Problem [HK] 7.1.1

Take any rational point $x=p / q$ with $\operatorname{gcd}(p, q)=1$. Then for any integer m, $m^{*} x \bmod 1$ is inside the finite set $\{0,1 / q, \ldots,(q-1) / q\}$. Hence, since $E_{-} m$ is a function (every input yields a unique output), there must be positive integers n and p such that $\left(E _m\right)^{\wedge} n(x)=\left(E _m\right)^{\wedge}(n+p)(x)=: y=\left(E _m\right)^{\wedge} p(y)$ (and hence that $y=\left(E _m\right)^{\wedge}\left(p^{*} k\right)(y)$ for all integer k positive.
7.1 .2

A rational point is periodic under Em \Leftrightarrow it has a periodic base-m expansion.
7.1.3 Let $m \in \mathbb{N}, m \geqslant 2$

We need to show, that $\left.P_{n}\left(E_{m}\right)=\mid-m\right)^{n}-1 \mid$ Now, if z is periodic with period n then

$$
\begin{aligned}
& z= E_{-m}^{n}(z)=z^{(-m)^{n}} \quad \text { and so } \\
& z^{(-m)^{n}-1}=1
\end{aligned}
$$

If n is even, then $(-m)^{n}=m^{n}>0$ and so we find that our periodic points are the roots of unity of order $m^{n}-1$ just as in the notes.

When n is odd, we have $(-m)^{n}=-\left(m^{n}\right)$, so'

$$
z^{-\left(m^{n}+1\right)}=1 \Leftrightarrow \frac{1}{z^{m^{n}+1}}=1
$$

But z solves this equation iff \bar{z} solves

$$
\bar{z}^{m^{n}+1}=2
$$

To see this first let $\bar{z}^{m^{n}+1}=2$. Then, as:

$$
\begin{aligned}
& z \cdot \bar{z}=4|z|^{2}=1 \\
\Rightarrow & \bar{z}=\frac{1}{z} \Rightarrow \bar{z}^{m}+1=\frac{1}{z^{m+1}}=1
\end{aligned}
$$

The other implication is similar. Hence the number of periodic points is the same as the number of roots of unity of order $m^{n}+1$, that is, $P_{n}\left(E_{-m}\right)=m^{n}+1$. But, since we hare $(-m)^{n}=-\left(m^{n}\right)$,

$$
m^{n}+1=\left|-\left(m^{n}\right)-1\right|=\left|(-m)^{n}-1\right|
$$

and we are done.
7.1 .4

Write $M P_{n}\left(f_{\lambda}\right)$ for the number of periodic points of minimal period n. Then,

$$
M P_{n}\left(f_{\lambda}\right)=P_{n}\left(f_{\lambda}\right)-\sum_{i \mid n} M P_{i}\left(f_{\lambda}\right)
$$

(where i / n means " i divides n ").
Using the result $P_{n}\left(f_{\lambda}\right)=2^{n}$, we can proceed as follows:

$$
\begin{aligned}
M P_{n}\left(f_{\lambda}\right) & =2^{n}-\sum_{i \mid n} M P_{i}\left(f_{\lambda}\right) \\
& \geqslant 2^{n}-\sum_{i \mid n} P_{i}\left(f_{\lambda}\right) \geqslant 2^{n}-\sum_{i=1}^{\lfloor n / 2\rfloor} P_{i}\left(f_{\lambda}\right) \\
& \geqslant 2^{n}-\lfloor n / 2\rfloor 2^{\lfloor n / 2\rfloor}
\end{aligned}
$$

If n is even, we have

$$
\begin{aligned}
\geqslant 2^{n}-n 2^{n / 2-1} & =2^{n / 2}\left(2^{n / 2}-n / 2\right) \\
& \geqslant 2
\end{aligned}
$$

If n is odd and $n \geqslant 3$, we have

$$
\begin{aligned}
M P_{n}\left(f_{\lambda}\right) & \geqslant 2^{n}-\frac{n-1}{2} 2^{\frac{n-1}{2}} \\
& =2^{\frac{n-1}{2}}\left(2 \cdot 2^{\frac{n-1}{2}}-\frac{n-1}{2}\right) \geqslant 6
\end{aligned}
$$

And $M P_{1}\left(f_{\lambda}\right)=P_{1}\left(f_{\lambda}\right)=2$, So we have $M P_{n}\left(f_{\lambda}\right) \geqslant 1 \quad \forall n \in \mathbb{N}$, as desired.

This map has uncountable many fixed points, Which are periodic with period n for all $n \in N$, so $P_{n}(f)>2^{n}$ for every n.

Remark: Note that f fails to be 'expanding' on $[0, z]$; this is why proposition 7.15 does not apply.
7.1 .6

Let $f(x)=\frac{1}{2} x(1-x)$

f has only the fixed point at zero. All other orbits tend to zero monotonically las can be seen via 'cobweb' diagrams' and So, are not periodic.
7.1 .7

Let $H:[0,1] \times s^{1} \rightarrow s^{1}$ be defined by

$$
H(t, x)=t E_{\operatorname{deg}(f)}(x)+(1-t) f(x)(\bmod 1)
$$

H is clearly cts as it is built from cts functions, and $H(0, x)=f(x)$,

$$
H(1, x)=E_{\operatorname{deg}(f)}
$$

Let us check that $H(t, \cdot)$ defines a map from $s^{1} \rightarrow s^{1}$ for each fixed t.

$$
\begin{aligned}
& H(t, 0)=t \times 0+(1-t) f(0)(\bmod 1), \\
& H(t, 1)=t \times \operatorname{deg}(f)+(1-t) f(1) . \quad(\bmod 1)
\end{aligned}
$$

Recalling the definition of degree, let F be a lift of f, and write

$$
\begin{aligned}
H(t, 1) & =t(F(1)-F(0))+(1-t) f(1)(\bmod 2) \\
& =t(F(1)-f(1))+f(1)-t F(0)(\bmod 2)
\end{aligned}
$$

but $[F(x)]=f([x])$, and $f(1)=f(0)$, we have

$$
H(t, 1)=f(0)(1-t)=H(t, 0) \text {, so }
$$

$H(t, \cdot): s^{1} \rightarrow s^{7}$ as desired

A homotopy H taking f to $E_{\text {def }}$, in the Case $\operatorname{deg}(f)=2$
7.1 .8

Assume for contradiction that $\operatorname{deg}(f)=m \neq n=\operatorname{dg}(g)$, \& $H(t, x):[0,1] \times s^{1} \rightarrow \delta^{2}$ a homotopy (cts deformation) from f to g.

Consider $d(t):=\operatorname{deg}(H(t, x)):[0, I] \longrightarrow \mathbb{Z}$. Since \mathbb{Z} is discrete, d not have at least one point of discontinuity $\tau \in(0,1)$ (if d were (ts, it would be constant, but $d(0) \neq d(1)$).
Fix $0<\varepsilon<\frac{1}{2}$.
For arbitrarily small $\delta>0,3 t_{1}, t_{2} \in B_{\delta}(\tau)$ with

$$
d\left(t_{i}\right)=d_{i}, \quad\left|d_{1}-d_{2}\right| \geqslant 1
$$

By continuity of H at (τ, x), there exists lifts L_{1}, L_{2} of $H\left(t_{1}, x\right), H\left(t_{2}, x\right)$ with

$$
\left\|L_{1}-L_{2}\right\|:=\sup _{x \in[0,1]}\left|L_{1}(x)-L_{2}(x)\right|<\varepsilon .
$$

But, since $L_{1}(1)-L_{1}(0)=d_{1}, L_{2}(1)-L_{2}(0)=d_{2}$,

$$
\begin{aligned}
& 1 \leqslant\left|d_{1}-d_{2}\right|=\left|L_{1}(1)-L_{2}(1)-L_{1}(0)+L_{2}(0)\right| \\
& \leqslant\left|L_{1}(1)-L_{2}(1)\right|+\underbrace{\left|L_{2}(0)-L_{1}(0)\right|}_{2}, \\
& \text { So we have }
\end{aligned}
$$

$$
\varepsilon<1-\varepsilon \leqslant\left|L_{1}(1)-L_{2}(1)\right| \leqslant\left\|L_{1}-L_{2}\right\|<\varepsilon
$$ a contradiction.

We've shown that H must have a discontinuity, so we can't find a cts deformation from f to g.
7.1 .9

If f is c^{1}, and has degree 2 , with 0 an attracting fixed point, then $P_{1}(f) \geqslant 3$:

Applying this reasoning to the iterates of f, (noting that $\left.\operatorname{deg}\left(f^{n}\right)=\operatorname{deg}(f)\right)^{n}$, and using the chain rule to see that 0 is stile an attracting fixed point), we obtain $P_{n}(f) \geqslant 2^{n}+2$, and hance the result.

