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[F03] 2.1: Let Uδ be the collection of δ-covers of F and Aδ the collection of
all closed δ- covers of F. Clearly Aδ ⊂ Uδ and hence Hs

δ (F )A ≥ Hs
δ (F )U. To

show Hs
δ (F )A ≤ Hs

δ (F )U we use that for any {Ui} ∈ U means that {cl(Ui)} ∈ A
and as |cl(Ui)| = |Ui| the result follows.

[F03] 2.2: Assume that F is finite let δ′ ≤ 1/2minx,y∈F {|x− y|} then we can
choose {Ui} a δ ≤ δ′-cover such that for each xi ∈ F we have a unique set Ui
such that xi ∈ Ui and i 6= j ⇒ Ui

⋂
Uj = ∅. Hence, as |Ui|0 = 1, the sum∑

|Ui|0 is the number of points in F for all δ ≤ δ′. Thus in the limit H0(F ) is
just the counting measure. If F is infinite then choose a sequence of subsets of
F denoted {Fi} such that each is finite and of cardinalilty i and also:

F1 ⊂ F2 ⊂ ... ⊂ Fi ⊂ ...

Hence H0(Fi) = i, so limi→∞H
0(Fi) = ∞. Thus as H0(Fi) ≤ H0(F ) we have

H0(F ) =∞.

[F03] 2.3: Any collection of sets cover the emptyset so clearly Hs(∅) = 0. If
Ui is a δ-cover of F then Ui is also a δ-cover of E. So the set of all δ covers
for F is contained in the set of all δ-covers for E and hence Hs(E) ≤ Hs(F ).
Finally we need to show:

Hs(

∞⋂
i=1

Fi) ≤
∞∑
i=1

Hs(Fi)

Assuming Hs(Fi) ≤ ∞ for all k. Given ε > 0, for each k there exists a δ-cover
{Uki } of Fk such that: ∑

i

|Uki |s < Hs
δ (Fk) + ε/2k

By summing through the k’s we get:∑
k

∑
i

|Uki |s <
∑
k

Hs
δ (Fk) + ε

The collection
⋃
k{Uki } is a cover of

⋃
k(Fk) and hence:

Hs
δ (
⋃
k

(Fk)) ≤
∑
k

∑
i

|Uki |s <
∑
k

Hs
δ (Fk) + ε
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Letting ε tend to zero we have for any δ > 0:

Hs
δ (
⋃
k

(Fk)) ≤
∑
k

Hs
δ (Fk)

thus
Hs(

⋃
k

(Fk)) ≤
∑
k

Hs(Fk)

[F03] 2.4: The claim is that 1/4 < H1([0, 1]) < 1. To see H1([0, 1]) < 1 we
choose a cover Ukj = [(k− 1)2−j , k2−j ]. Clearly there are |{Ukj }| = 2j sets each

of size |Ukj | = 2−j . Thus by choosing j large enough such that 2−j < δ we have

Hs
δ ([0, 1]) <

∑2j

k=0 |(Ukj )| =
∑2j

k=0 2−j = 2j2−j = 1. Thus Hs([0, 1]) < 1. To

see 1/4 < H1([0, 1]) we pick any δ-cover {Ui}. For each Ui there exists ki such
that 2−ki−1 ≤ |Ui| < 2−ki . In this case Ui can intersect with at most 2 of the
intervals [(k − 1)2−ki , k2−ki ]. If j > ki we can count up the maximum number
of intervals of diameter 2−j that Ui can intersect which we find to be:

21+j−ki = 2j+12−ki = 2j+22−ki−1 ≤ 2j+2|Ui|

hence by choosing j larger than any of the ki’s we can count up the intervals to
get:

2j ≤
∑
i

2j+2|Ui| ⇒ 2−2 ≤
∑
i

|Ui|

Hence as this is true for any δ-cover we have 1/4 < H1([0, 1]).

[F03] 2.5: F bounded means for some R > 0 and for all x ∈ F we have
|x| < R. So we have a closed interval [−R,R] such that F ⊂ [−R,R] and as
f cont.diff. we have f ′ is bounded in [−R,R], Let c = supa∈[−R,R](|f ′(a)|).
Clearly c > f ′(x) for all x ∈ F . For any a, b ∈ F with a < b we have by the
mean value theorem the existance of d such that d ∈ [a, b] and:

f(b)− f(a)

b− a
= f ′(d) ≤ c⇒ |f(b)− f(a)| ≤ c|b− a|

hence f is lipshitz and we have dimH(f(F )) ≤ dimH(F ). If F is not bounded
then we take the sequence of bounded sets Fi defined by x ∈ Fi iff x ∈ F and
|x| < i. Clearly Fi ⊂ Fi+1 and as limi→∞H

s(Fi) = Hs(
⋃∞
i=1)(Fi) we have:

limn→∞dimH(f(Fi)) ≤ limn→∞dimH(Fi)

taking limits:
dimH(f(F )) ≤ dimH(F )

[F03] 2.6: Consider the set Fi = Bi(0)
⋂
F B1/i(0) for i ∈ N. It’s clear that

f(x) is bi-lipshitz on Fi for all i with c1 = 2/i and c2 = 2i. Hence we have
DimH(f(Fi)) = DimH(Fi) for a i. Taking limits as in the last question we get
DimH(f(F )) = DimH(F ).
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[F03] 2.7: If {Ui} is a δ-cover for [0, 1] then clearly {Ui × f(Ui)} is a cover of
graph(f). As f is lipshitz we have |Ui×f(Ui)| ≤

√
|U2
i + c2|Ui|2| = |Ui|

√
1 + c2.

So
∑
i{Ui×f(Ui)} ≤

√
1 + c2

∑
i(|Ui|). HenceH1(graph(f)) ≤

√
1 + c2H1([0, 1]) =√

1 + c2 ⇒ DimH(graph(f)) ≤ 1. To see that DimH(graph(f)) ≥ 1 we con-
sider the projection π : R2 → R given by π(x, y) = x. This is lipshitz and so
we have: 1 = H1([0, 1]) = H1(π(graph(f))) ≤ H1(graph(f)) and the result
follows.

[F03] 2.8: In each case given any s > 0 choose a δ-cover {Ui} such that xi ∈ Ui
where xi is just the i− th element of F1 = {0, 1, ...} or F2 = {0, 2, 1/2, 1/3, ...}.
For i > 0 let |Ui| < δ/i2/s, and let |U0| < δ. Then in each case:

∑
i |Ui|s =∑∞

i=1(δ2/i2) + δ2 = δ2(1 +
∑∞
i=1 1/i2) = δ2π2/6. This means that Hs

δ (Fk) ≤
δ2π2/6→ 0 as δ → 0. Hence dimH(Fk) = 0.

[F03] 2.9: F Can be constructed similarly to the cantor set. You partition
[0, 1] into 10 intervals and remove the 5th. Then repeat for each of the 9 re-
maining intervals. Call the set resulting form the kth stage in this process the
kth layer. Notice that we can shrink F into any of the 9 intervals in the 2nd

layer. We then have:

Hs(F ) = Hs(S1(F )) + ...+Hs(S4(F )) +Hs(S6(F )) + ...+Hs(S10(F ))

Where Si is the map of [0, 1] onto [i/10, (i + 1)/10]. Clearly Hs(si(F )) =
(10−s)Hs(F ). From above we obtain Hs(F ) = 9.(10−s)Hs(F ). Assuming
Hs(F ) 6= 0 we get 1 = 9.(10−s). Hence DimH(F ) = s = log(9)/log(10).

[F03] 2.10: By a similar argument as above we can construct F by parti-
tioning [0, 1]× [0, 1] into 100 squares each with side 1/10 Then remove the 5th

column and row. Again repeat this process to obtain F . In this case Si,j con-
tracts [0, 1] × [0, 1] onto the (i, j)th square where i, j 6= 5. Hence there are
92 possible contractions S(i,j). Each contracts by 1/10 and we get (assuming
Hs(F ) 6= 0):

Hs(F ) = 92(1/10)sHs(F )⇒ 1 = 92(1/10)s ⇒ DimH(F ) = 2log(9)/log(10)

[F03] 2.11: Again similar to above but this time there are 5 contractions on
[0, 1] × [0, 1], 4 to each of the smaller squares each a contraction of 1/4, and 1
to the middle square, a contraction of 1/2 thus we have (assuming Hs(F ) 6= 0):

Hs(F ) = (1/2)sHs(F ) + 4(1/4)sHs(F )⇒ (1/2)s + 4(1/4)s − 1 = 0

Let x = 2−s then we have 4x2 + x− 1 = 0 the solns of which are x = −1±
√
17

8 .
Picking the positive root and solving for S we obtain:

s = log(
−1 +

√
17

8
)/log(1/2) ≈ 1.35702

[F03] 2.12: F satisfies S(F ) = F where S(x) = x+2. In fact F =
⋃∞
n=−∞ Sn(C)

where C is the normal cantor set on [0, 1]. Clearly dimH(Sn(C)) = dimH(C)
then by countable stability we have dimH(F ) = supn∈Z(dimH(Sn(C))) =
dimH(C).
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[F03] 2.13: Let Fk be all the x ∈ F such that for all l > k, x = 0.a0a1...ak...,
al 6= 1 and ak−1 = 1. Notice that F0 = C where C is the Cantor set. Similarly
F1 = 1/3C + 1/3 and F2 = {1/9C + 1/9}

⋃
{1/9C + 4/9}

⋃
{1/9C + 7/9}. In

general we have:

Fi =

3i−1−1⋃
j=0

{C
3i

+
1 + 3j

3i
}

Noticing this we see that you can map F onto any of the three [0, 1/3], [1/3, 2/3]
or [2/3, 1] with a contraction. Hence Hs(F ) = 3(1/3)sHs(F ) and so 1 = 3(1/3)s

which implies s = 1.

[F03] 2.14: By the same argument as questions 2.10,2.11 we find a map S
with contraction 1−λ

2 and hence Hs(S(F )) = (1−λ
2 )sHs(F ). We get Hs(F ) =

2( 1−λ
2 )sHs(F ) and assumeing Hs(F ) 6= 0 we get: 1 = 2( 1−λ

2 )s so dimH(F ) =

log2/log( 2
1−λ ). For E apply similar reasoning to Q2.10 to getHs(E) = 4(1−λ

2 )sHs(E)

and hence dimH(E) = log4/log( 2
1−λ ) = 2log2/log( 2

1−λ ).

[F03] 2.15: Partition [0, 1]× [0, 1] by 16 squares and shrink each to have sides
1/d. Then do repeat with each of these smaller squares and so on. The set F
obtained at the end of this process has dimension s(d) = 4log2/log(d) where
d ≥ 4. To see this we find an upper bound by looking at the cover of the kth

level of squares. Given δ > 0 choose k s.t. d−k < δ then:

Hs(F ) ≤
16k∑
i=0

|Ui|s = 16k(1/dk)s
√

2
s

=
√

2
4log(2)/log(d)

Next let {Ui} be any cover of F . Find ki such that
√

2d−ki−1 ≤ |Ui| ≤
√

2d−ki .
Thus Ui can intersect at most 4 of the 16ki kth level sets. If we choose j > ki
we have Ui intersects at most:

4.16j−ki = 4.16jd−ski = 4.16jdsd−(s(ki+1)) ≤ 4.16jds|Ui|s

By choosing j large enough such that d−(j+1) ≤ |Ui| for all Ui we have:

16j ≤
∑
i

4.16jds|Ui|s ⇒
∑
i

|Ui|s ≥
1

4ds
= 1/43

Hence we have:

1/43 ≤ Hs(F ) ≤
√

2
4log(2)/log(d)

[F03] 2.16: Let ϕ : [0, 1] → R2 be the parameterisation of the unit circle
around 0. ϕ(t) = (cos2πt, sin2πt). ϕ is bi-lipshitz on Ri = [1/2i, 1 − 1/2i].
write Fi = ϕ(C

⋂
Ri). Clearly Fi ⊂ F , Fi → F and as dimH(Fi) = dimH(C)

the result follows in taking the limit.
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