Discuss the 
extent to which (i) and (ii) are true for that photograph. Be specific. 

1 
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In [Bamsley 1988a] it is reported that IFS theory can be used efficiently to model 
photographs of clouds, mountains, ferns, a field of sunflowers, a forest, seascapes 
and landscapes, a hat, the face of a girl, and a glaring arctic wolf. 

There are two parts to making any computer graphics image: geometrical mod-
elling and rendering. Consider an architect making a computergraphical house: first 
she defines the dimensions of the floor, the roof, the windows, the shapes of the 
gables, and so on, to produce the geometrical modeL Traditionally this is specified 
in terms of polygons, circles, and other classical geometrical objects that can be con-
veniently input to the computer. This model is not a picture. To make a picture, the 
model must be projected into two dimensions from a certain point of view and dis-
tance, discretized so that it can be represented with pixels, and finally rendered in 

a display device. 
Here we describe brjefly the software system designed by the author, Alan Sloan, 

and Laurie Reuter, which was used to produce the color images that accompany 

Figure IX.265. (b) 
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this section. More details can be found in [Reuter 1987] and [Barnsley 1988a]. The 
system consists of two subsystems known as Collage and Seurat. Collage is used for 
geometrical modelling, while Seurat is used for rendering. 

Collage and Seurat process IFS structures of the form 

where the maps are affine transformations in An IFS is represented by a file that 
consists of an IFS code, where each coefficient is written with a fixed number of bits 
Let JL denote the invariant measure of such an IFS and let A denote the attractor. 
The pair (A, JL) is referred to as an underlying model. The attractor A carries the 
geometry while JL carries the rendering information. One can think of the IFS code, 
or equivalently (A, JL), as being analagous to the plans of an architect. It corresponds 
to many different pictures. 

Collage is a geometrical modelling system used to determine the coefficients 
of the affine transformations w 1, w 2 , ... , WN. It is based on the Collage Theorem. 
Seurat is a software system for rendering images starting from an IFS code. An 
image is produced once a viewing window, color table, and resolution have been 
specified. This is achieved using the Random Iteration Algorithm. Its mathematical 
basis is Elton's Theorem. Seurat is also used in an interactive mode to determine the 
probabilities and color values. 

The input to Collage is a target image, which we denote here by T. For example, 
T may be a polygonal approximation to a leaf. We suppose that 

T C • = { (x, y) E 2 : 0 ::S X ::S 1, 0 ::S y ::S 1}, 

and that the screen of the computer display device corresponds to •· T is rendered 
on the graphics workstation monitor. An affine transformation 

is introduced, with coefficients initialized at a1 = d1 = 0.25, b1 = c1 = e 1 = f 1. The 
image w1 (T) is displayed on the monitor in a different color from T. w1 (T) is a 
quarter-sized copy of T, centered closer to the point (0, 0). The user now interac-
tively adjusts the coefficients with a mouse or some other interaction technique, so 
that the image w1 (T) is variously translated, rotated, and sheared on the screen. The 
goal of the user is to transform w 1 (T) so that it lies over part ofT. It is important that 
the dimensions of w1 (T) are smaller than those ofT, to ensure that w1 is a contrac-
tion. Once w 1 (T) is suitably positioned, it is fixed, and a new subcopy of the target, 
w2(T), is introduced. w2 is adjusted until w2(T) covers a subset of those pixels in 
T that are not in w 1 (T). Overlap between w1 (T) and w2(T) is allowed, but in gen-
eral it should be made as small as possible, for efficiency. New maps are added and 
adjusted until uf= 1 w j (T) is a good approximation to T. The output from Collage is 
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the resulting IFS code. The probability p j is chosen proportional to Ia jdj - b jC j I if 

this number is nonzero, and equal to a small positive number if the determinant of 

A j equals zero. 
The input to Seurat is one or more IFS codes generated by Collage. The view-

ing window and the number of iterations are specified by the user. The measures of 

the pixels are computed. The resulting numbers are multiplied by the inverse of the 

maximum value so that all of them lie in [0, 1]. Colors are assigned to numbers in 

[0, 1] using a color assignment function. The default is a gray scale where the inten-

sity is proportional to the number, such as 0 corresponds to black and 1 corresponds 

to brightest white. The coloring and texture of the image can be controlled through 

the probabilities and the color assignment function. Although one does not explic-

itly use it, Theorem 9.6.3 lies in the background and can help in the adjustment of 

the probabilities. 
Color Plate 21 shows some smoking chimneys in a landscape. We obtained the 

IFS codes for the elements of this image we obtained using Collage. Different color 

assignment functions are associated to different elements in the image. The image 

was rendered using Seurat. 
The consistency of images with respect to changes in resolution is illustrated in 

Color Plate 22, which shows a zoom on one of the smokestacks in Color Plate 21. 

The number of iterations must be increased with magnification to keep the number 

of points landing within the viewing window constant. This requirement ensures the 

consistency of the textures in an image throughout the magnification process. 

Color Plates 23 and 24 show various renderings of leaves produced by Seurat. 

Color Plate 25 shows a sequence of frames taken from an IFS encoded movie en-

titled A Cloud Study [Barnsley 1987]. The smooth transition from frame to frame is 

a consequence of the continuous dependence on parameters of the invariant measure 

of the IFS for the cloud. 
Color Plates 26, 27, and 28 were encoded from color photographs. Segmenta-

tion according to color was performed on the originals to define textured pieces. IFS 

codes for these components were obtained using Collage. The IFS data base con-

tained less than 180 maps for the Monterey seascape, and less than 160 maps for the 

Andes Indian girl. 
The two primitives, a leaf and a flower, in Color Plate 29 were used as condensa-

tion sets in the picture Sunflower Field, Color Plate 30. Here we see the hierarchical 

structure: the leaf is itself the attractor of an IFS; and the flower is an overlay of 

four IFS attractors. The leaf is a condensation set for the IFS that generates all of 

the leaves. The flower is a condensation set to an IFS that generates many flowers, 

converging to the horizon. In the pictures Sunflower Field and Black Forest, shown 

in Color Plates 31-34, the primitives were displayed from back to front. The data 

bases for the Sunflower Field and Black Forest contain less than 100 and 120 maps, 
1 

respectively. Notice the shadows behind fhe little trees in the background in Color 

Plate 32. The winter forest pictures were obtained by adjusting the color assignment 
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function. The important point is that once the adjustment has been made, the image 
and the zoom are consistent. 

E/amples & Exercises 
8.3. Use the Collage Theorem to help you find an IFS code for a leaf. Adjust 
your version of Program 1 in section 8 to allow you to render images of associated 
invariant measures. Assign colors in the range from red through orange to green. 
Adjust the probabilities. Obtain a spectacular color picture of the leaf showing the 
veins. Make a color slide of the output. To photograph a picture on the screen of a 
computergraphics monitor, use a telephoto lens. Mount the camera on a tripod, and 
take the photograph in a darkened room, on Ectachrome 64 ASA color slide film, 0.1 
sec exposure, f-stop 5.6. For possible publication, submit the color slide, together 
with a letter of copyright assignment, to Michael Bamsley, Iterated Systems, Inc., 
5550-A Peachtree Parkway, Suite 650, Norcross GA 30092 USA. Include a self-
addressed envelope. 

8.4. Obtain a very powerful computer with good graphics. Find the heirarchical 
IFS codes for the Sunflower Field. Replace the sunflowers by roses. Fly into your 
picture, to explore forever that scent-filled horizon. You are on your own. 


