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[F03] 2.1: Let Us be the collection of d-covers of F and As the collection of
all closed ¢- covers of F. Clearly A; C Us and hence H§(F)y > H§(F)y. To
show H(F)s < H{(F)y we use that for any {U;} € U means that {cl(U;)} € A
and as |cl(U;)| = |U;]| the result follows.

[FO3] 2.2: Assume that F' is finite let &' < 1/2min, yer{|x —y|} then we can
choose {U;} a § < §’-cover such that for each x; € F we have a unique set Uj;
such that z; € U; and i # j = U;(\U; = 0. Hence, as |U;|® = 1, the sum
S |U;|° is the number of points in F for all § < ¢’. Thus in the limit H°(F) is
just the counting measure. If F' is infinite then choose a sequence of subsets of
F denoted {F;} such that each is finite and of cardinalilty 7 and also:

FrcFkC...CF;,C..

Hence HO(F;) = i, so lim;_,oo H*(F;) = co. Thus as H°(F;) < H°(F) we have
HO(F) = oo.

[FO3] 2.3: Any collection of sets cover the emptyset so clearly H*() = 0. If
U; is a d-cover of F' then U; is also a d-cover of E. So the set of all § covers
for F' is contained in the set of all d-covers for E and hence H*(E) < H*(F).
Finally we need to show:

HY((F) < ZHS(FZ-)

=1

Assuming H?(F;) < oo for all k. Given € > 0, for each k there exists a d-cover
{UF} of Fj, such that:

Y IUFP < Hy(Fy) + /28
By summing through the k’s we get:
DD UFE <Y HE(Fy) +e
ki k
The collection |J,{UF} is a cover of | J, (Fy) and hence:

Hy(JF)) < DD IUF) <Y Hi(Fi) +e
! PR k



Letting € tend to zero we have for any 6 > 0:

m(JE) < 3 Hi (R
k

k

thus

() <> H (F)

k k

[FO3] 2.4: The claim is that 1/4 < H([0,1]) < 1. To see H'([0,1]) < 1 we
choose a cover UF = [(k —1)277,k277]. Clearly there are [{U}}| = 27 sets each
of size |U]’-“| = 277, Thus by choosing j large enough such that 277 < § we have
H(0,1)) < X2 0 |(UF)] = X2 277 = 27277 = 1. Thus H*([0,1]) < 1. To
see 1/4 < H'(]0,1]) we pick any d-cover {U;}. For each U; there exists k; such
that 27%i=1 < |U;| < 27%i. In this case U; can intersect with at most 2 of the
intervals [(k — 1)27% k27%:]. If j > k; we can count up the maximum number
of intervals of diameter 277 that U; can intersect which we find to be:

ol+i—ki _ 9jt+lo—ki _ 9j+29—ki—1 < 2j+2|Ui|
hence by choosing j larger than any of the k;’s we can count up the intervals to
get:
V<N VU =272 <) (U
i i
Hence as this is true for any d-cover we have 1/4 < H*(]0, 1]).

[FO3] 2.5: F bounded means for some R > 0 and for all z € F we have
|z| < R. So we have a closed interval [—R, R] such that F' C [—R, R| and as
f cont.diff. we have f’ is bounded in [~R, R], Let ¢ = sup,c[—r,r)(|f'(a)]).
Clearly ¢ > f’(z) for all z € F. For any a,b € F with a < b we have by the
mean value theorem the existance of d such that d € [a, b] and:

f(b) = f(a)

2 pd) e I£0) - f@)] < - al

hence f is lipshitz and we have dimg(f(F)) < dimg(F). If F is not bounded
then we take the sequence of bounded sets F; defined by =z € F; iff z € F' and
|z| < i. Clearly F; C Fiy1 and as lim; oo H(F;) = H*(U; ) (F;) we have:

limp—oodimp (f(F;)) < limy,—oodimp (F)

taking limits:
dimp (f(F)) < dimpy (F)

[FO3] 2.6: Consider the set F; = B;(0) () F' By;(0) for i € N. It’s clear that
f(z) is bi-lipshitz on F; for all ¢ with ¢; = 2/i and ¢; = 2i. Hence we have
Dimpy(f(F;)) = Dimg(F;) for a i. Taking limits as in the last question we get
Dimu(f(F)) = Dimu(F).



[F03] 2.7: If {U;} is a d-cover for [0,1] then clearly {U; x f(U;)} is a cover of
graph(f). As f is lipshitz we have |U; x f(U;)| < \/|U? + 2|U;|?| = |U;|vV1 + 2.
So X {Uix f(Ui)} < V1+ ¢ 32,(|Ui]). Hence H' (graph(f)) < V1+c2H'([0,1]) =
V142 = Dimg(graph(f)) < 1. To see that Dimg(graph(f)) > 1 we con-
sider the projection 7 : R¥ — R given by 7(x,y) = 2. This is lipshitz and so
we have: 1 = H1([0,1]) = HY(w(graph(f))) < H'(graph(f)) and the result
follows.

[F03] 2.8: 1In each case given any s > 0 choose a d-cover {U; } such that z; € U;
where z; is just the ¢ — th element of F; = {0,1,...} or F» ={0,2,1/2,1/3,...}.
For i > 0 let |U;| < 6/i%*, and let |Up| < 6. Then in each case: 3, |U;|* =
Yoo (6%/i%) + 6% = 6%(1 4+ Y ooy 1/i%) = 62m?/6. This means that Hj(Fy) <
§2m2/6 — 0 as § — 0. Hence dimpy (Fy) = 0.

[F03] 2.9: F Can be constructed similarly to the cantor set. You partition
[0,1] into 10 intervals and remove the 5th. Then repeat for each of the 9 re-
maining intervals. Call the set resulting form the k' stage in this process the
kth layer. Notice that we can shrink F into any of the 9 intervals in the 27¢
layer. We then have:

HS(F) = H*(Sy(F)) 4 ... + H*(84(F)) 4+ H*(S¢(F)) + ... + H*(S10(F))

6(F
Where S; is the map of [0,1] onto [i/10, (i + 1)/10]. Clearly Hs(si(F)) =
(107°)H*(F). From above we obtain H*(F) = 9.(107°)H*(F). Assuming
H*(F) # 0 we get 1 =9.(10"*). Hence Dimp(F) = s =log(9)/log(10).

[F03] 2.10: By a similar argument as above we can construct F' by parti-
tioning [0, 1] x [0, 1] into 100 squares each with side 1/10 Then remove the 5"
column and row. Again repeat this process to obtain /. In this case S; ; con-
tracts [0,1] x [0,1] onto the (i,)!" square where 7,7 # 5. Hence there are
92 possible contractions S(; ;). Each contracts by 1/10 and we get (assuming

H*(F) #0):
H*(F) = 9%(1/10)*H*(F) = 1 = 9%(1/10)* = Dimy(F) = 2log(9)/log(10)
[FO3] 2.11: Again similar to above but this time there are 5 contractions on

[0,1] x [0,1], 4 to each of the smaller squares each a contraction of 1/4, and 1
to the middle square, a contraction of 1/2 thus we have (assuming H*(F') # 0):

H(F) = (1/2) H*(F) + 4(1/4)*H*(F) = (1/2)° + 4(1/4)* —1 =0

Let & = 27° then we have 422 + z — 1 = 0 the solns of which are z = _Hg\/ﬁ.
Picking the positive root and solving for S we obtain:
14+ V17

s = log(_T)/log(l/Q) ~ 1.35702

[F03] 2.12: F satisfies S(F) = F where S(z) = 2+2. Infact F = ;- ___ S"(CO)
where C is the normal cantor set on [0,1]. Clearly dimg(S™(C)) = dimy(C)
then by countable stability we have dimpg(F) = suppez(dimpy(S™(C))) =



[FO3] 2.13: Let F) be all the z € F such that for all [ > k, x = 0.apa;...ak...,
a; # 1 and a1 = 1. Notice that Fy = C where C is the Cantor set. Similarly
Fy =1/3C +1/3 and F, = {1/9C + 1/9} {1/9C + 4/9} | J{1/9C + 7/9}. In
general we have:

3i-1_1 .

C 1+43j
Fi = U {§+ 3i h
=0

Noticing this we see that you can map F' onto any of the three [0,1/3],[1/3,2/3]
or [2/3,1] with a contraction. Hence H*(F) = 3(1/3)*H*(F) and so 1 = 3(1/3)®
which implies s = 1.

[FO3] 2.14: By the same argument as questions 2.10,2.11 we find a map S
with contraction 152 and hence H*(S(F)) = (152)*H*(F). We get H*(F) =
2(152)*H*(F) and assumeing H*(F) # 0 we get: 1 = 2(352)% so dimpy(F) =
log2/log(125). For E apply similar reasoning to Q2.10 to get H*(E) = 4(352)*H*(E)

and hence dimgy (E) = 1094/109(%) - 2l092/log($).

[F03] 2.15: Partition [0, 1] x [0, 1] by 16 squares and shrink each to have sides
1/d. Then do repeat with each of these smaller squares and so on. The set F’
obtained at the end of this process has dimension s(d) = 4log2/log(d) where
d > 4. To see this we find an upper bound by looking at the cover of the k"
level of squares. Given 6 > 0 choose k s.t. d~* < § then:

16"
HE(F) < S U3 = 165 (1/d%)*V2" = 2@/t

1=0

Next let {U;} be any cover of F. Find k; such that V2d ki1 < |U;| < V2d ki,
Thus U; can intersect at most 4 of the 16% k" level sets. If we choose j > k;
we have U; intersects at most:

41677k = 4.167d7F = 4.167d°d~ R < 4.167d%|U; |

By choosing j large enough such that d-U+1 < |U;| for all U; we have:

4 . 1
16/ < 4.167d%|U;)° Ul" > 5 = 1/4°
_Zij ||:»Zi:||_4ds /
Hence we have: 4l0g(2)/log(d)
1/43 < HY(F) < V2 07

[FO3] 2.16: Let ¢ : [0,1] — R? be the parameterisation of the unit circle
around 0. ¢(t) = (cos2nt, sin2wt). ¢ is bi-lipshitz on R; = [1/2¢,1 — 1/27].
write F; = o(C(R;). Clearly F; C F, F; — F and as dimg(F;) = dimy(C)
the result follows in taking the limit.



