Answer Sheet 4

December 8, 2013
[F03] 2.1: Let \mathbb{U}_{δ} be the collection of δ-covers of F and \mathbb{A}_{δ} the collection of all closed δ - covers of F. Clearly $\mathbb{A}_{\delta} \subset \mathbb{U}_{\delta}$ and hence $H_{\delta}^{s}(F)_{\mathbb{A}} \geq H_{\delta}^{s}(F)_{\mathbb{U}}$. To show $H_{\delta}^{s}(F)_{\mathbb{A}} \leq H_{\delta}^{s}(F)_{\mathbb{U}}$ we use that for any $\left\{U_{i}\right\} \in \mathbb{U}$ means that $\left\{c l\left(U_{i}\right)\right\} \in \mathbb{A}$ and as $\left|c l\left(U_{i}\right)\right|=\left|U_{i}\right|$ the result follows.
[F03] 2.2: Assume that F is finite let $\delta^{\prime} \leq 1 / \min _{x, y \in F}\{|x-y|\}$ then we can choose $\left\{U_{i}\right\}$ a $\delta \leq \delta^{\prime}$-cover such that for each $x_{i} \in F$ we have a unique set U_{i} such that $x_{i} \in U_{i}$ and $i \neq j \Rightarrow U_{i} \cap U_{j}=\emptyset$. Hence, as $\left|U_{i}\right|^{0}=1$, the sum $\sum\left|U_{i}\right|^{0}$ is the number of points in F for all $\delta \leq \delta^{\prime}$. Thus in the limit $H^{0}(F)$ is just the counting measure. If F is infinite then choose a sequence of subsets of F denoted $\left\{F_{i}\right\}$ such that each is finite and of cardinalilty i and also:

$$
F_{1} \subset F_{2} \subset \ldots \subset F_{i} \subset \ldots
$$

Hence $H^{0}\left(F_{i}\right)=i$, so $\lim _{i \rightarrow \infty} H^{0}\left(F_{i}\right)=\infty$. Thus as $H^{0}\left(F_{i}\right) \leq H^{0}(F)$ we have $H^{0}(F)=\infty$.
[F03] 2.3: Any collection of sets cover the emptyset so clearly $H^{s}(\emptyset)=0$. If U_{i} is a δ-cover of F then U_{i} is also a δ-cover of E. So the set of all δ covers for F is contained in the set of all δ-covers for E and hence $H^{s}(E) \leq H^{s}(F)$. Finally we need to show:

$$
H^{s}\left(\bigcap_{i=1}^{\infty} F_{i}\right) \leq \sum_{i=1}^{\infty} H^{s}\left(F_{i}\right)
$$

Assuming $H^{s}\left(F_{i}\right) \leq \infty$ for all k. Given $\epsilon>0$, for each k there exists a δ-cover $\left\{U_{i}^{k}\right\}$ of F_{k} such that:

$$
\sum_{i}\left|U_{i}^{k}\right|^{s}<H_{\delta}^{s}\left(F_{k}\right)+\epsilon / 2^{k}
$$

By summing through the k 's we get:

$$
\sum_{k} \sum_{i}\left|U_{i}^{k}\right|^{s}<\sum_{k} H_{\delta}^{s}\left(F_{k}\right)+\epsilon
$$

The collection $\bigcup_{k}\left\{U_{i}^{k}\right\}$ is a cover of $\bigcup_{k}\left(F_{k}\right)$ and hence:

$$
H_{\delta}^{s}\left(\bigcup_{k}\left(F_{k}\right)\right) \leq \sum_{k} \sum_{i}\left|U_{i}^{k}\right|^{s}<\sum_{k} H_{\delta}^{s}\left(F_{k}\right)+\epsilon
$$

Letting ϵ tend to zero we have for any $\delta>0$:

$$
H_{\delta}^{s}\left(\bigcup_{k}\left(F_{k}\right)\right) \leq \sum_{k} H_{\delta}^{s}\left(F_{k}\right)
$$

thus

$$
H^{s}\left(\bigcup_{k}\left(F_{k}\right)\right) \leq \sum_{k} H^{s}\left(F_{k}\right)
$$

[F03] 2.4: The claim is that $1 / 4<H^{1}([0,1])<1$. To see $H^{1}([0,1])<1$ we choose a cover $U_{j}^{k}=\left[(k-1) 2^{-j}, k 2^{-j}\right]$. Clearly there are $\left|\left\{U_{j}^{k}\right\}\right|=2^{j}$ sets each of size $\left|U_{j}^{k}\right|=2^{-j}$. Thus by choosing j large enough such that $2^{-j}<\delta$ we have $H_{\delta}^{s}([0,1])<\sum_{k=0}^{2^{j}}\left|\left(U_{j}^{k}\right)\right|=\sum_{k=0}^{2^{j}} 2^{-j}=2^{j} 2^{-j}=1$. Thus $H^{s}([0,1])<1$. To see $1 / 4<H^{1}([0,1])$ we pick any δ-cover $\left\{U_{i}\right\}$. For each U_{i} there exists k_{i} such that $2^{-k_{i}-1} \leq\left|U_{i}\right|<2^{-k_{i}}$. In this case U_{i} can intersect with at most 2 of the intervals $\left[(k-1) 2^{-k_{i}}, k 2^{-k_{i}}\right]$. If $j>k_{i}$ we can count up the maximum number of intervals of diameter 2^{-j} that U_{i} can intersect which we find to be:

$$
2^{1+j-k_{i}}=2^{j+1} 2^{-k_{i}}=2^{j+2} 2^{-k_{i}-1} \leq 2^{j+2}\left|U_{i}\right|
$$

hence by choosing j larger than any of the k_{i} 's we can count up the intervals to get:

$$
2^{j} \leq \sum_{i} 2^{j+2}\left|U_{i}\right| \Rightarrow 2^{-2} \leq \sum_{i}\left|U_{i}\right|
$$

Hence as this is true for any δ-cover we have $1 / 4<H^{1}([0,1])$.
[F03] 2.5: F bounded means for some $R>0$ and for all $x \in F$ we have $|x|<R$. So we have a closed interval $[-R, R]$ such that $F \subset[-R, R]$ and as f cont.diff. we have f^{\prime} is bounded in $[-R, R]$, Let $c=\sup _{a \in[-R, R]}\left(\left|f^{\prime}(a)\right|\right)$. Clearly $c>f^{\prime}(x)$ for all $x \in F$. For any $a, b \in F$ with $a<b$ we have by the mean value theorem the existance of d such that $d \in[a, b]$ and:

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(d) \leq c \Rightarrow|f(b)-f(a)| \leq c|b-a|
$$

hence f is lipshitz and we have $\operatorname{dim}_{H}(f(F)) \leq \operatorname{dim}_{H}(F)$. If F is not bounded then we take the sequence of bounded sets F_{i} defined by $x \in F_{i}$ iff $x \in F$ and $|x|<i$. Clearly $F_{i} \subset F_{i+1}$ and as $\lim _{i \rightarrow \infty} H^{s}\left(F_{i}\right)=H^{s}\left(\bigcup_{i=1}^{\infty}\right)\left(F_{i}\right)$ we have:

$$
\lim _{n \rightarrow \infty} \operatorname{dim}_{H}\left(f\left(F_{i}\right)\right) \leq \lim _{n \rightarrow \infty} \operatorname{dim}_{H}\left(F_{i}\right)
$$

taking limits:

$$
\operatorname{dim}_{H}(f(F)) \leq \operatorname{dim}_{H}(F)
$$

[F03] 2.6: Consider the set $F_{i}=B_{i}(0) \bigcap F B_{1 / i}(0)$ for $i \in \mathbb{N}$. It's clear that $f(x)$ is bi-lipshitz on F_{i} for all i with $c_{1}=2 / i$ and $c_{2}=2 i$. Hence we have $\operatorname{Dim}_{H}\left(f\left(F_{i}\right)\right)=\operatorname{Dim}_{H}\left(F_{i}\right)$ for a i. Taking limits as in the last question we get $\operatorname{Dim}_{H}(f(F))=\operatorname{Dim}_{H}(F)$.
[F03] 2.7: If $\left\{U_{i}\right\}$ is a δ-cover for $[0,1]$ then clearly $\left\{U_{i} \times f\left(U_{i}\right)\right\}$ is a cover of $\operatorname{graph}(f)$. As f is lipshitz we have $\left|U_{i} \times f\left(U_{i}\right)\right| \leq \sqrt{\left.\left|U_{i}^{2}+c^{2}\right| U_{i}\right|^{2} \mid}=\left|U_{i}\right| \sqrt{1+c^{2}}$. So $\sum_{i}\left\{U_{i} \times f\left(U_{i}\right)\right\} \leq \sqrt{1+c^{2}} \sum_{i}\left(\left|U_{i}\right|\right)$. Hence $H^{1}(\operatorname{graph}(f)) \leq \sqrt{1+c^{2}} H^{1}([0,1])=$ $\sqrt{1+c^{2}} \Rightarrow \operatorname{Dim}_{H}(\operatorname{graph}(f)) \leq 1$. To see that $\operatorname{Dim}_{H}(\operatorname{graph}(f)) \geq 1$ we consider the projection $\pi: \mathbb{R}^{\nvdash} \rightarrow \mathbb{R}$ given by $\pi(x, y)=x$. This is lipshitz and so we have: $1=H^{1}([0,1])=H^{1}(\pi(\operatorname{graph}(f))) \leq H^{1}(\operatorname{graph}(f))$ and the result follows.
[F03] 2.8: In each case given any $s>0$ choose a δ-cover $\left\{U_{i}\right\}$ such that $x_{i} \in U_{i}$ where x_{i} is just the $i-t h$ element of $F_{1}=\{0,1, \ldots\}$ or $F_{2}=\{0,2,1 / 2,1 / 3, \ldots\}$. For $i>0$ let $\left|U_{i}\right|<\delta / i^{2 / s}$, and let $\left|U_{0}\right|<\delta$. Then in each case: $\sum_{i}\left|U_{i}\right|^{s}=$ $\sum_{i=1}^{\infty}\left(\delta^{2} / i^{2}\right)+\delta^{2}=\delta^{2}\left(1+\sum_{i=1}^{\infty} 1 / i^{2}\right)=\delta^{2} \pi^{2} / 6$. This means that $H_{\delta}^{s}\left(F_{k}\right) \leq$
$\delta^{2} \pi^{2} / 6 \rightarrow 0$ $\delta^{2} \pi^{2} / 6 \rightarrow 0$ as $\delta \rightarrow 0$. Hence $\operatorname{dim}_{H}\left(F_{k}\right)=0$.
[F03] 2.9: F Can be constructed similarly to the cantor set. You partition $[0,1]$ into 10 intervals and remove the 5 th. Then repeat for each of the 9 remaining intervals. Call the set resulting form the $k^{t h}$ stage in this process the $k^{t h}$ layer. Notice that we can shrink F into any of the 9 intervals in the $2^{\text {nd }}$ layer. We then have:

$$
H^{s}(F)=H^{s}\left(S_{1}(F)\right)+\ldots+H^{s}\left(S_{4}(F)\right)+H^{s}\left(S_{6}(F)\right)+\ldots+H^{s}\left(S_{10}(F)\right)
$$

Where S_{i} is the map of $[0,1]$ onto $[i / 10,(i+1) / 10]$. Clearly $H^{s}\left(s_{i}(F)\right)=$ $\left(10^{-s}\right) H^{s}(F)$. From above we obtain $H^{s}(F)=9 .\left(10^{-s}\right) H^{s}(F)$. Assuming $H^{s}(F) \neq 0$ we get $1=9 .\left(10^{-s}\right)$. Hence $\operatorname{Dim}_{H}(F)=s=\log (9) / \log (10)$.
[F03] 2.10: By a similar argument as above we can construct F by partitioning $[0,1] \times[0,1]$ into 100 squares each with side $1 / 10$ Then remove the $5^{\text {th }}$ column and row. Again repeat this process to obtain F. In this case $S_{i, j}$ contracts $[0,1] \times[0,1]$ onto the $(i, j)^{t h}$ square where $i, j \neq 5$. Hence there are 9^{2} possible contractions $S_{(i, j)}$. Each contracts by $1 / 10$ and we get (assuming $\left.H^{s}(F) \neq 0\right):$

$$
H^{s}(F)=9^{2}(1 / 10)^{s} H^{s}(F) \Rightarrow 1=9^{2}(1 / 10)^{s} \Rightarrow \operatorname{Dim}_{H}(F)=2 \log (9) / \log (10)
$$

[F03] 2.11: Again similar to above but this time there are 5 contractions on $[0,1] \times[0,1], 4$ to each of the smaller squares each a contraction of $1 / 4$, and 1 to the middle square, a contraction of $1 / 2$ thus we have (assuming $H^{s}(F) \neq 0$):

$$
H^{s}(F)=(1 / 2)^{s} H^{s}(F)+4(1 / 4)^{s} H^{s}(F) \Rightarrow(1 / 2)^{s}+4(1 / 4)^{s}-1=0
$$

Let $x=2^{-s}$ then we have $4 x^{2}+x-1=0$ the solns of which are $x=\frac{-1 \pm \sqrt{17}}{8}$. Picking the positive root and solving for S we obtain:

$$
s=\log \left(\frac{-1+\sqrt{17}}{8}\right) / \log (1 / 2) \approx 1.35702
$$

[F03] 2.12: $\quad F$ satisfies $S(F)=F$ where $S(x)=x+2$. In fact $F=\bigcup_{n=-\infty}^{\infty} S^{n}(C)$ where C is the normal cantor set on $[0,1]$. Clearly $\operatorname{dim}_{H}\left(S^{n}(C)\right)=\operatorname{dim}_{H}(C)$ then by countable stability we have $\operatorname{dim}_{H}(F)=\sup _{n \in \mathbb{Z}}\left(\operatorname{dim}_{H}\left(S^{n}(C)\right)\right)=$ $\operatorname{dim}_{H}(C)$.
[F03] 2.13: Let F_{k} be all the $x \in F$ such that for all $l>k, x=0 . a_{0} a_{1} \ldots a_{k} \ldots$, $a_{l} \neq 1$ and $a_{k-1}=1$. Notice that $F_{0}=C$ where C is the Cantor set. Similarly $F_{1}=1 / 3 C+1 / 3$ and $F_{2}=\{1 / 9 C+1 / 9\} \bigcup\{1 / 9 C+4 / 9\} \bigcup\{1 / 9 C+7 / 9\}$. In general we have:

$$
F_{i}=\bigcup_{j=0}^{3^{i-1}-1}\left\{\frac{C}{3^{i}}+\frac{1+3 j}{3^{i}}\right\}
$$

Noticing this we see that you can map F onto any of the three $[0,1 / 3],[1 / 3,2 / 3]$ or $[2 / 3,1]$ with a contraction. Hence $H^{s}(F)=3(1 / 3)^{s} H^{s}(F)$ and so $1=3(1 / 3)^{s}$ which implies $s=1$.
[F03] 2.14: By the same argument as questions $2.10,2.11$ we find a map S with contraction $\frac{1-\lambda}{2}$ and hence $H^{s}(S(F))=\left(\frac{1-\lambda}{2}\right)^{s} H^{s}(F)$. We get $H^{s}(F)=$ $2\left(\frac{1-\lambda}{2}\right)^{s} H^{s}(F)$ and assumeing $H^{s}(F) \neq 0$ we get: $1=2\left(\frac{1-\lambda}{2}\right)^{s}$ so $\operatorname{dim}_{H}(F)=$ $\log 2 / \log \left(\frac{2}{1-\lambda}\right)$. For E apply similar reasoning to Q2.10 to get $H^{s}(E)=4\left(\frac{1-\lambda}{2}\right)^{s} H^{s}(E)$ and hence $\operatorname{dim}_{H}(E)=\log 4 / \log \left(\frac{2}{1-\lambda}\right)=2 \log 2 / \log \left(\frac{2}{1-\lambda}\right)$.
[F03] 2.15: Partition $[0,1] \times[0,1]$ by 16 squares and shrink each to have sides $1 / d$. Then do repeat with each of these smaller squares and so on. The set F obtained at the end of this process has dimension $s(d)=4 \log 2 / \log (d)$ where $d \geq 4$. To see this we find an upper bound by looking at the cover of the $k^{t h}$ level of squares. Given $\delta>0$ choose k s.t. $d^{-k}<\delta$ then:

$$
H^{s}(F) \leq \sum_{i=0}^{16^{k}}\left|U_{i}\right|^{s}=16^{k}\left(1 / d^{k}\right)^{s} \sqrt{2}^{s}=\sqrt{2}^{4 \log (2) / \log (d)}
$$

Next let $\left\{U_{i}\right\}$ be any cover of F. Find k_{i} such that $\sqrt{2} d^{-k_{i}-1} \leq\left|U_{i}\right| \leq \sqrt{2} d^{-k_{i}}$. Thus U_{i} can intersect at most 4 of the $16^{k_{i}} k^{t h}$ level sets. If we choose $j>k_{i}$ we have U_{i} intersects at most:

$$
4.16^{j-k_{i}}=4.16^{j} d^{-s k_{i}}=4.16^{j} d^{s} d^{-\left(s\left(k_{i}+1\right)\right)} \leq 4.16^{j} d^{s}\left|U_{i}\right|^{s}
$$

By choosing j large enough such that $d^{-(j+1)} \leq\left|U_{i}\right|$ for all U_{i} we have:

$$
16^{j} \leq \sum_{i} 4.16^{j} d^{s}\left|U_{i}\right|^{s} \Rightarrow \sum_{i}\left|U_{i}\right|^{s} \geq \frac{1}{4 d^{s}}=1 / 4^{3}
$$

Hence we have:

$$
1 / 4^{3} \leq H^{s}(F) \leq \sqrt{2}^{4 \log (2) / \log (d)}
$$

[F03] 2.16: Let $\varphi:[0,1] \rightarrow \mathbb{R}^{2}$ be the parameterisation of the unit circle around $0 . \varphi(t)=(\cos 2 \pi t, \sin 2 \pi t)$. φ is bi-lipshitz on $R_{i}=\left[1 / 2^{i}, 1-1 / 2^{i}\right]$. write $F_{i}=\varphi\left(C \bigcap R_{i}\right)$. Clearly $F_{i} \subset F, F_{i} \rightarrow F$ and as $\operatorname{dim}_{H}\left(F_{i}\right)=\operatorname{dim}_{H}(C)$ the result follows in taking the limit.

