
Introduction

In the past, mathematics has been concerned largely with sets and functions to
which the methods of classical calculus can be applied. Sets or functions that
are not sufficiently smooth or regular have tended to be ignored as ‘pathological’
and not worthy of study. Certainly, they were regarded as individual curiosities
and only rarely were thought of as a class to which a general theory might be
applicable.

In recent years this attitude has changed. It has been realized that a great deal
can be said, and is worth saying, about the mathematics of non-smooth objects.
Moreover, irregular sets provide a much better representation of many natural
phenomena than do the figures of classical geometry. Fractal geometry provides
a general framework for the study of such irregular sets.

We begin by looking briefly at a number of simple examples of fractals, and
note some of their features.

The middle third Cantor set is one of the best known and most easily con-
structed fractals; nevertheless it displays many typical fractal characteristics. It
is constructed from a unit interval by a sequence of deletion operations; see
figure 0.1. Let E0 be the interval [0, 1]. (Recall that [a, b] denotes the set of real
numbers x such that a ! x ! b.) Let E1 be the set obtained by deleting the mid-
dle third of E0, so that E1 consists of the two intervals [0, 1

3 ] and [ 2
3 , 1]. Deleting

the middle thirds of these intervals gives E2; thus E2 comprises the four intervals
[0, 1

9 ], [ 2
9 , 1

3 ], [ 2
3 , 7

9 ], [ 8
9 , 1]. We continue in this way, with Ek obtained by delet-

ing the middle third of each interval in Ek−1. Thus Ek consists of 2k intervals
each of length 3−k. The middle third Cantor set F consists of the numbers that
are in Ek for all k ; mathematically, F is the intersection

⋂∞
k=0 Ek. The Cantor

set F may be thought of as the limit of the sequence of sets Ek as k tends to
infinity. It is obviously impossible to draw the set F itself, with its infinitesimal
detail, so ‘pictures of F ’ tend to be pictures of one of the Ek, which are a good
approximation to F when k is reasonably large; see figure 0.1.

At first glance it might appear that we have removed so much of the interval
[0, 1] during the construction of F , that nothing remains. In fact, F is an infinite
(and indeed uncountable) set, which contains infinitely many numbers in every
neighbourhood of each of its points. The middle third Cantor set F consists
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Figure 0.1 Construction of the middle third Cantor set F , by repeated removal of the
middle third of intervals. Note that FL and FR, the left and right parts of F , are copies
of F scaled by a factor 1

3

precisely of those numbers in [0, 1] whose base-3 expansion does not contain
the digit 1, i.e. all numbers a13−1 + a23−2 + a33−3 + · · · with ai = 0 or 2 for
each i. To see this, note that to get E1 from E0 we remove those numbers with
a1 = 1, to get E2 from E1 we remove those numbers with a2 = 1, and so on.

We list some of the features of the middle third Cantor set F ; as we shall see,
similar features are found in many fractals.

(i) F is self-similar. It is clear that the part of F in the interval [0, 1
3 ] and the

part of F in [ 2
3 , 1] are both geometrically similar to F , scaled by a factor

1
3 . Again, the parts of F in each of the four intervals of E2 are similar to
F but scaled by a factor 1

9 , and so on. The Cantor set contains copies of
itself at many different scales.

(ii) The set F has a ‘fine structure’; that is, it contains detail at arbitrarily
small scales. The more we enlarge the picture of the Cantor set, the more
gaps become apparent to the eye.

(iii) Although F has an intricate detailed structure, the actual definition of F
is very straightforward.

(iv) F is obtained by a recursive procedure. Our construction consisted of
repeatedly removing the middle thirds of intervals. Successive steps give
increasingly good approximations Ek to the set F .

(v) The geometry of F is not easily described in classical terms: it is not the
locus of the points that satisfy some simple geometric condition, nor is it
the set of solutions of any simple equation.

(vi) It is awkward to describe the local geometry of F —near each of its points
are a large number of other points, separated by gaps of varying lengths.

(vii) Although F is in some ways quite a large set (it is uncountably infinite),
its size is not quantified by the usual measures such as length—by any
reasonable definition F has length zero.

Our second example, the von Koch curve, will also be familiar to many readers;
see figure 0.2. We let E0 be a line segment of unit length. The set E1 consists of
the four segments obtained by removing the middle third of E0 and replacing it
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Figure 0.2 (a) Construction of the von Koch curve F . At each stage, the middle third of
each interval is replaced by the other two sides of an equilateral triangle. (b) Three von
Koch curves fitted together to form a snowflake curve

by the other two sides of the equilateral triangle based on the removed segment.
We construct E2 by applying the same procedure to each of the segments in E1,
and so on. Thus Ek comes from replacing the middle third of each straight line
segment of Ek−1 by the other two sides of an equilateral triangle. When k is
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large, the curves Ek−1 and Ek differ only in fine detail and as k tends to infinity,
the sequence of polygonal curves Ek approaches a limiting curve F , called the
von Koch curve.

The von Koch curve has features in many ways similar to those listed for
the middle third Cantor set. It is made up of four ‘quarters’ each similar to the
whole, but scaled by a factor 1

3 . The fine structure is reflected in the irregularities
at all scales; nevertheless, this intricate structure stems from a basically simple
construction. Whilst it is reasonable to call F a curve, it is much too irregular
to have tangents in the classical sense. A simple calculation shows that Ek is of
length

( 4
3

)k
; letting k tend to infinity implies that F has infinite length. On the

other hand, F occupies zero area in the plane, so neither length nor area provides
a very useful description of the size of F.

Many other sets may be constructed using such recursive procedures. For
example, the Sierpiński triangle or gasket is obtained by repeatedly removing
(inverted) equilateral triangles from an initial equilateral triangle of unit side-
length; see figure 0.3. (For many purposes, it is better to think of this procedure
as repeatedly replacing an equilateral triangle by three triangles of half the height.)
A plane analogue of the Cantor set, a ‘Cantor dust’, is illustrated in figure 0.4. At
each stage each remaining square is divided into 16 smaller squares of which four
are kept and the rest discarded. (Of course, other arrangements or numbers of
squares could be used to get different sets.) It should be clear that such examples
have properties similar to those mentioned in connection with the Cantor set and
the von Koch curve. The example depicted in figure 0.5 is constructed using two
different similarity ratios.

There are many other types of construction, some of which will be discussed
in detail later in the book, that also lead to sets with these sorts of properties.

E0 E1

F

E2

Figure 0.3 Construction of the Sierpiński triangle (dimHF = dimBF = log 3/ log 2)
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Figure 0.4 Construction of a ‘Cantor dust’ (dimHF = dimBF = 1)
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Figure 0.5 Construction of a self-similar fractal with two different similarity ratios
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The highly intricate structure of the Julia set illustrated in figure 0.6 stems from
the single quadratic function f (z) = z2 + c for a suitable constant c. Although
the set is not strictly self-similar in the sense that the Cantor set and von Koch
curve are, it is ‘quasi-self-similar’ in that arbitrarily small portions of the set can
be magnified and then distorted smoothly to coincide with a large part of the set.

Figure 0.7 shows the graph of the function f (t) = ∑∞
k=0(

3
2 )−k/2 sin(( 3

2 )kt); the
infinite summation leads to the graph having a fine structure, rather than being a
smooth curve to which classical calculus is applicable.

Some of these constructions may be ‘randomized’. Figure 0.8 shows a ‘random
von Koch curve’—a coin was tossed at each step in the construction to determine
on which side of the curve to place the new pair of line segments. This random
curve certainly has a fine structure, but the strict self-similarity of the von Koch
curve has been replaced by a ‘statistical self-similarity’.

These are all examples of sets that are commonly referred to as fractals. (The
word ‘fractal’ was coined by Mandelbrot in his fundamental essay from the Latin
fractus, meaning broken, to describe objects that were too irregular to fit into a
traditional geometrical setting.) Properties such as those listed for the Cantor set
are characteristic of fractals, and it is sets with such properties that we will have
in mind throughout the book. Certainly, any fractal worthy of the name will
have a fine structure, i.e. detail at all scales. Many fractals have some degree of
self-similarity—they are made up of parts that resemble the whole in some way.
Sometimes, the resemblance may be weaker than strict geometrical similarity;
for example, the similarity may be approximate or statistical.

Methods of classical geometry and calculus are unsuited to studying frac-
tals and we need alternative techniques. The main tool of fractal geometry
is dimension in its many forms. We are familiar enough with the idea that a

Figure 0.6 A Julia set
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Figure 0.7 Graph of f (t) = ∑∞
k=0(

3
2 )−k/2 sin(( 3

2 )kt)

(smooth) curve is a 1-dimensional object and a surface is 2-dimensional. It is
less clear that, for many purposes, the Cantor set should be regarded as having
dimension log 2/ log 3 = 0.631 . . . and the von Koch curve as having dimen-
sion log 4/ log 3 = 1.262 . . . . This latter number is, at least, consistent with the
von Koch curve being ‘larger than 1-dimensional’ (having infinite length) and
‘smaller than 2-dimensional’ (having zero area).

Figure 0.8 A random version of the von Koch curve
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(a)

(b)

(c)

(d )

Figure 0.9 Division of certain sets into four parts. The parts are similar to the whole with
ratios: 1

4 for line segment (a); 1
2 for square (b); 1

9 for middle third Cantor set (c); 1
3 for

von Koch curve (d )

The following argument gives one (rather crude) interpretation of the meaning
of these ‘dimensions’ indicating how they reflect scaling properties and self-
similarity. As figure 0.9 indicates, a line segment is made up of four copies of
itself, scaled by a factor 1

4 . The segment has dimension − log 4/ log 1
4 = 1. A

square, however, is made up of four copies of itself scaled by a factor 1
2 (i.e.

with half the side length) and has dimension − log 4/ log 1
2 = 2. In the same way,

the von Koch curve is made up of four copies of itself scaled by a factor 1
3 , and

has dimension − log 4/ log 1
3 = log 4/ log 3, and the Cantor set may be regarded

as comprising four copies of itself scaled by a factor 1
9 and having dimension

− log 4/ log 1
9 = log 2/ log 3. In general, a set made up of m copies of itself scaled

by a factor r might be thought of as having dimension − log m/ log r . The number
obtained in this way is usually referred to as the similarity dimension of the set.

Unfortunately, similarity dimension is meaningful only for a relatively small
class of strictly self-similar sets. Nevertheless, there are other definitions of
dimension that are much more widely applicable. For example, Hausdorff dimen-
sion and the box-counting dimensions may be defined for any sets, and, in
these four examples, may be shown to equal the similarity dimension. The early
chapters of the book are concerned with the definition and properties of Hausdorff
and other dimensions, along with methods for their calculation. Very roughly, a
dimension provides a description of how much space a set fills. It is a measure of
the prominence of the irregularities of a set when viewed at very small scales. A
dimension contains much information about the geometrical properties of a set.

A word of warning is appropriate at this point. It is possible to define the
‘dimension’ of a set in many ways, some satisfactory and others less so. It
is important to realize that different definitions may give different values of
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dimension for the same set, and may also have very different properties. Incon-
sistent usage has sometimes led to considerable confusion. In particular, warning
lights flash in my mind (as in the minds of other mathematicians) whenever the
term ‘fractal dimension’ is seen. Though some authors attach a precise meaning
to this, I have known others interpret it inconsistently in a single piece of work.
The reader should always be aware of the definition in use in any discussion.

In his original essay, Mandelbrot defined a fractal to be a set with Haus-
dorff dimension strictly greater than its topological dimension. (The topological
dimension of a set is always an integer and is 0 if it is totally disconnected, 1 if
each point has arbitrarily small neighbourhoods with boundary of dimension 0,
and so on.) This definition proved to be unsatisfactory in that it excluded a num-
ber of sets that clearly ought to be regarded as fractals. Various other definitions
have been proposed, but they all seem to have this same drawback.

My personal feeling is that the definition of a ‘fractal’ should be regarded in
the same way as a biologist regards the definition of ‘life’. There is no hard and
fast definition, but just a list of properties characteristic of a living thing, such
as the ability to reproduce or to move or to exist to some extent independently
of the environment. Most living things have most of the characteristics on the
list, though there are living objects that are exceptions to each of them. In the
same way, it seems best to regard a fractal as a set that has properties such
as those listed below, rather than to look for a precise definition which will
almost certainly exclude some interesting cases. From the mathematician’s point
of view, this approach is no bad thing. It is difficult to avoid developing properties
of dimension other than in a way that applies to ‘fractal’ and ‘non-fractal’ sets
alike. For ‘non-fractals’, however, such properties are of little interest—they are
generally almost obvious and could be obtained more easily by other methods.

When we refer to a set F as a fractal, therefore, we will typically have the
following in mind.

(i) F has a fine structure, i.e. detail on arbitrarily small scales.
(ii) F is too irregular to be described in traditional geometrical language, both

locally and globally.
(iii) Often F has some form of self-similarity, perhaps approximate or statis-

tical.
(iv) Usually, the ‘fractal dimension’ of F (defined in some way) is greater

than its topological dimension.
(v) In most cases of interest F is defined in a very simple way, perhaps

recursively.

What can we say about the geometry of as diverse a class of objects as frac-
tals? Classical geometry gives us a clue. In Part I of this book we study certain
analogues of familiar geometrical properties in the fractal situation. The orthog-
onal projection, or ‘shadow’ of a circle in space onto a plane is, in general, an
ellipse. The fractal projection theorems tell us about the ‘shadows’ of a fractal.
For many purposes, a tangent provides a good local approximation to a circle.
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Though fractals do tend not to have tangents in any sense, it is often possi-
ble to say a surprising amount about their local form. Two circles in the plane
in ‘general position’ either intersect in two points or not at all (we regard the
case of mutual tangents as ‘exceptional’). Using dimension, we can make sim-
ilar statements about the intersection of fractals. Moving a circle perpendicular
to its plane sweeps out a cylinder, with properties that are related to those of
the original circle. Similar, and indeed more general, constructions are possible
with fractals.

Although classical geometry is of considerable intrinsic interest, it is also called
upon widely in other areas of mathematics. For example, circles or parabolae
occur as the solution curves of certain differential equations, and a knowledge of
the geometrical properties of such curves aids our understanding of the differential
equations. In the same way, the general theory of fractal geometry can be applied
to the many branches of mathematics in which fractals occur. Various examples
of this are given in Part II of the book.

Historically, interest in geometry has been stimulated by its applications to
nature. The ellipse assumed importance as the shape of planetary orbits, as did
the sphere as the shape of the earth. The geometry of the ellipse and sphere can
be applied to these physical situations. Of course, orbits are not quite elliptical,
and the earth is not actually spherical, but for many purposes, such as the pre-
diction of planetary motion or the study of the earth’s gravitational field, these
approximations may be perfectly adequate.

A similar situation pertains with fractals. A glance at the recent physics liter-
ature shows the variety of natural objects that are described as fractals—cloud
boundaries, topographical surfaces, coastlines, turbulence in fluids, and so on.
None of these are actual fractals—their fractal features disappear if they are
viewed at sufficiently small scales. Nevertheless, over certain ranges of scale
they appear very much like fractals, and at such scales may usefully be regarded
as such. The distinction between ‘natural fractals’ and the mathematical ‘frac-
tal sets’ that might be used to describe them was emphasized in Mandelbrot’s
original essay, but this distinction seems to have become somewhat blurred.
There are no true fractals in nature. (There are no true straight lines or cir-
cles either!)

If the mathematics of fractal geometry is to be really worthwhile, then it
should be applicable to physical situations. Considerable progress is being made
in this direction and some examples are given towards the end of this book.
Although there are natural phenomena that have been explained in terms of fractal
mathematics (Brownian motion is a good example), many applications tend to
be descriptive rather than predictive. Much of the basic mathematics used in the
study of fractals is not particularly new, though much recent mathematics has
been specifically geared to fractals. For further progress to be made, development
and application of appropriate mathematics remain a high priority.
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Notes and references

Unlike the rest of the book, which consists of fairly solid mathematics, this
introduction contains some of the author’s opinions and prejudices, which may
well not be shared by other workers on fractals. Caveat emptor!

The foundational treatise on fractals, which may be appreciated at many levels,
is the scientific, philosophical and pictorial essay of Mandelbrot (1982) (devel-
oped from the original 1975 version), containing a great diversity of natural and
mathematical examples. This essay has been the inspiration for much of the work
that has been done on fractals.

Many other books have been written on diverse aspects of fractals, and these
are cited at the end of the appropriate chapters. Here we mention a selection with a
broad coverage. Introductory treatments include Schroeder (1991), Moon (1992),
Kaye (1994), Addison (1997) and Lesmoir-Gordon, Rood and Edney (2000).
The volume by Peitgen, Jürgens and Saupe (1992) is profusely illustrated with
diagrams and examples, and the essays collated by Frame and Mandelbrot (2002)
address the role of fractals in mathematics and science education.

The books by Edgar (1990, 1998), Peitgen, Jürgens and Saupe (1992) and Le
Méhauté (1991) provide basic mathematical treatments. Falconer (1985a), Mat-
tila (1995), Federer (1996) and Morgan (2000) concentrate on geometric measure
theory, Rogers (1998) addresses the general theory of Hausdorff measures, and
Wicks (1991) approaches the subject from the standpoint of non-standard anal-
ysis. Books with a computational emphasis include Peitgen and Saupe (1988),
Devaney and Keen (1989), Hoggar (1992) and Pickover (1998). The sequel to
this book, Falconer (1997), contains more advanced mathematical techniques for
studying fractals.

Much of interest may be found in proceedings of conferences on fractal mathe-
matics, for example in the volumes edited by Cherbit (1991), Evertsz, Peitgen and
Voss (1995) and Novak (1998, 2000). The proceedings edited by Bandt, Graf and
Zähle (1995, 2000) concern fractals and probability, those by Lévy Véhel, Lutton
and Tricot (1997), Dekking, Lévy Véhel, Lutton and Tricot (1999) address engi-
neering applications. Mandelbrot’s ‘Selecta’ (1997, 1999, 2002) present a wide
range of papers with commentaries which provide a fascinating insight into the
development and current state of fractal mathematics and science. Edgar (1993)
brings together a collection of classic papers on fractal mathematics.

Papers on fractals appear in many journals; in particular the journal Fractals
covers a wide range of theory and applications.



Part I
FOUNDATIONS

Fractal Geometry: Mathematical Foundations and Application. Second Edition Kenneth Falconer
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84861-8 (HB); 0-470-84862-6 (PB)



Chapter 1 Mathematical background

This chapter reviews some of the basic mathematical ideas and notation that will
be used throughout the book. Sections 1.1 on set theory and 1.2 on functions are
rather concise; readers unfamiliar with this type of material are advised to consult
a more detailed text on mathematical analysis. Measures and mass distributions
play an important part in the theory of fractals. A treatment adequate for our
needs is given in Section 1.3. By asking the reader to take on trust the existence
of certain measures, we can avoid many of the technical difficulties usually
associated with measure theory. Some notes on probability theory are given in
Section 1.4; an understanding of this is needed in Chapters 15 and 16.

1.1 Basic set theory

In this section we recall some basic notions from set theory and point set topology.
We generally work in n-dimensional Euclidean space, !n, where !1 = ! is

just the set of real numbers or the ‘real line’, and !2 is the (Euclidean) plane.
Points in !n will generally be denoted by lower case letters x, y, etc., and we will
occasionally use the coordinate form x = (x1, . . . , xn), y = (y1, . . . , yn). Addi-
tion and scalar multiplication are defined in the usual manner, so that x + y =
(x1 + y1, . . . , xn + yn) and λx = (λx1, . . . , λxn), where λ is a real scalar. We use
the usual Euclidean distance or metric on !n. So if x, y are points of !n, the dis-
tance between them is |x − y| =

(∑n
i=1 |xi − yi |2

)1/2. In particular, we have the
triangle inequality |x + y| ! |x| + |y|, the reverse triangle inequality |x − y| "∣∣∣|x| − |y|

∣∣∣, and the metric triangle inequality |x − y| ! |x − z| + |z − y|, for all
x, y, z ∈ !n.

Sets, which will generally be subsets of !n, are denoted by capital letters E,
F , U , etc. In the usual way, x ∈ E means that the point x belongs to the set E,
and E ⊂ F means that E is a subset of the set F . We write {x : condition} for
the set of x for which ‘condition’ is true. Certain frequently occurring sets have a
special notation. The empty set, which contains no elements, is written as Ø. The
integers are denoted by " and the rational numbers by #. We use a superscript
+ to denote the positive elements of a set; thus !+ are the positive real numbers,

Fractal Geometry: Mathematical Foundations and Application. Second Edition Kenneth Falconer
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84861-8 (HB); 0-470-84862-6 (PB)
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4 Mathematical background

and "+ are the positive integers. Occasionally we refer to the complex numbers
$, which for many purposes may be identified with the plane !2, with x1 + ix2
corresponding to the point (x1, x2).

The closed ball of centre x and radius r is defined by B(x, r) = {y : |y − x|
! r}. Similarly the open ball is Bo(x, r) = {y : |y − x| < r}. Thus the closed
ball contains its bounding sphere, but the open ball does not. Of course in !2 a
ball is a disc and in !1 a ball is just an interval. If a < b we write [a, b] for the
closed interval {x : a ! x ! b} and (a, b) for the open interval {x : a < x < b}.
Similarly [a, b) denotes the half-open interval {x : a ! x < b}, etc.

The coordinate cube of side 2r and centre x = (x1, . . . , xn) is the set {y =
(y1, . . . , yn) : |yi − xi | ! r for all i = 1, . . . , n}. (A cube in !2 is just a square
and in !1 is an interval.)

From time to time we refer to the δ-neighbourhood or δ-parallel body, Aδ , of
a set A, that is the set of points within distance δ of A; thus Aδ = {x : |x − y| !
δ for some y in A}; see figure 1.1.

We write A ∪ B for the union of the sets A and B, i.e. the set of points belong-
ing to either A or B, or both. Similarly, we write A ∩ B for their intersection,
the points in both A and B. More generally,

⋃
α Aα denotes the union of an

arbitrary collection of sets {Aα}, i.e. those points in at least one of the sets Aα ,
and

⋂
α Aα denotes their intersection, consisting of the set of points common to

all of the Aα . A collection of sets is disjoint if the intersection of any pair is the
empty set. The difference A\B of A and B consists of the points in A but not
B. The set !n\A is termed the complement of A.

The set of all ordered pairs {(a, b) : a ∈ A and b ∈ B} is called the (Cartesian)
product of A and B and is denoted by A × B. If A ⊂ !n and B ⊂ !m then
A × B ⊂ !n+m.

If A and B are subsets of !n and λ is a real number, we define the vector
sum of the sets as A + B = {x + y : x ∈ A and y ∈ B} and we define the scalar
multiple λA = {λx : x ∈ A}.

An infinite set A is countable if its elements can be listed in the form x1, x2, . . .
with every element of A appearing at a specific place in the list; otherwise the

d

Ad

A

Figure 1.1 A set A and its δ-neighbourhood Aδ
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set is uncountable. The sets " and # are countable but ! is uncountable. Note
that a countable union of countable sets is countable.

If A is any non-empty set of real numbers then the supremum sup A is the
least number m such that x ! m for every x in A, or is ∞ if no such number
exists. Similarly, the infimum inf A is the greatest number m such that m ! x for
all x in A, or is −∞. Intuitively the supremum and infimum are thought of as the
maximum and minimum of the set, though it is important to realize that sup A
and inf A need not be members of the set A itself. For example, sup(0, 1) = 1,
but 1 /∈ (0, 1). We write supx∈B( ) for the supremum of the quantity in brackets,
which may depend on x, as x ranges over the set B.

We define the diameter |A| of a (non-empty) subset of !n as the greatest
distance apart of pairs of points in A. Thus |A| = sup{|x − y| : x, y ∈ A}. In !n

a ball of radius r has diameter 2r , and a cube of side length δ has diameter δ
√

n.
A set A is bounded if it has finite diameter, or, equivalently, if A is contained
in some (sufficiently large) ball.

Convergence of sequences is defined in the usual way. A sequence {xk} in
!n converges to a point x of !n as k → ∞ if, given ε > 0, there exists a
number K such that |xk − x| < ε whenever k > K , that is if |xk − x| converges
to 0. The number x is called the limit of the sequence, and we write xk → x or
limk→∞ xk = x.

The ideas of ‘open’ and ‘closed’ that have been mentioned in connection with
balls apply to much more general sets. Intuitively, a set is closed if it contains
its boundary and open if it contains none of its boundary points. More precisely,
a subset A of !n is open if, for all points x in A there is some ball B(x, r),
centred at x and of positive radius, that is contained in A. A set is closed if,
whenever {xk} is a sequence of points of A converging to a point x of !n, then
x is in A; see figure 1.2. The empty set Ø and !n are regarded as both open
and closed.

It may be shown that a set is open if and only if its complement is closed. The
union of any collection of open sets is open, as is the intersection of any finite
number of open sets. The intersection of any collection of closed sets is closed,
as is the union of any finite number of closed sets, see Exercise 1.6.

A set A is called a neighbourhood of a point x if there is some (small) ball
B(x, r) centred at x and contained in A.

(a) (b) (c)

Figure 1.2 (a) An open set—there is a ball contained in the set centred at each point of
the set. (b) A closed set—the limit of any convergent sequence of points from the set
lies in the set. (c) The boundary of the set in (a) or (b)
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The intersection of all the closed sets containing a set A is called the closure
of A, written A. The union of all the open sets contained in A is the interior
int(A) of A. The closure of A is thought of as the smallest closed set containing
A, and the interior as the largest open set contained in A. The boundary ∂A of A
is given by ∂A = A\int(A), thus x ∈ ∂A if and only if the ball B(x, r) intersects
both A and its complement for all r > 0.

A set B is a dense subset of A if B ⊂ A ⊂ B, i.e. if there are points of B
arbitrarily close to each point of A.

A set A is compact if any collection of open sets which covers A (i.e. with
union containing A) has a finite subcollection which also covers A. Technically,
compactness is an extremely useful property that enables infinite sets of condi-
tions to be reduced to finitely many. However, as far as most of this book is
concerned, it is enough to take the definition of a compact subset of !n as one
that is both closed and bounded.

The intersection of any collection of compact sets is compact. It may be shown
that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of compact sets then the intersec-
tion

⋂∞
i=1 Ai is non-empty, see Exercise 1.7. Moreover, if

⋂∞
i=1 Ai is contained

in V for some open set V , then the finite intersection
⋂k

i=1 Ai is contained in V
for some k.

A subset A of !n is connected if there do not exist open sets U and V such that
U ∪ V contains A with A ∩ U and A ∩ V disjoint and non-empty. Intuitively,
we think of a set A as connected if it consists of just one ‘piece’. The largest
connected subset of A containing a point x is called the connected component
of x. The set A is totally disconnected if the connected component of each point
consists of just that point. This will certainly be so if for every pair of points x
and y in A we can find disjoint open sets U and V such that x ∈ U, y ∈ V and
A ⊂ U ∪ V .

There is one further class of set that must be mentioned though its precise
definition is indirect and should not concern the reader unduly. The class of Borel
sets is the smallest collection of subsets of !n with the following properties:

(a) every open set and every closed set is a Borel set;
(b) the union of every finite or countable collection of Borel sets is a Borel

set, and the intersection of every finite or countable collection of Borel
sets is a Borel set.

Throughout this book, virtually all of the subsets of !n that will be of any
interest to us will be Borel sets. Any set that can be constructed using a sequence
of countable unions or intersections starting with the open sets or closed sets will
certainly be Borel. The reader will not go far wrong in work of the sort described
in this book by assuming that all the sets encountered are Borel sets.

1.2 Functions and limits

Let X and Y be any sets. A mapping, function or transformation f from X to Y
is a rule or formula that associates a point f (x) of Y with each point x of X.
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We write f : X → Y to denote this situation; X is called the domain of f and
Y is called the codomain. If A is any subset of X we write f (A) for the image
of A, given by {f (x) : x ∈ A}. If B is a subset of Y , we write f −1(B) for the
inverse image or pre-image of B, i.e. the set {x ∈ X : f (x) ∈ B}; note that in
this context the inverse image of a single point can contain many points.

A function f : X → Y is called an injection or a one-to-one function if
f (x) += f (y) whenever x += y, i.e. different elements of X are mapped to dif-
ferent elements of Y . The function is called a surjection or an onto function
if, for every y in Y , there is an element x in X with f (x) = y, i.e. every ele-
ment of Y is the image of some point in X. A function that is both an injection
and a surjection is called a bijection or one-to-one correspondence between X
and Y . If f : X → Y is a bijection then we may define the inverse function
f −1 : Y → X by taking f −1(y) as the unique element of X such that f (x) = y.
In this situation, f −1(f (x)) = x for x in X and f (f −1(y)) = y for y in Y .

The composition of the functions f : X → Y and g : Y → Z is the func-
tion g◦f : X → Z given by (g◦f )(x) = g(f (x)). This definition extends to the
composition of any finite number of functions in the obvious way.

Certain functions from !n to !n have a particular geometric significance; often
in this context they are referred to as transformations and are denoted by capital
letters. Their effects are shown in figure 1.3. The transformation S : !n → !n is
called a congruence or isometry if it preserves distances, i.e. if |S(x) − S(y)| =
|x − y| for x, y in !n. Congruences also preserve angles, and transform sets
into geometrically congruent ones. Special cases include translations, which are

A

Direct congruence
or rigid motion

(Indirect) congruence

Similarities

Affinities

Figure 1.3 The effect of various transformations on a set A
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of the form S(x) = x + a and have the effect of shifting points parallel to the
vector a, rotations which have a centre a such that |S(x) − a| = |x − a| for all
x (for convenience we also regard the identity transformation given by I (x) = x
as a rotation) and reflections which map points to their mirror images in some
(n − 1)-dimensional plane. A congruence that may be achieved by a combination
of a rotation and a translation, i.e. does not involve reflection, is called a rigid
motion or direct congruence. A transformation S : !n → !n is a similarity of
ratio or scale c > 0 if |S(x) − S(y)| = c|x − y| for all x, y in !n. A similarity
transforms sets into geometrically similar ones with all lengths multiplied by the
factor c.

A transformation T : !n → !n is linear if T (x + y) = T (x) + T (y) and
T (λx) = λT (x) for all x, y ∈ !n and λ ∈ !; linear transformations may be
represented by matrices in the usual way. Such a linear transformation is non-
singular if T (x) = 0 if and only if x = 0. If S : !n → !n is of the form
S(x) = T (x) + a, where T is a non-singular linear transformation and a is a
point in !n, then S is called an affine transformation or an affinity. An affinity
may be thought of as a shearing transformation; its contracting or expanding effect
need not be the same in every direction. However, if T is orthonormal, then S
is a congruence, and if T is a scalar multiple or an orthonormal transformation
then T is a similarity.

It is worth pointing out that such classes of transformation form groups under
composition of mappings. For example, the composition of two translations is a
translation, the identity transformation is trivially a translation, and the inverse of
a translation is a translation. Finally, the associative law S◦(T ◦U) = (S◦T )◦U
holds for all translations S, T , U . Similar group properties hold for the congru-
ences, the rigid motions, the similarities and the affinities.

A function f : X → Y is called a Hölder function of exponent α if

|f (x) − f (y)| ! c|x − y|α (x, y ∈ X)

for some constant c " 0. The function f is called a Lipschitz function if α may
be taken to be equal to 1, that is if

|f (x) − f (y)| ! c|x − y| (x, y ∈ X)

and a bi-Lipschitz function if

c1|x − y| ! |f (x) − f (y)| ! c2|x − y| (x, y ∈ X)

for 0 < c1 ! c2 < ∞, in which case both f and f −1 : f (X) → X are Lipschitz
functions.

We next remind readers of the basic ideas of limits and continuity of functions.
Let X and Y be subsets of !n and !m respectively, let f : X → Y be a function,
and let a be a point of X. We say that f (x) has limit y (or tends to y, or converges
to y) as x tends to a, if, given ε > 0, there exists δ > 0 such that |f (x) − y| < ε
for all x ∈ X with |x − a| < δ. We denote this by writing f (x) → y as x → a
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or by limx→a f (x) = y. For a function f : X → ! we say that f (x) tends to
infinity (written f (x) → ∞) as x → a if, given M , there exists δ > 0 such that
f (x) > M whenever |x − a| < δ. The definition of f (x) → −∞ is similar.

Suppose, now, that f : !+ → !. We shall frequently be interested in the
values of such functions for small positive values of x. Note that if f (x) is
increasing as x decreases, then limx→0 f (x) exists either as a finite limit or as
∞, and if f (x) is decreasing as x decreases then limx→0 f (x) exists and is finite
or −∞. Of course, f (x) can fluctuate wildly for small x and limx→0 f (x) need
not exist at all. We use lower and upper limits to describe such fluctuations. We
define the lower limit as

lim
x→0

f (x) ≡ lim
r→0

(inf{f (x) : 0 < x < r}).

Since inf{f (x) : 0 < x < r} is either −∞ for all positive r or else increases as
r decreases, limx→0f (x) always exists. Similarly, the upper limit is defined as

lim
x→0

f (x) ≡ lim
r→0

(sup{f (x) : 0 < x < r}).

The lower and upper limits exist (as real numbers or −∞ or ∞) for every function
f , and are indicative of the variation in values of f for x close to 0; see figure 1.4.
Clearly, limx→0f (x) ! limx→0f (x); if the lower and upper limits are equal, then
limx→0 f (x) exists and equals this common value. Note that if f (x) ! g(x) for
x > 0 then limx→0f (x) ! limx→0g(x) and limx→0f (x) ! limx→0g(x). In the
same way, it is possible to define lower and upper limits as x → a for functions
f : X → ! where X is a subset of !n with a in X.

We often need to compare two functions f, g : !+ → ! for small values.
We write f (x) ∼ g(x) to mean that f (x)/g(x) → 1 as x → 0. We will often

f (x )
f (x )

f (x )

0 x

lim
x→0

lim
x→0

Figure 1.4 The upper and lower limits of a function
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have that f (x) ∼ xs ; in other words that f obeys an approximate power law of
exponent s when x is small. We use the notation f (x) / g(x) more loosely, to
mean that f (x) and g(x) are approximately equal in some sense, to be specified
in the particular circumstances.

Recall that function f : X → Y is continuous at a point a of X if f (x) → f (a)
as x → a, and is continuous on X if it is continuous at all points of X. In
particular, Lipschitz and Hölder mappings are continuous. If f : X → Y is a
continuous bijection with continuous inverse f −1 : Y → X then f is called a
homeomorphism, and X and Y are termed homeomorphic sets. Congruences,
similarities and affine transformations on !n are examples of homeomorphisms.

The function f : ! → ! is differentiable at x with the number f ′(x) as deriva-
tive if

lim
h→0

f (x + h) − f (x)

h
= f ′(x).

In particular, the mean value theorem applies: given a < b and f differentiable
on [a, b] there exists c with a < c < b such that

f (b) − f (a)

b − a
= f ′(c)

(intuitively, any chord of the graph of f is parallel to the slope of f at some inter-
mediate point). A function f is continuously differentiable if f ′(x) is continuous
in x.

More generally, if f : !n → !n, we say that f is differentiable at x with
derivative the linear mapping f ′(x) : !n → !n if

lim
|h|→0

|f (x + h) − f (x) − f ′(x)h|
|h| = 0.

Occasionally, we shall be interested in the convergence of a sequence of
functions fk : X → Y where X and Y are subsets of Euclidean spaces. We
say that functions fk converge pointwise to a function f : X → Y if fk(x) → f (x)
as k → ∞ for each x in X. We say that the convergence is uniform if
supx∈X |fk(x) − f (x)| → 0 as k → ∞. Uniform convergence is a rather stronger
property than pointwise convergence; the rate at which the limit is approached
is uniform across X. If the functions fk are continuous and converge uniformly
to f , then f is continuous.

Finally, we remark that logarithms will always be to base e. Recall that, for
a, b > 0, we have that log ab = log a + log b, and that log ac = c log a for real
numbers c. The identity ac = bc log a/ log b will often be used. The logarithm is the
inverse of the exponential function, so that elog x = x, for x > 0, and log ey = y
for y ∈ !.
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1.3 Measures and mass distributions

Anyone studying the mathematics of fractals will not get far before encountering
measures in some form or other. Many people are put off by the seemingly
technical nature of measure theory—often unnecessarily so, since for most fractal
applications only a few basic ideas are needed. Moreover, these ideas are often
already familiar in the guise of the mass or charge distributions encountered in
basic physics.

We need only be concerned with measures on subsets of !n. Basically a
measure is just a way of ascribing a numerical ‘size’ to sets, such that if a set
is decomposed into a finite or countable number of pieces in a reasonable way,
then the size of the whole is the sum of the sizes of the pieces.

We call µ a measure on !n if µ assigns a non-negative number, possibly ∞,
to each subset of !n such that:

(a) µ(Ø) = 0; (1.1)
(b) µ(A) ! µ(B) if A ⊂ B; (1.2)
(c) if A1, A2, . . . is a countable (or finite) sequence of sets then

µ

( ∞⋃

i=1

Ai

)

!
∞∑

i=1

µ(Ai) (1.3)

with equality in (1.3), i.e.

µ

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

µ(Ai), (1.4)

if the Ai are disjoint Borel sets.
We call µ(A) the measure of the set A, and think of µ(A) as the size of A

measured in some way. Condition (a) says that the empty set has zero measure,
condition (b) says ‘the larger the set, the larger the measure’ and (c) says that if
a set is a union of a countable number of pieces (which may overlap) then the
sum of the measure of the pieces is at least equal to the measure of the whole.
If a set is decomposed into a countable number of disjoint Borel sets then the
total measure of the pieces equals the measure of the whole.

Technical note. For the measures that we shall encounter, (1.4) generally holds
for a much wider class of sets than just the Borel sets, in particular for all
images of Borel sets under continuous functions. However, for reasons that need
not concern us here, we cannot in general require that (1.4) holds for every
countable collection of disjoint sets Ai . The reader who is familiar with measure
theory will realize that our definition of a measure on !n is the definition of
what would normally be termed ‘an outer measure on !n for which the Borel
sets are measurable’. However, to save frequent referral to ‘measurable sets’ it
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is convenient to have µ(A) defined for every set A, and, since we are usually
interested in measures of Borel sets, it is enough to have (1.4) holding for Borel
sets rather than for a larger class. If µ is defined and satisfies (1.1)–(1.4) for
the Borel sets, the definition of µ may be extended to an outer measure on all
sets in such a way that (1.1)–(1.3) hold, so our definition is consistent with the
usual one.

If A ⊃ B then A may be expressed as a disjoint union A = B ∪ (A\B), so it
is immediate from (1.4) that, if A and B are Borel sets,

µ(A\B) = µ(A) − µ(B). (1.5)

Similarly, if A1 ⊂ A2 ⊂ · · · is an increasing sequence of Borel sets then

lim
i→∞

µ(Ai) = µ

( ∞⋃

i=1

Ai

)

. (1.6)

To see this, note that
⋃∞

i=1 Ai = A1 ∪ (A2\A1) ∪ (A3\A2) ∪ . . ., with this union
disjoint, so that

µ

( ∞⋃

i=1

Ai

)

= µ(A1) +
∞∑

i=1

(µ(Ai+1) − µ(Ai))

= µ(A1) + lim
k→∞

k∑

i=1

(µ(Ai+1) − µ(Ai))

= lim
k→∞

µ(Ak).

More generally, it can be shown that if, for δ > 0, Aδ are Borel sets that are
increasing as δ decreases, i.e. Aδ′ ⊂ Aδ for 0 < δ < δ′, then

lim
δ→0

µ(Aδ) = µ

(
⋃

δ>0

Aδ

)

. (1.7)

We think of the support of a measure as the set on which the measure is
concentrated. Formally, the support of µ, written spt µ, is the smallest closed set
X such that µ(!n\X) = 0. The support of a measure is always closed and x is
in the support if and only if µ(B(x, r)) > 0 for all positive radii r . We say that
µ is a measure on a set A if A contains the support of µ.

A measure on a bounded subset of !n for which 0 < µ(!n) < ∞ will be
called a mass distribution, and we think of µ(A) as the mass of the set A. We
often think of this intuitively: we take a finite mass and spread it in some way
across a set X to get a mass distribution on X; the conditions for a measure will
then be satisfied.
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We give some examples of measures and mass distributions. In general, we
omit the proofs that measures with the stated properties exist. Much of technical
measure theory concerns the existence of such measures, but, as far as applica-
tions go, their existence is intuitively reasonable, and can be taken on trust.

Example 1.1. The counting measure

For each subset A of !n let µ(A) be the number of points in A if A is finite,
and ∞ otherwise. Then µ is a measure on !n.

Example 1.2. Point mass

Let a be a point in !n and define µ(A) to be 1 if A contains a, and 0 otherwise.
Then µ is a mass distribution, thought of as a point mass concentrated at a.

Example 1.3. Lebesgue measure on !

Lebesgue measure L1 extends the idea of ‘length’ to a large collection of sub-
sets of ! that includes the Borel sets. For open and closed intervals, we take
L1(a, b) = L1[a, b] = b − a. If A = ⋃

i[ai, bi] is a finite or countable union of
disjoint intervals, we let L1(A) = ∑

(bi − ai) be the length of A thought of as the
sum of the length of the intervals. This leads us to the definition of the Lebesgue
measure L1(A) of an arbitrary set A. We define

L1(A) = inf

{ ∞∑

i=1

(bi − ai) : A ⊂
∞⋃

i=1

[ai, bi]

}

,

that is, we look at all coverings of A by countable collections of intervals, and
take the smallest total interval length possible. It is not hard to see that (1.1)–(1.3)
hold; it is rather harder to show that (1.4) holds for disjoint Borel sets Ai , and
we avoid this question here. (In fact, (1.4) holds for a much larger class of sets
than the Borel sets, ‘the Lebesgue measurable sets’, but not for all subsets of !.)
Lebesgue measure on ! is generally thought of as ‘length’, and we often write
length (A) for L1(A) when we wish to emphasize this intuitive meaning.

Example 1.4. Lebesgue measure on !n

If A = {(x1, . . . , xn) ∈ !n : ai ! xi ! bi} is a ‘coordinate parallelepiped’ in !n,
the n-dimensional volume of A is given by

voln(A) = (b1 − a1)(b2 − a2) · · · (bn − an).

(Of course, vol1 is length, as in Example 1.3, vol2 is area and vol3 is the usual 3-
dimensional volume.) Then n-dimensional Lebesgue measure Ln may be thought
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of as the extension of n-dimensional volume to a large class of sets. Just as in
Example 1.3, we obtain a measure on !n by defining

Ln(A) = inf

{ ∞∑

i=1

voln(Ai) : A ⊂
∞⋃

i=1

Ai

}

where the infimum is taken over all coverings of A by coordinate parallelepipeds
Ai . We get that Ln(A) = voln(A) if A is a coordinate parallelepiped or, indeed,
any set for which the volume can be determined by the usual rules of mensuration.
Again, to aid intuition, we sometimes write area (A) in place of L2(A), vol(A)
for L3(A) and voln(A) for Ln(A).

Sometimes, we need to define ‘k-dimensional’ volume on a k-dimensional
plane X in !n; this may be done by identifying X with !k and using Lk on
subsets of X in the obvious way.

Example 1.5. Uniform mass distribution on a line segment

Let L be a line segment of unit length in the plane. Define µ(A) = L1(L ∩ A)
i.e. the ‘length’ of intersection of A with L. Then µ is a mass distribution with
support L, since µ(A) = 0 if A ∩ L = Ø. We may think of µ as unit mass spread
evenly along the line segment L.

Example 1.6. Restriction of a measure

Let µ be a measure on !n and E a Borel subset of !n. We may define a measure
ν on !n, called the restriction of µ to E, by ν(A) = µ(E ∩ A) for every set A.
Then ν is a measure on !n with support contained in E.

As far as this book is concerned, the most important measures we shall meet are
the s-dimensional Hausdorff measures Hs on subsets of !n, where 0 ! s ! n.
These measures, which are introduced in Section 2.1, are a generalization of
Lebesgue measures to dimensions that are not necessarily integral.

The following method is often used to construct a mass distribution on a subset
of !n. It involves repeated subdivision of a mass between parts of a bounded
Borel set E. Let E0 consist of the single set E. For k = 1, 2, . . . we let Ek be a
collection of disjoint Borel subsets of E such that each set U in Ek is contained
in one of the sets of Ek−1 and contains a finite number of the sets in Ek+1. We
assume that the maximum diameter of the sets in Ek tends to 0 as k → ∞. We
define a mass distribution on E by repeated subdivision; see figure 1.5. We let
µ(E) satisfy 0 < µ(E) < ∞, and we split this mass between the sets U1, . . . , Um

in E1 by defining µ(Ui) in such a way that
∑m

i=1 µ(Ui) = µ(E). Similarly, we
assign masses to the sets of E2 so that if U1, . . . , Um are the sets of E2 contained
in a set U of E1, then

∑m
i=1 µ(Ui) = µ(U). In general, we assign masses so that

∑

i

µ(Ui) = µ(U) (1.8)
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U

E0

E1

E2U1 U2

Figure 1.5 Steps in the construction of a mass distribution µ by repeated subdivision.
The mass on the sets of Ek is divided between the sets of Ek+1; so, for example,
µ(U) = µ(U1) + µ(U2)

for each set U of Ek, where the {Ui} are the disjoint sets in Ek+1 contained in U .
For each k, we let Ek be the union of the sets in Ek, and we define µ(A) = 0 for
all A with A ∩ Ek = Ø.

Let E denote the collection of sets that belong to Ek for some k together with
the subsets of !n\Ek. The above procedure defines the mass µ(A) of every set A
in E, and it should seem reasonable that, by building up sets from the sets in E, it
specifies enough about the distribution of the mass µ across E to determine µ(A)
for any (Borel) set A. This is indeed the case, as the following proposition states.

Proposition 1.7
Let µ be defined on a collection of sets E as above. Then the definition of µ
may be extended to all subsets of !n so that µ becomes a measure. The value of
µ(A) is uniquely determined if A is a Borel set. The support of µ is contained in⋂∞

k=1 Ek .

Note on Proof. If A is any subset of !n, let

µ(A) = inf

{
∑

i

µ(Ui) : A ⊂
⋃

i

Ui and Ui ∈ E

}

. (1.9)
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(Thus we take the smallest value we can of
∑∞

i=1 µ(Ui) where the sets Ui are in
E and cover A; we have already defined µ(Ui) for such Ui .) It is not difficult to
see that if A is one of the sets in E, then (1.9) reduces to the mass µ(A) specified
in the construction. The complete proof that µ satisfies all the conditions of a
measure and that its values on the sets of E determine its values on the Borel
sets is quite involved, and need not concern us here. Since µ(!n\Ek) = 0, we
have µ(A) = 0 if A is an open set that does not intersect Ek for some k, so the
support of µ is in Ek for all k. #

Example 1.8
Let Ek denote the collection of ‘binary intervals’ of length 2−k of the form
[r2−k, (r + 1)2−k) where 0 ! r ! 2k − 1. If we take µ[r2−k, (r + 1)2−k) = 2−k

in the above construction, we get that µ is Lebesgue measure on [0, 1].

Note on calculation. Clearly, if I is an interval in Ek of length 2−k and I1, I2 are
the two subintervals of I in Ek+1 of length 2−k−1, we have µ(I) = µ(I1) + µ(I2)
which is (1.8). By Proposition 1.7 µ extends to a mass distribution on [0, 1]. We
have µ(I) = length (I ) for I in E, and it may be shown that this implies that µ
coincides with Lebesgue measure on any set. #

We say that a property holds for almost all x, or almost everywhere (with
respect to a measure µ) if the set for which the property fails has µ-measure
zero. For example, we might say that almost all real numbers are irrational with
respect to Lebesgue measure. The rational numbers # are countable; they may
be listed as x1, x2, . . ., say, so that L1(#) = ∑∞

i=1 L1{xi} = 0.
Although we shall usually be interested in measures in their own right, we

shall sometimes need to integrate functions with respect to measures. There are
technical difficulties concerning which functions can be integrated. We may get
around these difficulties by assuming that, for f : D → ! a function defined on
a Borel subset D of !n, the set f −1(−∞, a] = {x ∈ D : f (x) ! a} is a Borel
set for all real numbers a. A very large class of functions satisfies this condition,
including all continuous functions (for which f −1(−∞, a] is closed and therefore
a Borel set). We make the assumption throughout this book that all functions to
be integrated satisfy this condition; certainly this is true of functions that are
likely to be encountered in practice.

To define integration we first suppose that f : D → ! is a simple function,
i.e. one that takes only finitely many values a1, . . . , ak. We define the integral
with respect to the measure µ of a non-negative simple function f as

∫
f dµ =

k∑

i=1

aiµ{x : f (x) = ai}.

The integral of more general functions is defined using approximation by simple
functions. If f : D → ! is a non-negative function, we define its integral as

∫
f dµ = sup

{∫
g dµ : g is simple, 0 ! g ! f

}
.
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To complete the definition, if f takes both positive and negative values, we
let f+(x) = max{f (x), 0} and f−(x) = max{−f (x), 0}, so that f = f+ − f−,
and define ∫

f dµ =
∫

f+dµ −
∫

f− dµ

provided that
∫

f+ dµ and
∫

f− dµ are both finite.
All the usual properties hold for integrals, for example,

∫
(f + g)dµ =

∫
f dµ +

∫
g dµ

and ∫
λf dµ = λ

∫
f dµ

if λ is a scalar. We also have the monotone convergence theorem, that if
fk : D → ! is an increasing sequence of non-negative functions converging
(pointwise) to f , then

lim
k→∞

∫
fkdµ =

∫
f dµ.

If A is a Borel subset of D, we define integration over the set A by
∫

A

f dµ =
∫

f χAdµ

where χA : !n → ! is the ‘indicator function’ such that χA(x) = 1 if x is in A
and χA(x) = 0 otherwise.

Note that, if f (x) " 0 and
∫

f dµ = 0, then f (x) = 0 for µ-almost all x.
As usual, integration is denoted in various ways, such as

∫
f dµ,

∫
f or∫

f (x)dµ(x), depending on the emphasis required. When µ is n-dimensional
Lebesgue measure Ln, we usually write

∫
f dx or

∫
f (x)dx in place of

∫
f dLn.

On a couple of occasions we shall need to use Egoroff’s theorem. Let D be
a Borel subset of !n and µ a measure with µ(D) < ∞. Let f1, f2, . . . and f
be functions from D to ! such that fk(x) → f (x) for each x in D. Egoroff’s
theorem states that for any δ > 0, there is a Borel subset E of D such that
µ(D\E) < δ and such that the sequence {fk} converges uniformly to f on E,
i.e. with supx∈E |fk(x) − f (x)| → 0 as k → ∞. For the measures that we shall
be concerned with, it may be shown that we can always take the set E to
be compact.

1.4 Notes on probability theory

For an understanding of some of the later chapters of the book, a basic knowledge
of probability theory is necessary. We give a brief survey of the concepts needed.
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Probability theory starts with the idea of an experiment or trial ; that is, an
action whose outcome is, for all practical purposes, not predetermined. Mathe-
matically, such an experiment is described by a probability space, which has three
components: the set of all possible outcomes of the experiment, the list of all the
events that may occur as consequences of the experiment, and an assessment of
likelihood of these events. For example, if a die is thrown, the possible outcomes
are {1, 2, 3, 4, 5, 6}, the list of events includes ‘a 3 is thrown’, ‘an even number
is thrown’, and ‘at least a 4 is thrown’. For a ‘fair die’ it may be reasonable to
assess the six possible outcomes as equally likely.

The set of all possible outcomes of an experiment is called the sample space,
denoted by (. Questions of interest concerning the outcome of an experiment
can always be phrased in terms of subsets of (; in the above example ‘is an
odd number thrown?’ asks ‘is the outcome in the subset {1, 3, 5}?’ Associat-
ing events dependent on the outcome of the experiment with subsets of ( in
this way, it is natural to think of the union A ∪ B as ‘either A or B occurs’,
the intersection A ∩ B as ‘both A and B occur’, and the complement (\A as
the event ‘A does not occur’, for any events A and B. In general, there is a
collection F of subsets of ( that particularly interest us, which we call events.
In the example of the die, F would normally be the collection of all subsets
of (, but in more complicated situations a relatively small collection of sub-
sets might be relevant. Usually, F satisfies certain conditions; for example, if
the occurrence of an event interests us, then so does its non-occurrence, so
if A is in F, we would expect the complement (\A also to be in F. We
call a (non-empty) collection F of subsets of the sample space ( an event
space if

(\A ∈ F whenever A ∈ F (1.10)

and
∞⋃

i=1

Ai ∈ F whenever Ai ∈ F (1 ! i < ∞). (1.11)

It follows from these conditions that Ø and ( are in F, and that A\B and⋂∞
i=1 Ai are in F whenever A, B and Ai are in F. As far as our applications

are concerned, we do not, in general, specify F precisely—this avoids technical
difficulties connected with the existence of suitable event spaces.

Next, we associate probabilities with the events of F, with P(A) thought of as
the probability, or likelihood, that the event A occurs. We call P a probability
or probability measure if P assigns a number P(A) to each A in F, such that the
following conditions hold:

0 ! P(A) ! 1 for all A ∈ F (1.12)

P(Ø) = 0 and P(() = 1 (1.13)
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and, if A1, A2, . . . are disjoint events in F,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai). (1.14)

It should seem natural for any definition of probability to satisfy these conditions.
We call a triple ((,F, P) a probability space if F is an event space of subsets

of ( and P is a probability measure defined on the sets of F.
For the die-throwing experiment we might have ( = {1, 2, 3, 4, 5, 6} with the

event space consisting of all subsets of (, and with P(A) = 1
6 × number of ele-

ments in A. This describes the ‘fair die’ situation with each outcome equally
likely.

Often, ( is an infinite set. For example we might have ( = [0, 1] and think
of a random number drawn from [0, 1] with the probability of the number in a
set A as P(A) = length (A). Here the event space might be the Borel subsets of
[0, 1].

The resemblance of the definition of probability to the definition of a measure
in (1.1)–(1.4) and the use of the term probability measure is no coincidence. Prob-
abilities and measures may be put into the same context, with ( corresponding
to !n and with the event space corresponding to the Borel sets.

In our applications later on in the book, we shall be particularly interested in
events (on rather large sample spaces) that are virtually certain to occur. We say
that an event A occurs with probability 1 or almost surely if P(A) = 1.

Sometimes, we may possess partial information about the outcome of an exper-
iment; for example, we might be told that the number showing on the die is even.
This leads us to reassess the probabilities of the various events. If A and B are in
F with P(B) > 0, the conditional probability of A given B, denoted by P(A|B),
is defined by

P(A|B) = P(A ∩ B)

P(B)
. (1.15)

This is thought of as the probability of A given that the event B is known to
occur; as would be expected P(B|B) = 1. It is easy to show that ((,F, P′) is a
probability space, where P′(A) = P(A|B). We also have the partition formula: if
B1, B2, . . . are disjoint events with

⋃
i Bi = ( and P(Bi) > 0 for all i, then, for

an event A,
P(A) =

∑

i

P(A|Bi)P(Bi). (1.16)

In the case of the ‘fair die’ experiment, if B1 is the event ‘an even number is
thrown’, B2 is ‘an odd number is thrown’ and A is ‘at least 4 is thrown’, then

P(A|B1) = P(4 or 6 is thrown)/P(2, 4 or 6 is thrown) = 2
6/ 3

6 = 2
3 .

P(A|B2) = P(5 is thrown)/P(1, 3 or 5 is thrown) = 1
6/ 3

6 = 1
3

from which (1.16) is easily verified.
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We think of two events as independent if the occurrence of one does not affect
the probability that the other occurs, i.e. if P(A|B) = P(A) and P(B|A) = P(B).
Using (1.15), we are led to make the definition that two events A and B in a
probability space are independent if

P(A ∩ B) = P(A)P(B). (1.17)

More generally, an arbitrary collection of events is independent if for every finite
subcollection {Ak : k ∈ J } we have

P

(
⋂

k∈J

Ak

)

=
∏

k∈J

P(Ak). (1.18)

In the die example, it is easy to see that ‘a throw of at least 5’ and ‘an even
number is thrown’ are independent events, but ‘a throw of at least 4’ and ‘an
even number is thrown’ are not.

The idea of a random variable and its expectation (or average or mean) is
fundamental to probability theory. Essentially, a random variable X is a real-
valued function on a sample space. In the die example, X might represent the
score on the die. Alternatively it might represent the reward for throwing a
particular number, for example X(ω) = 0 if ω = 1, 2, 3, or 4, X(5) = 1 and
X(6) = 2. The outcome of an experiment determines a value of the random
variable. The expectation of the random variable is the average of these values
weighted according to the likelihood of each outcome.

The precise definition of a random variable requires a little care. We say that X
is a random variable on a probability space ((,F, P) if X : ( → ! is a function
such that X−1((−∞, a]) is an event in F for each real number a; in other words,
the set of ω in ( with X(ω) ! a is in the event space. This condition is equivalent
to saying that X−1(E) is in F for any Borel set E. In particular, for any such E the
probability that the random variable X takes a value in E, i.e. P({ω : X(ω) ∈ E}),
is defined. It may be shown that P({ω : X(ω) ∈ E}) is determined for all Borel
sets E from a knowledge of P({ω : X(ω) ! a}) for each real number a. Note that
it is usual to abbreviate expressions such as P({ω : X(ω) ∈ E}) to P(X ∈ E).

It is not difficult to show that if X and Y are random variables on ((,F, P)
and λ is a real number, then X + Y,X − Y, XY and λX are all random variables
(these are defined in the obvious way, for example (X + Y )(ω) = X(ω) + Y (ω)
for each ω ∈ (). Moreover, if X1, X2, . . . is a sequence of random variables with
Xk(ω) increasing and bounded for each ω, then limk→∞ Xk is a random variable.

A collection of random variables {Xk} is independent if, for any Borel sets
Ek, the events {(X ∈ Ek)} are independent in the sense of (1.18); that is if, for
every finite set of indices J ,

P(Xk ∈ Ek for all k ∈ J ) =
∏

k∈J

P(Xk ∈ Ek).
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Intuitively, X and Y are independent if the probability of Y taking any par-
ticular value is unaffected by a knowledge of the value of X. Consider the
probability space representing two successive throws of a die, with sample space
{(x, y) : x, y = 1, 2, . . . , 6} and probability measure P defined by P{(x, y)} = 1

36
for each pair (x, y). If X and Y are the random variables given by the scores
on successive throws, then X and Y are independent, modelling the assumption
that one throw does not affect the other. However, X and X + Y are not inde-
pendent—this reflects that the bigger the score for the first throw, the greater the
chance of a high total score.

The formal definition of the expectation of a random variable is analogous
to the definition of the integral of a function; indeed, expectation is really the
integral of the random variable with respect to the probability measure. Let X be
a random variable on a probability space ((,F, P). First suppose that X(ω) " 0
for all ω in ( and that X takes only finitely many values x1, . . . , xk; we call such
a random variable simple. We define the expectation, mean or average E(X) of
X as

E(X) =
k∑

i=1

xiP(X = xi). (1.19)

The expectation of an arbitrary random variable is defined using approximation
by simple random variables. Thus for a non-negative random variable X

E(X) = sup{E(Y ) : Y is a simple random variable

with 0 ! Y (ω) ! X(ω) for all ω ∈ (}.

Lastly, if X takes both positive and negative values, we let X+ = max{X, 0} and
X− = max{−X, 0}, so that X = X+ − X−, and define

E(X) = E(X+) − E(X−)

provided that both E(X+) < ∞ and E(X−) < ∞.
The random variable X representing the score of a fair die is a simple random

variable, since X(ω) takes just the values 1, . . . , 6. Thus

E(X) =
6∑

i=1

i × 1
6 = 3 1

2 .

Expectation satisfies certain basic properties, analogous to those for the inte-
gral. If X1, X2, . . . are random variables then

E(X1 + X2) = E(X1) + E(X2)

and, more generally,

E

(
k∑

i=1

Xi

)

=
k∑

i=1

E(Xi).
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If λ is a constant
E(λX) = λE(X)

and if the sequence of non-negative random variables X1, X2, . . . is increasing
with X = limk→∞ Xk a (finite) random variable, then

lim
k→∞

E(Xk) = E(X).

Provided that X1 and X2 are independent, we also have

E(X1X2) = E(X1)E(X2).

Thus if Xi represents that kth throw of a fair die in a sequence of throws,
the expectation of the sum of the first k throws is E(X1 + · · · + Xk) = E(X1) +
· · · + E(Xk) = 3 1

2 × k.
We define the conditional expectation E(X|B) of X given an event B with

P(B) > 0 in a similar way, but starting with

E(X|B) =
k∑

i=1

xiP(X = xi |B) (1.20)

in place of (1.19). We get a partition formula resembling (1.16)

E(X) =
∑

i

E(X|Bi)P(Bi) (1.21)

where B1, B2, . . . are disjoint events with
⋃

i Bi = ( and P(Bi) > 0.
It is often useful to have an indication of the fluctuation of a random variable

across a sample space. Thus we introduce the variance of the random variable
X as

var(X) = E((X − E(X))2)

= E(X2) − E(X)2

by a simple calculation. Using the properties of expectation, we get

var(λX) = λ2 var(X)

for any real number λ, and

var(X + Y ) = var(X) + var(Y )

provided that X and Y are independent.
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If the probability distribution of a random variable is given by an integral, i.e.

P(X ! x) =
∫ x

−∞
f (u)du (1.22)

the function f is called the probability density function for X. It may be shown
from the definition of expectation that

E(X) =
∫ ∞

−∞
uf (u)du

and

E(X2) =
∫ ∞

−∞
u2f (u)du

which allows var(X) = E(X2) − E(X)2 to be calculated.
Note that the density function tells us about the distribution of the random

variable X without reference to the underlying probability space, which, for
many purposes, is irrelevant. We may express the probability that X belongs to
any Borel set E in terms of the density function as

P(X ∈ E) =
∫

E

f (u)du.

We say that a random variable X has uniform distribution on the interval
[a, b] if

P(X ! x) = 1
b − a

∫ x

a

du (a < x < b). (1.23)

Thus the probability of X lying in a subinterval of [a, b] is proportional to the
length of the interval. In this case, we get that E(X) = 1

2 (a + b) and var(X) =
1

12 (b − a)2.
A random variable X has normal or Gaussian distribution of mean m and

variance σ 2 if

P(X ! x) = 1

σ
√

2π

∫ x

−∞
exp

(−(u − m)2

2σ 2

)
du. (1.24)

It may be verified by integration that E(X) = m and var(X) = σ 2. If X1 and X2
are independent normally distributed random variables of means m1 and m2 and
variances σ 2

1 and σ 2
2 respectively, then X1 + X2 is normal with mean m1 + m2

and variance σ 2
1 + σ 2

2 , and λX1 is normal with mean λm1 and variance λ2σ 2
1 , for

any real number λ.
If we throw a fair die a large number of times, we might expect the average

score thrown to be very close to 3 1
2 , the expectation or mean outcome of each

throw. Moreover, the larger the number of throws, the closer the average should
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be to the mean. This ‘law of averages’ is made precise as the strong law of
large numbers.

Let ((,F, P) be a probability space. Let X1,X2, . . . be random variables that
are independent and that have identical distribution (i.e. for every set E, P(Xi ∈ E)
is the same for all i), with expectation m and variance σ 2, both assumed finite.
For each k we may form the random variable Sk = X1 + · · · + Xk , so that the
random variable (1/k)Sk is the average of the first k trials. The strong law of
large numbers states that, with probability 1,

lim
k→∞

1
k
Sk = m. (1.25)

We can also say a surprising amount about the distribution of the random
variable Sk when k is large. It may be shown that Sk has approximately the
normal distribution with mean km and variance kσ 2. This is the content of the
central limit theorem, which states that, for every real number x,

P
(

Sk − km

σ
√

k
! x

)
→

∫ x

−∞

1√
2π

exp(− 1
2u2)du as k → ∞. (1.26)

An important aspect of the normal distribution now becomes clear—it is the form
of distribution approached by sums of a large number of independent identically
distributed random variables.

We may apply these results to the experiment consisting of an infinite sequence
of die throws. Let ( be the set of all infinite sequences {ω = (ω1, ω2, . . .) :
ωi = 1, 2, . . . , 6} (we think of ωi as the outcome of the kth throw). It is possible
to define an event space F and probability measure P in such a way that for any
given k and sequence ω1, . . . ,ωk (ωi = 1, 2, . . . , 6), the event ‘the first k throws
are ω1, . . . , ωk’ is in F and has probability ( 1

6 )−k . Let Xk be the random variable
given by the outcome of the kth throw, so that Xk(ω) = ωk . It is easy to see
that the Xk are independent and identically distributed, with mean m = 3 1

2 and
variance 2 11

12 . The strong law of large numbers tells us that, with probability 1, the
average of the first k throws, Sk/k converges to 3 1

2 as k tends to infinity, and the
central limit theorem tells us that, when k is large, the sum Sk is approximately
normally distributed, with mean 3 1

2 × k and variance 2 11
12 × k. Thus if we repeat

the experiment of throwing k dice a large number of times, the sum of the k
throws will have a distribution close to the normal distribution, in the sense
of (1.26).

1.5 Notes and references

The material outlined in this chapter is covered at various levels of sophistication
in numerous undergraduate mathematical texts. Almost any book on mathematical
analysis, for example Rudin (1964) or Apostol (1974), contains the basic theory
of sets and functions. A thorough treatment of measure and probability theory
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may be found in Kingman and Taylor (1966), Billingsley (1995) and Edgar
(1998). For probability theory, the book by Grimmett and Stirzaker (1992) may
be found helpful.

Exercises

The following exercises do no more than emphasize some of the many facts that have
been mentioned in this chapter.

1.1 Verify that for x, y, z ∈ !n, (i) |x + y| ! |x| + |y|, (ii) |x − y| "
∣∣∣|x| − |y|

∣∣∣,
(iii) |x − y| ! |x − z| + |z − y|.

1.2 Show from the definition of δ-neighbourhood that Aδ+δ′ = (Aδ)δ′ .
1.3 Show that a (non-empty) set is bounded if and only if it is contained in some ball

B(0, r) with centre the origin.
1.4 Determine which of the following sets are open and which are closed. In each

case determine the interior and closure of the set. (i) A non-empty finite set A,
(ii) the interval (0, 1), (iii) the interval [0, 1], (iv) the interval [0, 1), (v) the set
{0, 1, 1

2 , 1
3 , 1

4 , . . .}.
1.5 Show that the middle third Cantor set, figure 0.1, is compact and totally discon-

nected. What is its interior, closure and boundary?
1.6 Show that the union of any collection of open subsets of !n is open and that the

intersection of any finite collection of open sets is open. Show that a subset of !n

is closed if and only if its complement is open and hence deduce the corresponding
result for unions and intersections of closed sets.

1.7 Show that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of non-empty compact subsets
of !n then

⋂∞
k=1 Ak is a non-empty compact set.

1.8 Show that the half-open interval {x ∈ ! : 0 ! x < 1} is a Borel subset of !.
1.9 Let F be the set of numbers in [0, 1] whose decimal expansions contain the digit 5

infinitely many times. Show that F is a Borel set.
1.10 Show that the coordinate transformation of the plane

(
x1
x2

)
1→

(
c cos θ −c sin θ
c sin θ c cos θ

)(
x1
x2

)
+

(
a1
a2

)

is a similarity of ratio c, and describe the transformation geometrically.
1.11 Find limx→0f (x) and limx→0f (x) where f : !+ → ! is given by: (i) sin(x);

(ii) sin(1/x); (iii) x2 + (3 + x) sin(1/x).
1.12 Let f, g : [0, 1] → ! be Lipschitz functions. Show that the functions defined on

[0, 1] by f (x) + g(x) and f (x)g(x) are also Lipschitz.
1.13 Let f : ! → ! be differentiable with |f ′(x)| ! c for all x. Show, using the mean

value theorem, that f is a Lipschitz function.
1.14 Show that every Lipschitz function f : ! → ! is continuous.
1.15 Let f : ! → ! be given by f (x) = x2 + x. Find (i) f −1(2), (ii) f −1(−2),

(iii) f −1([2, 6]).
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1.16 Show that f (x) = x2 is Lipschitz on [0, 2], bi-Lipschitz on [1, 2], and not Lipschitz
on !.

1.17 Show that if E is a compact subset of !n and f : E → !n is continuous, then f (E)
is compact.

1.18 Let A1, A2, . . ., be a decreasing sequence of Borel subsets of !n and let A =⋂∞
k=1 Ak . If µ is a measure on !n with µ(A1) < ∞, show using (1.6) that µ(Ak) →

µ(A) as k → ∞.
1.19 Show that the point mass concentrated at a (see Example 1.2) is a measure.
1.20 Show how to define a mass distribution on the middle third Cantor set, figure 0.1,

in as uniform a way as possible.
1.21 Verify that Lebesgue measure satisfies (1.1), (1.2) and (1.3).
1.22 Let f : [0, 1] → ! be a continuous function. For A a subset of !2 define µ(A) =

L{x : (x, f (x)) ∈ A}, where L is Lebesgue measure. Show that µ is a mass distri-
bution on !2 supported by the graph of f .

1.23 Let D be a Borel subset of !n and let µ be a measure on D with µ(D) < ∞. Let
fk : D → ! be a sequence of functions such that fk(x) → f (x) for all x in D.
Prove Egoroff’s theorem: that given ε > 0 there exists a Borel subset A of D with
µ(D\A) < ε such that fk(x) converges to f (x) uniformly for x in A.

1.24 Prove that if µ is a measure on D and f : D → ! satisfies f (x) " 0 for all x in
D and

∫
D

f dµ = 0 then f (x) = 0 for µ-almost all x.
1.25 If X is a random variable show that E((X − E(X))2) = E(X2) − E(X)2 (these num-

bers equalling the variance of X).
1.26 Verify that if X has the uniform distribution on [a, b] (see (1.23)) then E(X) =

1
2 (a + b) and var(X) = (b − a)2/12.

1.27 Let A1, A2, . . . be a sequence of independent events in some probability space such
that P(Ak) = p for all k, where 0 < p < 1. Let Nk be the random variable defined
by taking Nk(ω) to equal the number of i with 1 ! i ! k for which ω ∈ Ai . Use
the strong law of large numbers to show that, with probability 1, Nk/k → p as
k → ∞. Deduce that the proportion of successes in a sequence of independent trials
converges to the probability of success of each trial.

1.28 A fair die is thrown 6000 times. Use the central limit theorem to estimate the
probability that at least 1050 sixes are thrown. (A numerical method will be needed
if the integral obtained is to be evaluated.)



Chapter 2 Hausdorff measure
and dimension

The notion of dimension is central to fractal geometry. Roughly, dimension indi-
cates how much space a set occupies near to each of its points. Of the wide variety
of ‘fractal dimensions’ in use, the definition of Hausdorff, based on a construc-
tion of Carathéodory, is the oldest and probably the most important. Hausdorff
dimension has the advantage of being defined for any set, and is mathematically
convenient, as it is based on measures, which are relatively easy to manipulate.
A major disadvantage is that in many cases it is hard to calculate or to estimate
by computational methods. However, for an understanding of the mathematics
of fractals, familiarity with Hausdorff measure and dimension is essential.

2.1 Hausdorff measure

Recall that if U is any non-empty subset of n-dimensional Euclidean space, !n,
the diameter of U is defined as |U | = sup{|x − y| : x, y ∈ U }, i.e. the greatest
distance apart of any pair of points in U . If {Ui} is a countable (or finite) collection
of sets of diameter at most δ that cover F , i.e. F ⊂ ⋃∞

i=1 Ui with 0 ! |Ui | ! δ
for each i, we say that {Ui} is a δ-cover of F .

Suppose that F is a subset of !n and s is a non-negative number. For any
δ > 0 we define

Hs
δ(F ) = inf

{ ∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

. (2.1)

Thus we look at all covers of F by sets of diameter at most δ and seek to minimize
the sum of the sth powers of the diameters (figure 2.1). As δ decreases, the class
of permissible covers of F in (2.1) is reduced. Therefore, the infimum Hs

δ(F )
increases, and so approaches a limit as δ → 0. We write

Hs(F ) = lim
δ→0

Hs
δ(F ). (2.2)
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F

d

Figure 2.1 A set F and two possible δ-covers for F . The infimum of "|Ui |s over all
such δ-covers {Ui} gives Hs

δ(F )

This limit exists for any subset F of !n, though the limiting value can be
(and usually is) 0 or ∞. We call Hs(F ) the s-dimensional Hausdorff measure
of F .

With a certain amount of effort, Hs may be shown to be a measure; see
section 1.3. It is straightforward to show that Hs(Ø) = 0, that if E is con-
tained in F then Hs(E) ! Hs(F ), and that if {Fi} is any countable collection of
sets, then

Hs

( ∞⋃

i=1

Fi

)

!
∞∑

i=1

Hs(Fi). (2.3)

It is rather harder to show that there is equality in (2.3) if the {Fi} are disjoint
Borel sets.

Hausdorff measures generalize the familiar ideas of length, area, volume,
etc. It may be shown that, for subsets of !n, n-dimensional Hausdorff mea-
sure is, to within a constant multiple, just n-dimensional Lebesgue measure,
i.e. the usual n-dimensional volume. More precisely, if F is a Borel subset of
!n, then

Hn(F ) = c−1
n voln(F ) (2.4)

where cn is the volume of an n-dimensional ball of diameter 1, so that cn =
πn/2/2n(n/2)! if n is even and cn = π (n−1)/2((n − 1)/2)!/n! if n is odd. Similarly,
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Length × l

Area × l2

Hs × ls

Figure 2.2 Scaling sets by a factor λ increases length by a factor λ, area by a factor λ2,
and s-dimensional Hausdorff measure by a factor λs

for ‘nice’ lower-dimensional subsets of !n, we have that H0(F ) is the number
of points in F ; H1(F ) gives the length of a smooth curve F ; H2(F ) = (4/π) ×
area (F ) if F is a smooth surface; H3(F ) = (6/π) × vol(F ); and Hm(F ) =
c−1
m × volm(F ) if F is a smooth m-dimensional submanifold of !n (i.e. an m-

dimensional surface in the classical sense).
The scaling properties of length, area and volume are well known. On magni-

fication by a factor λ, the length of a curve is multiplied by λ, the area of a plane
region is multiplied by λ2 and the volume of a 3-dimensional object is multiplied
by λ3. As might be anticipated, s-dimensional Hausdorff measure scales with
a factor λs (figure 2.2). Such scaling properties are fundamental to the theory
of fractals.

Scaling property 2.1

Let S be a similarity transformation of scale factor λ > 0. If F ⊂ !n, then

Hs(S(F )) = λsHs(F ). (2.5)
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Proof. If {Ui} is a δ-cover of F then {S(Ui)} is a λδ-cover of S(F ), so

#|S(Ui)|s = λs#|Ui|s

so
Hs

λδ(S(F )) ! λsHs
δ(F )

on taking the infimum. Letting δ → 0 gives that Hs(S(F )) ! λsHs(F ). Replacing
S by S−1, and so λ by 1/λ, and F by S(F ) gives the opposite inequality required.

"

A similar argument gives the following basic estimate of the effect of more
general transformations on the Hausdorff measures of sets.

Proposition 2.2

Let F ⊂ !n and f : F → !m be a mapping such that

|f (x) − f (y)| ! c|x − y|α (x, y ∈ F) (2.6)

for constants c > 0 and α > 0. Then for each s

Hs/α(f (F )) ! cs/αHs(F ). (2.7)

Proof. If {Ui} is a δ-cover of F , then, since |f (F ∩ Ui)| ! c|F ∩ Ui |α ! c|Ui |α , it
follows that {f (F ∩ Ui)} is an ε-cover of f (F ), where ε = cδα . Thus∑

i |f (F ∩ Ui)|s/α ! cs/α
∑

i |Ui|s , so that Hs/α
ε (f (F )) ! cs/αHs

δ(F ). As δ → 0,
so ε → 0, giving (2.7). "

Condition (2.6) is known as a Hölder condition of exponent α; such a condition
implies that f is continuous. Particularly important is the case α = 1, i.e.

|f (x) − f (y)| ! c|x − y| (x, y ∈ F) (2.8)

when f is called a Lipschitz mapping, and

Hs(f (F )) ! csHs(F ). (2.9)

In particular (2.9) holds for any differentiable function with bounded derivative;
such a function is necessarily Lipschitz as a consequence of the mean value
theorem. If f is an isometry, i.e. |f (x) − f (y)| = |x − y|, then Hs(f (F )) =
Hs(F ). Thus, Hausdorff measures are translation invariant (i.e. Hs(F + z) =
Hs(F ), where F + z = {x + z : x ∈ F }), and rotation invariant, as would
certainly be expected.
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2.2 Hausdorff dimension

Returning to equation (2.1) it is clear that for any given set F ⊂ !n and δ < 1,
Hs

δ(F ) is non-increasing with s, so by (2.2) Hs(F ) is also non-increasing. In
fact, rather more is true: if t > s and {Ui} is a δ-cover of F we have

∑

i

|Ui |t !
∑

i

|Ui|t−s |Ui |s ! δt−s
∑

i

|Ui |s (2.10)

so, taking infima, Ht
δ(F ) ! δt−sHs

δ(F ). Letting δ → 0 we see that if Hs(F ) < ∞
then Ht (F ) = 0 for t > s. Thus a graph of Hs(F ) against s (figure 2.3) shows
that there is a critical value of s at which Hs(F ) ‘jumps’ from ∞ to 0. This
critical value is called the Hausdorff dimension of F , and written dimHF ; it is
defined for any set F ⊂ !n. (Note that some authors refer to Hausdorff dimension
as Hausdorff–Besicovitch dimension.) Formally

dimHF = inf{s " 0 : Hs(F ) = 0} = sup{s : Hs(F ) = ∞} (2.11)

(taking the supremum of the empty set to be 0), so that

Hs(F ) =
{
∞ if 0 ! s < dimHF
0 if s > dimHF.

(2.12)

If s = dimHF , then Hs(F ) may be zero or infinite, or may satisfy

0 < Hs(F ) < ∞.

Hs (F )

∞

0
0 dimH F n

s

Figure 2.3 Graph of Hs (F ) against s for a set F . The Hausdorff dimension is the value
of s at which the ‘jump’ from ∞ to 0 occurs
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A Borel set satisfying this last condition is called an s-set. Mathematically,
s-sets are by far the most convenient sets to study, and fortunately they occur
surprisingly often.

For a very simple example, let F be a flat disc of unit radius in !3. From
familiar properties of length, area and volume, H1(F ) = length (F ) = ∞,
0 < H2(F ) = (4/π) × area (F ) = 4 < ∞ and H3(F ) = (6/π) × vol(F ) = 0.
Thus dimHF = 2, with Hs(F ) = ∞ if s < 2 and Hs(F ) = 0 if s > 2.

Hausdorff dimension satisfies the following properties (which might well be
expected to hold for any reasonable definition of dimension).

Monotonicity. If E ⊂ F then dimHE ! dimHF . This is immediate from the
measure property that Hs(E) ! Hs(F ) for each s.

Countable stability. If F1, F2, . . . is a (countable) sequence of sets then
dimH

⋃∞
i=1 Fi = sup1!i<∞{dimHFi}. Certainly, dimH

⋃∞
i=1 Fi " dimHFj for each

j from the monotonicity property. On the other hand, if s > dimHFi for all i,
then Hs(Fi) = 0, so that Hs(

⋃∞
i=1 Fi) = 0, giving the opposite inequality.

Countable sets. If F is countable then dimHF = 0. For if Fi is a single point,
H0(Fi) = 1 and dimHFi = 0, so by countable stability dimH

⋃∞
i=1 Fi = 0.

Open sets. If F ⊂ !n is open, then dimHF = n. For since F contains a ball of
positive n-dimensional volume, dimHF " n, but since F is contained in countably
many balls, dimHF ! n using countable stability and monotonicity.

Smooth sets. If F is a smooth (i.e. continuously differentiable) m-dimensional
submanifold (i.e. m-dimensional surface) of !n then dimHF = m. In particu-
lar smooth curves have dimension 1 and smooth surfaces have dimension 2.
Essentially, this may be deduced from the relationship between Hausdorff and
Lebesgue measures, see also Exercise 2.7.

The transformation properties of Hausdorff dimension follow immediately
from the corresponding ones for Hausdorff measures given in Proposition 2.2.

Proposition 2.3

Let F ⊂ !n and suppose that f : F → !m satisfies a Hölder condition

|f (x) − f (y)| ! c|x − y|α (x, y ∈ F).

Then dimHf (F ) ! (1/α)dimHF .

Proof. If s > dimHF then by Proposition 2.2 Hs/α(f (F )) ! cs/αHs(F ) = 0,
implying that dimHf (F ) ! s/α for all s > dimHF . #

Corollary 2.4

(a) If f : F → !m is a Lipschitz transformation (see (2.8)) then dimHf (F ) !
dimHF .

(b) If f : F → !m is a bi-Lipschitz transformation, i.e.
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c1|x − y| ! |f (x) − f (y)| ! c2|x − y| (x, y ∈ F) (2.13)

where 0 < c1 ! c2 < ∞, then dimHf (F ) = dimHF .

Proof. Part (a) follows from Proposition 2.3 taking α = 1. Applying this to f −1 :
f (F ) → F gives the other inequality required for (b). "

This corollary reveals a fundamental property of Hausdorff dimension: Haus-
dorff dimension is invariant under bi-Lipschitz transformations. Thus if two sets
have different dimensions there cannot be a bi-Lipschitz mapping from one onto
the other. This is reminiscent of the situation in topology where various ‘invari-
ants’ (such as homotopy or homology groups) are set up to distinguish between
sets that are not homeomorphic: if the topological invariants of two sets differ
then there cannot be a homeomorphism (continuous one-to-one mapping with
continuous inverse) between the two sets.

In topology two sets are regarded as ‘the same’ if there is a homeomor-
phism between them. One approach to fractal geometry is to regard two sets
as ‘the same’ if there is a bi-Lipschitz mapping between them. Just as topo-
logical invariants are used to distinguish between non-homeomorphic sets, we
may seek parameters, including dimension, to distinguish between sets that are
not bi-Lipschitz equivalent. Since bi-Lipschitz transformations (2.13) are neces-
sarily homeomorphisms, topological parameters provide a start in this direction,
and Hausdorff dimension (and other definitions of dimension) provide further
distinguishing characteristics between fractals.

In general, the dimension of a set alone tells us little about its topological
properties. However, any set of dimension less than 1 is necessarily so sparse
as to be totally disconnected; that is, no two of its points lie in the same con-
nected component.

Proposition 2.5

A set F ⊂ !n with dimHF < 1 is totally disconnected.

Proof. Let x and y be distinct points of F . Define a mapping f : !n → [0,∞)
by f (z) = |z − x|. Since f does not increase distances, as |f (z) − f (w)| =∣∣∣|z − x| − |w − x|

∣∣∣ ! |(z − x) − (w − x)| = |z − w|, we have from Corollary

2.4(a) that dimHf (F ) ! dimHF < 1. Thus f (F ) is a subset of ! of H1-measure
or length zero, and so has a dense complement. Choosing r with r /∈ f (F ) and
0 < r < f (y) it follows that

F = {z ∈ F : |z − x| < r} ∪ {z ∈ F : |z − x| > r}.

Thus F is contained in two disjoint open sets with x in one set and y in the
other, so that x and y lie in different connected components of F . "
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2.3 Calculation of Hausdorff dimension—simple examples

This section indicates how to calculate the Hausdorff dimension of some simple
fractals such as some of those mentioned in the Introduction. Other methods will
be encountered throughout the book. It is important to note that most dimension
calculations involve an upper estimate and a lower estimate, which are hopefully
equal. Each of these estimates usually involves a geometric observation followed
by a calculation.

Example 2.6

Let F be the Cantor dust constructed from the unit square as in figure 0.4. (At
each stage of the construction the squares are divided into 16 squares with a
quarter of the side length, of which the same pattern of four squares is retained.)
Then 1 ! H1(F ) ! √

2, so dimHF = 1.

Calculation. Observe that Ek, the kth stage of the construction, consists of 4k

squares of side 4−k and thus of diameter 4−k
√

2. Taking the squares of Ek as a
δ-cover of F where δ = 4−k

√
2, we get an estimate H1

δ(F ) ! 4k4−k
√

2 for the
infimum in (2.1). As k → ∞ so δ → 0 giving H1(F ) ! √

2.
For the lower estimate, let proj denote orthogonal projection onto the x-axis.

Orthogonal projection does not increase distances, i.e. |proj x − proj y| ! |x − y|
if x, y ∈ !2, so proj is a Lipschitz mapping. By virtue of the construction of F ,
the projection or ‘shadow’ of F on the x-axis, proj F , is the unit interval [0, 1].
Using (2.9)

1 = length [0, 1] = H1([0, 1]) = H1(proj F) ! H1(F ). "

Note that the same argument and result hold for a set obtained by repeated
division of squares into m2 squares of side length 1/m of which one square in
each column is retained.

This trick of using orthogonal projection to get a lower estimate of Hausdorff
measure only works in special circumstances and is not the basis of a more
general method. Usually we need to work rather harder!

Example 2.7

Let F be the middle third Cantor set (see figure 0.1). If s = log 2/ log 3 =
0.6309 . . . then dimHF = s and 1

2 ! Hs(F ) ! 1.

Heuristic calculation. The Cantor set F splits into a left part FL = F ∩ [0, 1
3 ] and

a right part FR = F ∩ [ 2
3 , 1]. Clearly both parts are geometrically similar to F

but scaled by a ratio 1
3 , and F = FL ∪ FR with this union disjoint. Thus for any s

Hs(F ) = Hs(FL) + Hs(FR) = ( 1
3 )sHs(F ) + ( 1

3 )sHs(F )
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by the scaling property 2.1 of Hausdorff measures. Assuming that at the critical
value s = dimHF we have 0 < Hs(F ) < ∞ (a big assumption, but one that can
be justified) we may divide by Hs(F ) to get 1 = 2( 1

3 )s or s = log 2/ log 3.

Rigorous calculation. We call the intervals that make up the sets Ek in the con-
struction of F level-k intervals. Thus Ek consists of 2k level-k intervals each of
length 3−k .

Taking the intervals of Ek as a 3−k-cover of F gives that Hs
3−k (F ) ! 2k3−ks

= 1 if s = log 2/ log 3. Letting k → ∞ gives Hs(F ) ! 1.
To prove that Hs(F ) " 1

2 we show that

∑
|Ui |s " 1

2 = 3−s (2.14)

for any cover {Ui} of F . Clearly, it is enough to assume that the {Ui} are intervals,
and by expanding them slightly and using the compactness of F , we need only
verify (2.14) if {Ui} is a finite collection of closed subintervals of [0, 1]. For each
Ui , let k be the integer such that

3−(k+1) ! |Ui | < 3−k. (2.15)

Then Ui can intersect at most one level-k interval since the separation of these
level-k intervals is at least 3−k. If j " k then, by construction, Ui intersects
at most 2j−k = 2j 3−sk ! 2j 3s |Ui |s level-j intervals of Ej , using (2.15). If we
choose j large enough so that 3−(j+1) ! |Ui | for all Ui , then, since the {Ui}
intersect all 2j basic intervals of length 3−j , counting intervals gives 2j !∑

i 2j 3s |Ui |s , which reduces to (2.14). #

With extra effort, the calculation can be adapted to show that Hs(F ) = 1.
It is already becoming apparent that calculation of Hausdorff measures and

dimensions can be a little involved, even for simple sets. Usually it is the lower
estimate that is awkward to obtain.

The ‘heuristic’ method of calculation used in Example 2.7 gives the right
answer for the dimension of many self-similar sets. For example, the von Koch
curve is made up of four copies of itself scaled by a factor 1

3 , and hence has
dimension log 4/ log 3. More generally, if F = ⋃m

i=1 Fi , where each Fi is geo-
metrically similar to F but scaled by a factor ci then, provided that the Fi

do not overlap ‘too much’, the heuristic argument gives dimHF as the num-
ber s satisfying

∑m
i=1 cs

i = 1. The validity of this formula is discussed fully in
Chapter 9.

*2.4 Equivalent definitions of Hausdorff dimension

It is worth pointing out that there are other classes of covering set that define
measures leading to Hausdorff dimension. For example, we could use coverings
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by spherical balls: letting

Bs
δ(F ) = inf{"|Bi|s : {Bi} is a δ-cover of F by balls} (2.16)

we obtain a measure Bs(F ) = limδ→0 Bs
δ(F ) and a ‘dimension’ at which Bs(F )

jumps from ∞ to 0. Clearly Hs
δ(F ) ! Bs

δ(F ) since any δ-cover of F by balls
is a permissible covering in the definition of Hs

δ . Also, if {Ui} is a δ-cover of
F , then {Bi} is a 2δ-cover, where, for each i, Bi is chosen to be some ball
containing Ui and of radius |Ui | ! δ. Thus "|Bi|s ! "(2|Ui|)s = 2s"|Ui|s , and
taking infima gives Bs

2δ(F ) ! 2sHs
δ(F ). Letting δ → 0 it follows that Hs(F ) !

Bs(F ) ! 2sHs(F ). In particular, this implies that the values of s at which Hs

and Bs jump from ∞ to 0 are the same, so that the dimensions defined by the
two measures are equal.

It is easy to check that we get the same values for Hausdorff measure and
dimension if in (2.1) we use δ-covers of just open sets or just closed sets. More-
over, if F is compact, then, by expanding the covering sets slightly to open
sets, and taking a finite subcover, we get the same value of Hs(F ) if we merely
consider δ-covers by finite collections of sets.

Net measures are another useful variant. For the sake of simplicity let F
be a subset of the interval [0, 1). A binary interval is an interval of the form
[r2−k, (r + 1)2−k) where k = 0, 1, 2, . . . and r = 0, 1, . . . , 2k − 1. We define

Ms
δ(F ) = inf{"|Ui|s : {Ui} is a δ-cover of F by binary intervals} (2.17)

leading to the net measures

Ms(F ) = lim
δ→0

Ms
δ(F ). (2.18)

Since any interval U ⊂ [0, 1) is contained in two consecutive binary intervals
each of length at most 2|U | we see, in just the same way as for the measure
Bs , that

Hs(F ) ! Ms(F ) ! 2s+1Hs(F ). (2.19)

It follows that the value of s at which Ms(F ) jumps from ∞ to 0 equals the Haus-
dorff dimension of F , i.e. both definitions of measure give the same dimension.

For certain purposes net measures are much more convenient than Hausdorff
measures. This is because two binary intervals are either disjoint or one of them
is contained in the other, allowing any cover of binary intervals to be reduced to
a cover of disjoint binary intervals.

*2.5 Finer definitions of dimension

It is sometimes desirable to have a sharper indication of dimension than just a
number. To achieve this let h : !+ → !+ be a function that is increasing and
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continuous, which we call a dimension function or gauge function. Analogously
to (2.1) we define

Hh
δ (F ) = inf{"h(|Ui|) : {Ui} is a δ-cover of F } (2.20)

for F a subset of !n. This leads to a measure, taking Hh(F ) = limδ→0 Hh
δ (F ).

(If h(t) = t s this is the usual definition of s-dimensional Hausdorff measure.) If
h and g are dimension functions such that h(t)/g(t) → 0 as t → 0 then, by an
argument similar to (2.10), we get that Hh(F ) = 0 whenever Hg(F ) < ∞. Thus
partitioning the dimension functions into those for which Hh is finite and those
for which it is infinite gives a more precise indication of the ‘dimension’ of F
than just the number dimHF .

An important example of this is Brownian motion in !3 (see Chapter 16
for further details). It may be shown that (with probability 1) a Brownian path
has Hausdorff dimension 2 but with H2-measure equal to 0. More refined cal-
culations show that such a path has positive and finite Hh-measure, where
h(t) = t2 log log(1/t). Although Brownian paths have dimension 2, the dimen-
sion is, in a sense, logarithmically smaller than 2.

2.6 Notes and references

The idea of defining measures using covers of sets was introduced by
Carathéodory (1914). Hausdorff (1919) used this method to define the measures
that now bear his name, and showed that the middle third Cantor set has positive
and finite measure of dimension log 2/ log 3. Properties of Hausdorff measures
have been developed ever since, not least by Besicovitch and his students.

Technical aspects of Hausdorff measures and dimensions are discussed in rather
more detail in Falconer (1985a), and in greater generality in the books of Rogers
(1998), Federer (1996) and Mattila (1995). Merzenich and Staiger (1994) relate
Hausdorff dimension to formal languages and automata theory.

Exercises

2.1 Verify that the value of Hs (F ) is unaltered if, in (2.1), we only consider δ-covers
by sets {Ui} that are all closed.

2.2 Show that H0(F ) equals the number of points in the set F .
2.3 Verify from the definition that Hs(Ø) = 0, that Hs (E) ⊂ Hs (F ) if E ⊂ F , and that

Hs (
⋃∞

i=1 Fi) !
∑∞

i=1 Hs(Fi).
2.4 Let F be the closed interval [0, 1]. Show that Hs (F ) = ∞ if 0 ! s < 1, that

Hs (F ) = 0 if s > 1, and that 0 < H1(F ) < ∞.
2.5 Let f : ! → ! be a differentiable function with continuous derivative. Show that

dimHf (F ) ! dimHF for any set F . (Consider the case of F bounded first and show
that f is Lipschitz on F .)
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2.6 Let f : ! → ! be the function f (x) = x2, and let F be any subset of !. Show that
dimHf (F ) = dimHF .

2.7 Let f : [0, 1] → ! be a Lipschitz function. Writing graph f = {(x, f (x)) : 0 ! x
! 1}, show that dimHgraph f = 1. Note, in particular, that this is true if f is con-
tinuously differentiable, see Exercise 1.13.

2.8 What is the Hausdorff dimension of the sets {0, 1, 2, 3, . . .} and {0, 1, 1
2 , 1

3 , 1
4 , . . .}

in !?
2.9 Let F be the set consisting of the numbers between 0 and 1 whose decimal expan-

sions do not contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
log 9/ log 10. Can you prove this by a rigorous argument? Generalize this result.

2.10 Let F consist of the points (x, y) ∈ !2 such that the decimal expansions of nei-
ther x or y contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
2 log 9/ log 10.

2.11 Use a ‘heuristic’ argument to show that the Hausdorff dimension of the set depicted
in figure 0.5 is given by the solution of the equation 4( 1

4 )s + ( 1
2 )s = 1. By solving

a quadratic equation in ( 1
2 )s , find an explicit expression for s.

2.12 Let F be the set of real numbers with base-3 expansion bmbm−1 · · · b1 · a1a2 · · · with
none of the digits bi or ai equal to 1. (Thus F is constructed by a Cantor-like process
extending outwards as well as inwards.) What is the Hausdorff dimension of F ?

2.13 What is the Hausdorff dimension of the set of numbers x with base-3 expansion
0 · a1a2 · · · for which there is a positive integer k (which may depend on x) such
that ai $= 1 for all i " k?

2.14 Let F be the middle-λ Cantor set (obtained by removing a proportion 0 < λ < 1
from the middle of intervals). Use a ‘heuristic argument’ to show that dimHF =
log 2/ log(2/(1 − λ)). Now let E = F × F ⊂ !2. Show in the same way that
dimHE = 2 log 2/ log(2/(1 − λ)).

2.15 Show that there is a totally disconnected subset of the plane of Hausdorff dimension
s for every 0 ! s ! 2. (Modify the construction of the Cantor dust in figure 0.4.)

2.16 Let S be the unit circle in the plane, with points on S parameterized by the angle θ
subtended at the centre with a fixed axis, so that θ1 and θ2 represent the same point if
and only if θ1 and θ2 differ by a multiple of 2π , in the usual way. Let F = {θ ∈ S :
0 ! 3kθ ! π(mod 2π) for all k = 1, 2, . . .}. Show that dimHF = log 2/ log 3.

2.17 Show that if h and g are dimension functions such that h(t)/g(t) → 0 as t → 0
then Hh(F ) = 0 whenever Hg(F ) < ∞.



Chapter 3 Alternative definitions
of dimension

Hausdorff dimension, discussed in the last chapter, is the principal definition of
dimension that we shall work with. However, other definitions are in widespread
use, and it is appropriate to examine some of these and their inter-relationship. Not
all definitions are generally applicable—some only describe particular classes of
set, such as curves.

Fundamental to most definitions of dimension is the idea of ‘measurement at
scale δ’. For each δ, we measure a set in a way that ignores irregularities of size
less than δ, and we see how these measurements behave as δ → 0. For example,
if F is a plane curve, then our measurement, Mδ(F ), might be the number of
steps required by a pair of dividers set at length δ to traverse F . A dimension of
F is then determined by the power law (if any) obeyed by Mδ(F ) as δ → 0. If

Mδ(F ) ∼ cδ−s (3.1)

for constants c and s, we might say that F has ‘divider dimension’ s, with c
regarded as the ‘s-dimensional length’ of F . Taking logarithms

log Mδ(F ) $ log c − s log δ (3.2)

in the sense that the difference of the two sides tends to 0 with δ, and

s = lim
δ→0

log Mδ(F )

− log δ
. (3.3)

These formulae are appealing for computational or experimental purposes, since s
can be estimated as minus the gradient of a log–log graph plotted over a suitable
range of δ; see figure 3.1. Of course, for real phenomena, we can only work
with a finite range of δ; theory and experiment diverge before an atomic scale is
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log d

log Md (F )

log c

Figure 3.1 Empirical estimation of a dimension of a set F , on the power-law assumption
Mδ(F ) ∼ cδ−s

reached. For example, if F is the coastline of Britain, plotting a log–log graph
for δ between 20 m and 200 km gives the divider dimension of F about 1.2.

There may be no exact power law for Mδ(F ), and the closest we can get to
(3.3) are the lower and upper limits.

For the value of s given by (3.1) to behave like a dimension, the method of
measurement needs to scale with the set, so that doubling the size of F and at
the same time doubling the scale at which measurement takes place does not
affect the answer; that is, we require Mδ(δF) = M1(F ) for all δ. If we modify
our example and redefine Mδ(F ) to be the sum of the divider step lengths then
Mδ(F ) is homogeneous of degree 1, i.e. Mδ(δF) = δ1M1(F ) for δ > 0, and this
must be taken into account when defining the dimension. In general, if Mδ(F ) is
homogeneous of degree d , that is Mδ(δF) = δdM1(F ), then a power law of the
form Mδ(F ) ∼ cδd−s corresponds to a dimension s.

There are no hard and fast rules for deciding whether a quantity may reasonably
be regarded as a dimension. There are many definitions that do not fit exactly into
the above, rather simplified, scenario. The factors that determine the acceptability
of a definition of a dimension are recognized largely by experience and intuition.
In general one looks for some sort of scaling behaviour, a naturalness of the
definition in the particular context and properties typical of dimensions such as
those discussed below.

A word of warning: as we shall see, apparently similar definitions of dimen-
sion can have widely differing properties. It should not be assumed that different
definitions give the same value of dimension, even for ‘nice’ sets. Such assump-
tions have led to major misconceptions and confusion in the past. It is necessary
to derive the properties of any ‘dimension’ from its definition. The properties of
Hausdorff dimension (on which we shall largely concentrate in the later chapters
of this book) do not necessarily all hold for other definitions.
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What are the desirable properties of a ‘dimension’? Those derived in the last
chapter for Hausdorff dimension are fairly typical.

Monotonicity. If E ⊂ F then dimHE ! dimHF .
Stability. dimH(E ∪ F) = max(dimHE, dimHF).
Countable stability. dimH

(⋃∞
i=1 Fi

)
= sup1!i<∞ dimHFi .

Geometric invariance. dimHf (F ) = dimHF if f is a transformation of !n

such as a translation, rotation, similarity or affinity.
Lipschitz invariance. dimHf (F ) = dimHF if f is a bi-Lipschitz transforma-

tion.
Countable sets. dimHF = 0 if F is finite or countable.
Open sets. If F is an open subset of !n then dimHF = n.
Smooth manifolds. dimHF = m if F is a smooth m-dimensional manifold

(curve, surface, etc.).
All definitions of dimension are monotonic, most are stable, but, as we shall

see, some common definitions fail to exhibit countable stability and may have
countable sets of positive dimension. All the usual dimensions are Lipschitz
invariant, and, therefore, geometrically invariant. The ‘open sets’ and ‘smooth
manifolds’ properties ensure that the dimension is an extension of the classi-
cal definition. Note that different definitions of dimension can provide different
information about which sets are Lipschitz equivalent.

3.1 Box-counting dimensions

Box-counting or box dimension is one of the most widely used dimensions.
Its popularity is largely due to its relative ease of mathematical calculation and
empirical estimation. The definition goes back at least to the 1930s and it has been
variously termed Kolmogorov entropy, entropy dimension, capacity dimension (a
term best avoided in view of potential theoretic associations), metric dimension,
logarithmic density and information dimension. We shall always refer to box or
box-counting dimension to avoid confusion.

Let F be any non-empty bounded subset of !n and let Nδ(F ) be the smallest
number of sets of diameter at most δ which can cover F . The lower and upper
box-counting dimensions of F respectively are defined as

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.4)

dimBF = lim
δ→0

log Nδ(F )

− log δ
. (3.5)

If these are equal we refer to the common value as the box-counting dimension
or box dimension of F

dimBF = lim
δ→0

log Nδ(F )

− log δ
. (3.6)
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Here, and throughout the book, we assume that δ > 0 is sufficiently small to
ensure that − log δ and similar quantities are strictly positive. To avoid problems
with ‘log 0’ or ‘log ∞’ we generally consider box dimension only for non-empty
bounded sets. In developing the general theory of box dimensions we assume
that sets considered are non-empty and bounded.

There are several equivalent definitions of box dimension that are sometimes
more convenient to use. Consider the collection of cubes in the δ-coordinate
mesh of !n, i.e. cubes of the form

[m1δ, (m1 + 1)δ] × · · · × [mnδ, (mn + 1)δ]

where m1, . . . , mn are integers. (Recall that a ‘cube’ is an interval in !1 and a
square in !2.) Let N ′

δ(F ) be the number of δ-mesh cubes that intersect F . They
obviously provide a collection of N ′

δ(F ) sets of diameter δ
√

n that cover F , so

Nδ
√

n(F ) ! N ′
δ(F ).

If δ
√

n < 1 then
log Nδ

√
n(F )

− log(δ
√

n)
! log N ′

δ(F )

− log
√

n − log δ

so taking limits as δ → 0

dimBF ! lim
δ→0

log N ′
δ(F )

− log δ
(3.7)

and

dimBF ! lim
δ→0

log N ′
δ(F )

− log δ
. (3.8)

On the other hand, any set of diameter at most δ is contained in 3n mesh cubes
of side δ (by choosing a cube containing some point of the set together with its
neighbouring cubes). Thus

N ′
δ(F ) ! 3nNδ(F )

and taking logarithms and limits as δ → 0 leads to the opposite inequalities to
(3.7) and (3.8). Hence to find the box dimensions (3.4)–(3.6), we can equally
well take Nδ(F ) to be the number of mesh cubes of side δ that intersect F .

This version of the definitions is widely used empirically. To find the box dimen-
sion of a plane set F we draw a mesh of squares or boxes of side δ and count the num-
ber Nδ(F ) that overlap the set for various small δ (hence the name ‘box-counting’).
The dimension is the logarithmic rate at which Nδ(F ) increases as δ → 0, and may
be estimated by the gradient of the graph of log Nδ(F ) against − log δ.

This definition gives an interpretation of the meaning of box dimension. The
number of mesh cubes of side δ that intersect a set is an indication of how spread
out or irregular the set is when examined at scale δ. The dimension reflects how
rapidly the irregularities develop as δ → 0.
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Another frequently used definition of box dimension is obtained by taking
Nδ(F ) in (3.4)–(3.6) to be the smallest number of arbitrary cubes of side δ
required to cover F . The equivalence of this definition follows as in the mesh
cube case, noting that any cube of side δ has diameter δ

√
n, and that any set of

diameter of at most δ is contained in a cube of side δ.
Similarly, we get exactly the same values if in (3.4)–(3.6) we take Nδ(F ) as

the smallest number of closed balls of radius δ that cover F .
A less obviously equivalent formulation of box dimension has the largest

number of disjoint balls of radius δ with centres in F . Let this number be N ′
δ(F ),

and let B1, . . . , BN ′
δ
(F ) be disjoint balls centred in F and of radius δ. If x belongs

to F then x must be within distance δ of one of the Bi , otherwise the ball of centre
x and radius δ can be added to form a larger collection of disjoint balls. Thus the
N ′

δ(F ) balls concentric with the Bi but of radius 2δ (diameter 4δ) cover F , giving

N4δ(F ) ! N ′
δ(F ). (3.9)

Suppose also that B1, . . . , BN ′
δ
(F ) are disjoint balls of radii δ with centres in F .

Let U1, . . . , Uk be any collection of sets of diameter at most δ which cover F .
Since the Uj must cover the centres of the Bi , each Bi must contain at least one
of the Uj . As the Bi are disjoint there are at least as many Uj as Bi . Hence

N ′
δ(F ) ! Nδ(F ). (3.10)

Taking logarithms and limits of (3.9) and (3.10) shows that the values of (3.4)–
(3.6) are unaltered if Nδ(F ) is replaced by this N ′

δ(F ).
These various definitions are summarized below and in figure 3.2.

Equivalent definitions 3.1

The lower and upper box-counting dimensions of a subset F of !n are given by

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.11)

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.12)

and the box-counting dimension of F by

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.13)

(if this limit exists), where Nδ(F ) is any of the following :

(i) the smallest number of closed balls of radius δ that cover F ;
(ii) the smallest number of cubes of side δ that cover F ;

(iii) the number of δ-mesh cubes that intersect F ;
(iv) the smallest number of sets of diameter at most δ that cover F ;
(v) the largest number of disjoint balls of radius δ with centres in F.
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F

(i)

(ii) (iii)

(iv) (v)d

Figure 3.2 Five ways of finding the box dimension of F ; see Equivalent definitions 3.1.
The number Nδ(F ) is taken to be: (i) the least number of closed balls of radius δ that
cover F ; (ii) the least number of cubes of side δ that cover F ; (iii) the number of δ-mesh
cubes that intersect F ; (iv) the least number of sets of diameter at most δ that cover F ;
(v) the greatest number of disjoint balls of radius δ with centres in F

This list could be extended further; in practice one adopts the definition most
convenient for a particular application.

It is worth noting that, in (3.11)–(3.13), it is enough to consider limits as δ
tends to 0 through any decreasing sequence δk such that δk+1 ! cδk for some
constant 0 < c < 1; in particular for δk = ck. To see this, note that if δk+1 " δ <
δk, then, with Nδ(F ) the least number of sets in a δ-cover of F ,

log Nδ(F )

− log δ
" log Nδk+1(F )

− log δk

= log Nδk+1(F )

− log δk+1 + log(δk+1/δk)
" log Nδk+1(F )

− log δk+1 + log c
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and so
lim
δ→0

log Nδ(F )

− log δ
! lim

k→∞
log Nδk

(F )

− log δk

. (3.14)

The opposite inequality is trivial; the case of lower limits may be dealt with in
the same way.

There is an equivalent definition of box dimension of a rather different form
that is worth mentioning. Recall that the δ-neighbourhood Fδ of a subset F of
!n is

Fδ = {x ∈ !n : |x − y| ! δ for some y ∈ F } (3.15)

i.e. the set of points within distance δ of F . We consider the rate at which the
n-dimensional volume of Fδ shrinks as δ → 0. In !3, if F is a single point
then Fδ is a ball with vol(Fδ) = 4

3πδ3, if F is a segment of length l then Fδ is
‘sausage-like’ with vol(Fδ) ∼ π lδ2, and if F is a flat set of area a then Fδ is
essentially a thickening of F with vol(Fδ) ∼ 2aδ. In each case, vol(Fδ) ∼ cδ3−s

where the integer s is the dimension of F , so that exponent of δ is indicative of
the dimension. The coefficient c of δ3−s , known as the Minkowski content of F ,
is a measure of the length, area or volume of the set as appropriate.

This idea extends to fractional dimensions. If F is a subset of !n and, for some
s, voln(Fδ)/δ

n−s tends to a positive finite limit as δ → 0 where voln denotes n-
dimensional volume, then it makes sense to regard F as s-dimensional. The
limiting value is called the s-dimensional content of F —a concept of slightly
restricted use since it is not necessarily additive on disjoint subsets, i.e. is not a
measure. Even if this limit does not exist, we may be able to extract the critical
exponent of δ and this turns out to be related to the box dimension.

Proposition 3.2

If F is a subset of !n, then

dimBF = n − lim
δ→0

log voln(Fδ)

log δ

dimBF = n − lim
δ→0

log voln(Fδ)

log δ

where Fδ is the δ-neighbourhood of F.

Proof. If F can be covered by Nδ(F ) balls of radius δ < 1 then Fδ can be covered
by the concentric balls of radius 2δ. Hence

voln(Fδ) ! Nδ(F )cn(2δ)n
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where cn is the volume of the unit ball in !n. Taking logarithms,

log voln(Fδ)

− log δ
! log 2ncn + n log δ + log Nδ(F )

− log δ
,

so

lim
δ→0

log voln(Fδ)

− log δ
! −n + dimBF (3.16)

with a similar inequality for the upper limits. On the other hand if there are
Nδ(F ) disjoint balls of radius δ with centres in F , then by adding their volumes,

Nδ(F )cnδ
n ! voln(Fδ).

Taking logarithms and letting δ → 0 gives the opposite inequality to (3.16), using
Equivalent definition 3.1(v). "

In the context of Proposition 3.2, box dimension is sometimes referred to as
Minkowski dimension or Minkowski–Bouligand dimension.

It is important to understand the relationship between box-counting dimension
and Hausdorff dimension. If F can be covered by Nδ(F ) sets of diameter δ, then,
from definition (2.1),

Hs
δ(F ) ! Nδ(F )δs .

If 1 < Hs(F ) = limδ→0 Hs
δ(F ) then log Nδ(F ) + s log δ > 0 if δ is sufficiently

small. Thus s ! limδ→0 log Nδ(F )/− log δ so

dimHF ! dimBF ! dimBF (3.17)

for every F ⊂ !n. We do not in general get equality here. Although Hausdorff
and box dimensions are equal for many ‘reasonably regular’ sets, there are plenty
of examples where this inequality is strict.

Roughly speaking (3.6) says that Nδ(F ) $ δ−s for small δ, where s = dimBF .
More precisely, it says that

Nδ(F )δs → ∞ if s < dimBF

and
Nδ(F )δs → 0 if s > dimBF.

But

Nδ(F )δs = inf

{
∑

i

δs : {Ui} is a (finite) δ-cover of F

}

,
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which should be compared with

Hs
δ(F ) = inf

{
∑

i

|Ui |s : {Ui} is a δ-cover of F

}

,

which occurs in the definitions of Hausdorff measure and dimension. In calculat-
ing Hausdorff dimension, we assign different weights |Ui|s to the covering sets
Ui , whereas for the box dimensions we use the same weight δs for each covering
set. Box dimensions may be thought of as indicating the efficiency with which
a set may be covered by small sets of equal size, whereas Hausdorff dimension
involves coverings by sets of small but perhaps widely varying size.

There is a temptation to introduce the quantity v(F ) = limδ→0Nδ(F )δs , but
this does not give a measure on subsets of !n. As we shall see, one consequence
of this is that box dimensions have a number of unfortunate properties, and can
be awkward to handle mathematically.

Since box dimensions are determined by coverings by sets of equal size they
tend to be easier to calculate than Hausdorff dimensions. Just as with Hausdorff
dimension, calculations of box dimension usually involve finding a lower bound
and an upper bound separately, each bound depending on a geometric observation
followed by an algebraic estimate.

Example 3.3

Let F be the middle third Cantor set (figure 0.1). Then dimBF = dimBF =
log 2/ log 3.

Calculation. The obvious covering by the 2k level-k intervals of Ek of length 3−k

gives that Nδ(F ) ! 2k if 3−k < δ ! 3−k+1. From (3.5)

dimBF = lim
δ→0

log Nδ(F )

− log δ
! lim

k→∞
log 2k

log 3k−1
= log 2

log 3
.

On the other hand, any interval of length δ with 3−k−1 ! δ < 3−k intersects at
most one of the level-k intervals of length 3−k used in the construction of F .
There are 2k such intervals so at least 2k intervals of length δ are required to
cover F . Hence Nδ(F ) " 2k leading to dimBF " log 2/ log 3. #

Thus, at least for the Cantor set, dimHF = dimBF .

3.2 Properties and problems of box-counting dimension

The following elementary properties of box dimension mirror those of Hausdorff
dimension, and may be verified in much the same way.
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(i) A smooth m-dimensional submanifold of !n has dimBF = m.
(ii) dimB and dimB are monotonic.

(iii) dimB is finitely stable, i.e.

dimB(E ∪ F) = max {dimBE, dimBF };

the corresponding identity does not hold for dimB.
(iv) dimB and dimB are bi-Lipschitz invariant. This is so because, if |f (x) −

f (y)| ! c|x − y| and F can be covered by Nδ(F ) sets of diameter at most
δ, then the Nδ(F ) images of these sets under f form a cover of f (F )
by sets of diameter at most cδ, thus dimBf (F ) ! dimBF . Similarly, box
dimensions behave just like Hausdorff dimensions under bi-Lipschitz and
Hölder transformations.

We now start to encounter the disadvantages of box-counting dimension. The
next proposition is at first appealing, but has undesirable consequences.

Proposition 3.4

Let F denote the closure of F (i.e. the smallest closed subset of !n containing
F ). Then

dimBF = dimBF

and
dimBF = dimBF.

Proof. Let B1, . . . , Bk be a finite collection of closed balls of radii δ. If the closed
set

⋃k
i=1 Bi contains F , it also contains F . Hence the smallest number of closed

balls of radius δ that cover F equals the smallest number required to cover the
larger set F . The result follows. "

An immediate consequence of this is that if F is a dense subset of an open
region of !n then dimBF = dimBF = n. For example, let F be the (countable) set
of rational numbers between 0 and 1. Then F is the entire interval [0, 1], so that
dimBF = dimBF = 1. Thus countable sets can have non-zero box dimension.
Moreover, the box-counting dimension of each rational number regarded as a
one-point set is clearly zero, but the countable union of these singleton sets
has dimension 1. Consequently, it is not generally true that dimB

⋃∞
i=1 Fi =

supi dimBFi .
This severely limits the usefulness of box dimension—introducing a small, i.e.

countable, set of points can play havoc with the dimension. We might hope to sal-
vage something by restricting attention to closed sets, but difficulties still remain.

Example 3.5

F = {0, 1, 1
2 , 1

3 , . . .} is a compact set with dimBF = 1
2 .
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Calculation. Let 0 < δ < 1
2 and let k be the integer satisfying 1/(k − 1)k > δ !

1/k(k + 1). If |U | " δ, then U can cover at most one of the points {1, 1
2 , . . . , 1/k}

since 1/(k − 1) − 1/k = 1/(k − 1)k > δ. Thus at least k sets of diameter δ are
required to cover F , so Nδ(F ) ! k giving

log Nδ(F )

− log δ
! log k

log k(k + 1)
.

Letting δ → 0 so k → ∞ gives dimBF ! 1
2 . On the other hand, if 1

2 > δ > 0,
take k such that 1/(k − 1)k > δ ! 1/k(k + 1). Then (k + 1) intervals of length
δ cover [0, 1/k], leaving k − 1 points of F which can be covered by another
k − 1 intervals. Thus Nδ(F ) " 2k, so

log Nδ(F )

− log δ
" log(2k)

log k(k − 1)

giving
dimBF " 1

2 . #

No-one would regard this set, with all but one of its points isolated, as a fractal,
yet it has large box dimension.

Nevertheless, as well as being convenient in practice, box dimensions are very
useful in theory. If, as often happens, it can be shown that a set has equal box
and Hausdorff dimensions, the interplay between these definitions can be used
to powerful effect.

*3.3 Modified box-counting dimensions

There are ways of overcoming the difficulties of box dimension outlined in the
last section. However, they may not at first seem appealing since they re-introduce
all the difficulties of calculation associated with Hausdorff dimension and more.

For F a subset of !n we can try to decompose F into a countable number of
pieces F1, F2, . . . in such a way that the largest piece has as small a dimension
as possible. This idea leads to the following modified box-counting dimensions:

dimMBF = inf

{

sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi

}

(3.18)

dimMBF = inf

{

sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi

}

. (3.19)

(In both cases the infimum is over all possible countable covers {Fi} of F .)
Clearly dimMBF " dimBF and dimMBF " dimBF . However, we now have that
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dimMBF = dimMBF = 0 if F is countable—just take the Fi to be one-point sets.
Moreover, for any subset F of !n,

0 ! dimHF ! dimMBF ! dimMBF ! dimBF ! n. (3.20)

It is easy to see that dimMB and dimMB recover all the desirable properties of
a dimension, but they can be hard to calculate. However, there is a useful test
for compact sets to have equal box and modified box dimensions. It applies to
sets that might be described as ‘dimensionally homogeneous’.

Proposition 3.6

Let F ⊂ !n be compact. Suppose that

dimB(F ∩ V ) = dimBF (3.21)

for all open sets V that intersect F. Then dimBF = dimMBF . A similar result
holds for lower box-counting dimensions.

Proof. Let F ⊂ ⋃∞
i=1 Fi with each Fi closed. A version of Baire’s category theo-

rem (which may be found in any text on basic general topology, and which we
quote without proof) states that there is an index i and an open set V ⊂ !n such
that F ∩ V ⊂ Fi . For this i, dimBFi = dimBF . Using (3.19) and Proposition 3.4

dimMBF = inf

{

sup dimBFi : F ⊂
∞⋃

i=1

Fi where the Fi are closed sets

}

" dimBF.

The opposite inequality is contained in (3.20). A similar argument deals with
the lower dimensions. #

For an application, let F be a compact set with a high degree of self-similarity,
for instance the middle third Cantor set or von Koch curve. If V is any open set
that intersects F , then F ∩ V contains a geometrically similar copy of F which
must have upper box dimension equal to that of F , so that (3.21) holds, leading
to equal box and modified box dimensions.

*3.4 Packing measures and dimensions

Unlike Hausdorff dimension, neither the box dimensions or modified box dimen-
sions are defined in terms of measures, and this can present difficulties in their
theoretical development. Nevertheless, the circle of ideas in the last section may
be completed in a way that is, at least mathematically, elegant. Recall that Haus-
dorff dimension may be defined using economical coverings by small balls (2.16)
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whilst dimB may be defined using economical coverings by small balls of equal
radius (Equivalent definition 3.1(i)). On the other hand dimB may be thought of
as a dimension that depends on packings by disjoint balls of equal radius that
are as dense as possible (Equivalent definition 3.1(v)). Coverings and packings
play a dual role in many areas of mathematics and it is therefore natural to try to
look for a dimension that is defined in terms of dense packings by disjoint balls
of differing small radii.

We try to follow the pattern of definition of Hausdorff measure and dimension.
For s ! 0 and δ > 0, let

P s
δ (F ) = sup

{
∑

i

|Bi|s : {Bi} is a collection of disjoint balls of radii at

most δ with centres in F

}

. (3.22)

Since P s
δ (F ) decreases with δ, the limit

P s
0 (F ) = lim

δ→0
P s

δ (F ) (3.23)

exists. At this point we meet the problems encountered with box-counting dimen-
sions. By considering countable dense sets it is easy to see that P s

0 (F ) is not a
measure. Hence we modify the definition to

P s (F ) = inf

{
∑

i

P s
0 (Fi) : F ⊂

∞⋃

i=1

Fi

}

. (3.24)

It may be shown that P s (F ) is a measure on !n, known as the s-dimensional
packing measure. We may define the packing dimension in the natural way:

dimPF = sup{s : P s(F ) = ∞} = inf{s : P s(F ) = 0}. (3.25)

The underlying measure structure immediately implies monotonicity: that
dimPE " dimPF if E ⊂ F . Moreover, for a countable collection of sets {Fi},

dimP

( ∞⋃

i=1

Fi

)

= sup
i

dimPFi, (3.26)

since if s > dimPFi for all i, then P s(
⋃

i Fi) "
∑

i P s(Fi) = 0 implying
dimP

(⋃
i Fi

)
" s.

We now investigate the relationship of packing dimension with other definitions
of dimension and verify the surprising fact that packing dimension is just the same
as the modified upper box dimension.
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Lemma 3.7

dimPF ! dimBF. (3.27)

Proof. If dimPF = 0, the result is obvious. Otherwise choose any t and s with
0 < t < s < dimPF . Then P s(F ) = ∞, so P s

0 (F ) = ∞. Thus, given 0 < δ ! 1,
there are disjoint balls {Bi}, of radii at most δ with centres in F , such that
1 < "∞

i=1|Bi|s . Suppose that, for each k, exactly nk of these balls satisfy 2−k−1 <
|Bi| ! 2−k; then

1 <

∞∑

k=0

nk2−ks . (3.28)

There must be some k with nk > 2kt (1 − 2t−s), otherwise the sum in (3.28) is
at most "∞

k=02kt−ks(1 − 2t−s) = 1, by summing the geometric series. These nk

balls all contain balls of radii 2−k−2 ! δ centred in F . Hence if Nδ(F ) denotes
the greatest number of disjoint balls of radius δ with centres in F , then

N2−k−2(F )(2−k−2)t " nk(2−k−2)t > 2−2t (1 − 2t−s)

where 2−k−2 < δ. It follows that limδ→0Nδ(F )δt > 0, so that dimBF " t
using Equivalent definition 3.1(v). This is true for any 0 < t < dimPF so
(3.27) follows. #

Proposition 3.8

If F ⊂ !n then dimPF = dimMBF .

Proof. If F ⊂ ⋃∞
i=1 Fi then, by (3.26) and (3.27),

dimPF ! sup
i

dimPFi ! sup
i

dimBFi.

Definition (3.19) now gives that dimPF ! dimMBF .
Conversely, if s > dimPF then P s(F ) = 0, so that F ⊂ ⋃

i Fi for a collection
of sets Fi with P s

0 (Fi) < ∞ for each i, by (3.24). Hence, for each i, if δ is small
enough, then P s

δ (Fi) < ∞, so by (3.22) Nδ(Fi)δ
s is bounded as δ → 0, where

Nδ(Fi) is the largest number of disjoint balls of radius δ with centres in Fi . By
Equivalent definition 3.1(v) dimBFi ! s for each i, giving that dimMBF ! s by
(3.19), as required. #

We have established the following relations:

dimHF ! dimMBF ! dimMBF = dimPF ! dimBF. (3.29)

Suitable examples show that none of the inequalities can be replaced by equality.
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As with Hausdorff dimension, packing dimension permits the use of powerful
measure theoretic techniques in its study. The introduction of packing measures
(remarkably some 60 years after Hausdorff measures) has led to a greater under-
standing of the geometric measure theory of fractals, with packing measures
behaving in a way that is ‘dual’ to Hausdorff measures in many respects. Indeed
corresponding results for Hausdorff and packing measures are often presented
side by side. Nevertheless, one cannot pretend that packing measures and dimen-
sions are easy to work with or to calculate; the extra step (3.24) in their definition
makes them more awkward to use than the Hausdorff analogues.

This situation is improved slightly by the equality of packing dimension and
the modified upper box dimension. It is improved considerably for compact sets
with ‘local’ dimension constant throughout—a situation that occurs frequently
in practice, in particular in sets with some kind of self-similarity.

Corollary 3.9

Let F ⊂ !n be compact and such that

dimB(F ∩ V ) = dimBF (3.30)

for all open sets V that intersect F. Then dimPF = dimBF .

Proof. This is immediate from Propositions 3.6 and 3.8. !

The nicest case, of course, is of fractals with equal Hausdorff and upper box
dimensions, in which case equality holds throughout (3.29)—we shall see many
such examples later on. However, even the much weaker condition dimHF =
dimPF , though sometimes hard to prove, eases analysis of F .

3.5 Some other definitions of dimension

A wide variety of other definitions of dimension have been introduced, many of
them only of limited applicability, but nonetheless useful in their context.

The special form of curves gives rise to the several definitions of dimension.
We define a curve or Jordan curve C to be the image of an interval [a, b] under a
continuous bijection f : [a, b] → !n. (Thus, we restrict attention to curves that
are non-self-intersecting.) If C is a curve and δ > 0, we define Mδ(C) to be the
maximum number of points x0, x1, . . . , xm, on the curve C, in that order, such
that |xk − xk−1| = δ for k = 1, 2, . . . , m. Thus (Mδ(C) − 1)δ may be thought of
as the ‘length’ of the curve C measured using a pair of dividers with points set
at a distance δ apart. The divider dimension is defined as

lim
δ→0

log Mδ(C)

− log δ
(3.31)
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assuming the limit exists (otherwise we may define upper and lower divider
dimensions using upper and lower limits). It is easy to see that the divider dimen-
sion of a curve is at least equal to the box dimension (assuming that they both
exist) and in simple self-similar examples, such as the von Koch curve, they
are equal. The assertion that the coastline of Britain has dimension 1.2 is usu-
ally made with the divider dimension in mind—this empirical value comes from
estimating the ratio in (3.31) for values of δ between about 20 m and 200 km.

A variant of Hausdorff dimension may be defined for curves by using intervals
of the curves themselves as covering sets. Thus we look at inf

{∑m
i=1 |f [ti−1, ti]|s

}

where the infimum is over all dissections a = t0 < t1 < · · · < tm = b such that
the diameters |f ([ti−1, ti])| are all at most δ. We let δ tend to 0 and deem the value
of s at which this limit jumps from ∞ to 0 to be the dimension. For self-similar
examples such as the von Koch curve, this equals the Hausdorff dimension, but
for ‘squeezed’ curves, such as graphs of certain functions (see Chapter 11) we
may get a somewhat larger value.

Sometimes, we are interested in the dimension of a fractal F that is the bound-
ary of a set A. We can define the box dimension of F in the usual way, but
sometimes it is useful to take special account of the distinction between A and
its complement. Thus the following variation of the ‘s-dimensional content’ def-
inition of box dimension, in which we take the volume of the set of points
within distance δ of F that are contained in A is sometimes useful. We define
the one-sided dimension of the boundary F of a set A in !n as

n − lim
δ→0

log voln(Fδ ∩ A)

log δ
(3.32)

where Fδ is the δ-neighbourhood of F (compare Proposition 3.2). This definition
has applications to the surface physics of solids where it is the volume very
close to the surface that is important and also to partial differential equations in
domains with fractal boundaries.

It is sometimes possible to define dimension in terms of the complement of a
set. Suppose F is obtained by removal of a sequence of intervals I1, I2, . . . from,
say, the unit interval [0, 1], as, for example, in the Cantor set construction. We
may define a dimension as the number s0 such that the series

∞∑

j=1

|Ij |s converges if s < s0 and diverges if s > s0; (3.33)

the number s0 is called the critical exponent of the series. For the middle third
Cantor set, this series is

∑∞
k=1 2k−13−ks , giving s0 = log 2/ log 3, equal to the

Hausdorff and box dimensions in this case. In general, s0 equals the upper box
dimension of F .

Dimension prints provide an interesting variation on Hausdorff dimension of
a rather different nature. Dimension prints may be thought of as a sort of ‘fin-
gerprint’ that enables sets with differing characteristics to be distinguished, even
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though they may have the same Hausdorff dimension. In particular they reflect
non-isotropic features of a set.

We restrict attention to subsets of the plane, in which case the dimension print
will also be planar. The definition of dimension prints is very similar to that
of Hausdorff dimension but coverings by rectangles are used with side lengths
replacing diameters. Let U be a rectangle (the sides need not be parallel to the
coordinate axes) and let a(U) ! b(U) be the lengths of the sides of U . Let s, t
be non-negative numbers. For F a subset of !2, let

Hs,t
δ (F ) = inf

{
∑

i

a(Ui)
sb(Ui)

t : {Ui} is a δ-cover of F by rectangles

}

.

In the usual way, we get measures of ‘Hausdorff type’, Hs,t , by letting δ → 0:

Hs,t (F ) = lim
δ→0

Hs,t
δ (F ).

(Note that Hs,0 is just a minor variant of s-dimensional Hausdorff measure where
only rectangles are allowed in the δ-covers.) The dimension print, print F , of F
is defined to be the set of non-negative pairs (s, t) for which Hs,t (F ) > 0.

Using standard properties of measures, it is easy to see that we have mono-
tonicity

print F1 ⊂ print F2 if F1 ⊂ F2 (3.34)

and countable stability

print

( ∞⋃

i=1

Fi

)

=
∞⋃

i=1

print Fi. (3.35)

Moreover, if (s, t) is a point in print F and (s ′, t ′) satisfies

s ′ + t ′ " s + t

t ′ " t (3.36)

then (s ′, t ′) is also in print F .
Unfortunately, dimension prints are not particularly easy to calculate. We dis-

play a few known examples in figure 3.3. Notice that the Hausdorff dimension
of a set is given by the point where the edge of its print intersects the x-axis.

Dimension prints are a useful and appealing extension of the idea of Haus-
dorff dimension. Notice how the prints in the last two cases distinguish between
two sets of Hausdorff (or box) dimension 1 1

2 , one of which is dust-like, the
other stratified.

One disadvantage of dimension prints defined in this way is that they are not
Lipschitz invariants. The straight line segment and smooth convex curve are bi-
Lipschitz equivalent, but their prints are different. In the latter case the dimension
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Figure 3.3 A selection of dimension prints of plane sets

print takes into account the curvature. It would be possible to avoid this difficulty
by redefining print F as the set of (s, t) such that Hs,t (F ′) > 0 for all bi-Lipschitz
images F ′ of F . This would restore Lipschitz invariance of the prints, but would
add further complications to their calculation.
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Of course, it would be possible to define dimension prints by analogy with box
dimensions rather than Hausdorff dimensions, using covers by equal rectangles.
Calculations still seem awkward.

3.6 Notes and references

Many different definitions of ‘fractal dimension’ are scattered throughout the
mathematical literature. The origin of box dimension seems hard to trace—it
seems certain that it must have been considered by the pioneers of Hausdorff
measure and dimension, and was probably rejected as being less satisfactory
from a mathematical viewpoint. Bouligand adapted the Minkowski content to
non-integral dimensions in 1928, and the more usual definition of box dimension
was given by Pontrjagin and Schnirelman in 1932.

Packing measures and dimensions are much more recent, introduced by Tricot
(1982). Their similarities and contrasts to Hausdorff measures and dimensions
have proved an important theoretical tool. Packing measures and box and packing
dimensions are discussed in Mattila (1995) and Edgar (1998). Dimensions of
curves are considered by Tricot (1995).

Dimension prints are an innovation of Rogers (1988, 1998).

Exercises

3.1 Let f : F → !n be a Lipschitz function. Show that dimBf (F ) ! dimBF and
dimBf (F ) ! dimBF . More generally, show that if f satisfies a Hölder condition
|f (x) − f (y)| ! c|x − y|α where c > 0 and 0 < α ! 1 then dimBf (F ) !
1
α

dimBf (F ).
3.2 Verify directly from the definitions that Equivalent definitions 3.1(i) and (iii) give

the same values for box dimension.
3.3 Let F consist of those numbers in [0, 1] whose decimal expansions do not contain

the digit 5. Find dimBF , showing that this box dimension exists.
3.4 Verify that the Cantor dust depicted in figure 0.4 has box dimension 1 (take E0 to

have side length 1).
3.5 Use Equivalent definition 3.1(iv) to check that the upper box dimension of the von

Koch curve is at most log 4/ log 3 and 3.1(v) to check that the lower box dimension
is at least this value.

3.6 Use convenient parts of Equivalent definition 3.1 to find the box dimension of the
Sierpiński triangle in figure 0.3.

3.7 Let F be the middle third Cantor set. For 0 < δ < 1, find the length of the δ-
neighbourhood Fδ of F , and hence find the box dimension of F using Proposi-
tion 3.2.

3.8 Construct a set F for which dimBF < dimBF . (Hint: let kn = 10n, and adapt the
Cantor set construction by deleting, at the kth stage, the middle 1

3 of intervals if
k2n < k ! k2n+1, but the middle 3

5 of intervals if k2n−1 < k ! k2n.)

3.9 Verify that dimB(E ∪ F) = max{dimBE, dimBF } for bounded E, F ⊂ !.
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3.10 Find subsets E and F of ! such that dimB(E ∪ F) > max{dimBE, dimBF }. (Hint:
consider two sets of the form indicated in Exercise 3.8.)

3.11 What are the Hausdorff and box dimensions of the set
{
0, 1, 1

4 , 1
9 , 1

16 , . . .
}
?

3.12 Find two disjoint Borel subsets E and F of ! such that P s
0 (E ∪ F) "= P s

0 (E) +
P s

0 (F ).
3.13 What is the packing dimension of the von Koch curve?
3.14 Find the divider dimension (3.31) of the von Koch curve.
3.15 Show that the divider dimension (3.31) of a curve is greater than or equal to its box

dimension, assuming that they both exist.
3.16 Let 0 < λ < 1 and let F be the ‘middle λ Cantor set’ obtained by repeated removal

of the middle proportion λ from intervals. Show that the dimension of F defined
by (3.33) in terms of removed intervals equals the Hausdorff and box dimensions
of F .

3.17 Verify properties (3.34)–(3.36) of dimension prints. Given an example of a set with
a non-convex dimension print.



Chapter 4 Techniques for calculating
dimensions

A direct attempt at calculating the dimensions, in particular the Hausdorff dimen-
sion, of almost any set will convince the reader of the practical limitations of
working from the definitions. Rigorous dimension calculations often involve
pages of complicated manipulations and estimates that provide little intuitive
enlightenment.

In this chapter we bring together some of the basic techniques that are available
for dimension calculations. Other methods, that are applicable in more specific
cases, will be found throughout the book.

4.1 Basic methods

As a general rule, we get upper bounds for Hausdorff measures and dimensions by
finding effective coverings by small sets, and lower bounds by putting measures
or mass distributions on the set. For most fractals ‘obvious’ upper estimates of
dimension may be obtained using natural coverings by small sets.

Proposition 4.1

Suppose F can be covered by nk sets of diameter at most δk with δk → 0 as
k → ∞. Then

dimHF ! dimBF ! lim
k→∞

log nk

− log δk

.

Moreover, if nkδ
s
k remains bounded as k → ∞, then Hs(F ) < ∞. If δk → 0

but δk+1 " cδk for some 0 < c < 1, then

dimBF ! lim
k→∞

log nk

− log δk

.

Proof. The inequalities for the box-counting dimension are immediate from the
definitions and the remark at (3.14). That dimHF ! dimBF is in (3.17), and if
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nkδ
s
k is bounded then Hs

δk
(F ) ! nkδ

s
k , so Hs

δk
(F ) tends to a finite limit Hs(F ) as

k → ∞. "

Thus, as we have seen already (Example 2.7), in the case of the middle third
Cantor set the natural coverings by 2k intervals of length 3−k give dimHF !
dimBF ! dimBF ! log 2/ log 3.

Surprisingly often, the ‘obvious’ upper bound for the Hausdorff dimension
of a set turns out to be the actual value. However, demonstrating this can be
difficult. To obtain an upper bound it is enough to evaluate sums of the form∑ |Ui |s for specific coverings {Ui} of F , whereas for a lower bound we must
show that

∑ |Ui|s is greater than some positive constant for all δ-coverings of F .
Clearly an enormous number of such coverings are available. In particular, when
working with Hausdorff dimension as opposed to box dimension, consideration
must be given to covers where some of the Ui are very small and others have
relatively large diameter—this prohibits sweeping estimates for

∑ |Ui |s such as
those available for upper bounds.

One way of getting around these difficulties is to show that no individual set
U can cover too much of F compared with its size measured as |U |s . Then if
{Ui} covers the whole of F the sum

∑ |Ui |s cannot be too small. The usual way
to do this is to concentrate a suitable mass distribution µ on F and compare the
mass µ(U) covered by U with |U |s for each U . (Recall that a mass distribution
on F is a measure with support contained in F such that 0 < µ(F) < ∞, see
Section 1.3.)

Mass distribution principle 4.2

Let µ be a mass distribution on F and suppose that for some s there are numbers
c > 0 and ε > 0 such that

µ(U) ! c|U |s (4.1)

for all sets U with |U | ! ε. Then Hs(F ) # µ(F )/c and

s ! dimHF ! dimBF ! dimBF.

Proof. If {Ui} is any cover of F then

0 < µ(F) ! µ

(
⋃

i

Ui

)

!
∑

i

µ(Ui) ! c
∑

i

|Ui |s (4.2)

using properties of a measure and (4.1).
Taking infima, Hs

δ(F ) # µ(F )/c if δ is small enough, so Hs(F ) # µ(F )/c.
Since µ(F ) > 0 we get dimHF # s. "

Notice that the conclusion Hs(F ) # µ(F )/c remains true if µ is a mass dis-
tribution on !n and F is any subset.
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The Mass distribution principle 4.2 gives a quick lower estimate for the Haus-
dorff dimension of the middle third Cantor set F (figure 0.1). Let µ be the natural
mass distribution on F , so that each of the 2k kth level intervals of length 3−k

in Ek in the construction of F carry a mass 2−k . (We imagine that we start with
unit mass on E0 and repeatedly divide the mass on each interval of Ek between
its two subintervals in Ek+1; see Proposition 1.7.) Let U be a set with |U | < 1
and let k be the integer such that 3−(k+1) ! |U | < 3−k. Then U can intersect at
most one of the intervals of Ek, so

µ(U) ! 2−k = (3log 2/ log 3)−k = (3−k)log 2/ log 3 ! (3|U |)log 2/ log 3

and hence Hlog 2/ log 3(F ) " 3− log 2/ log 3 = 1
2 by the mass distribution principle,

giving dimHF " log 2/ log 3.

Example 4.3

Let F1 = F × [0, 1] ⊂ !2 be the product of the middle third Cantor set F and the
unit interval. Then, setting s = 1 + log 2/ log 3, we have dimBF1 = dimHF1 = s,
with 0 < Hs(F1) < ∞.

Calculation. For each k, there is a covering of F by 2k intervals of length 3−k. A
column of 3k squares of side 3−k (diameter 3−k√2) covers the part of F1 above each
such interval, so taking these all together, F1 may be covered by 2k3k squares of
side 3−k. Thus Hs

3−k
√

2(F1) ! 3k2k(3−k
√

2)s = (3 · 2 · 3−1−log 2/ log 3)k2s/2 = 2s/2,

so Hs(F1) ! 2s/2 and dimHF1 ! dimBF1 ! dimBF1 ! s.
We define a mass distribution µ on F1 by taking the natural mass distribution

on F described above (each kth level interval of F of side 3−k having mass
2−k) and ‘spreading it’ uniformly along the intervals above F . Thus if U is a
rectangle, with sides parallel to the coordinate axes, of height h ! 1, above a kth
level interval of F , then µ(U) = h2−k. Any set U is contained in a square of
side |U | with sides parallel to the coordinate axes. If 3−(k+1) ! |U | < 3−k then
U lies above at most one kth level interval of F of side 3−k, so

µ(U) ! |U |2−k ! |U |3−k log 2/ log 3 ! |U |(3|U |)log 2/ log 3 = 3log 2/ log 3|U |s = 2|U |s .

By the Mass distribution principle 4.2, Hs(F1) > 1
2 . #

Note that the method of Examples 4.2 and 4.3 extends to a wide variety of
self-similar sets. Indeed, Theorem 9.3 may be regarded as a generalization of this
calculation.

Notice that in this example the dimension of the product of two sets equals the
sum of the dimensions of the sets. We study this in greater depth in Chapter 7.

The following general construction of a subset of ! may be thought of as a
generalization of the Cantor set construction. Let [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ . . .
be a decreasing sequence of sets, with each Ek a union of a finite number of
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disjoint closed intervals (called kth level basic intervals), with each interval of
Ek containing at least two intervals of Ek+1, and the maximum length of kth
level intervals tending to 0 as k → ∞. Then the set

F =
∞⋂

k=0

Ek (4.3)

is a totally disconnected subset of [0, 1] which is generally a fractal (figure 4.1).
Obvious upper bounds for the dimension of F are available by taking the

intervals of Ek as covering intervals, for each k, but, as usual, lower bounds
are harder to find. Note that, in the following examples, the upper estimates for
dimHF depend on the number and size of the basic intervals, whilst the lower
estimates depend on their spacing. For these to be equal, the (k + 1)th level
intervals must be ‘nearly uniformly distributed’ inside the kth level intervals.

Example 4.4

Let s be a number strictly between 0 and 1. Assume that in the general construc-
tion (4.3) for each kth level interval I, the (k + 1)th level intervals I1, . . . , Im

(m ! 2) contained in I are of equal length and equally spaced, the lengths being
given by

|Ii|s = 1
m

|I |s (1 " i " m) (4.4)

with the left-hand ends of I1 and I coinciding, and the right-hand ends of Im

and I coinciding. Then dimHF = s and 0 < Hs(F ) < ∞. (Notice that m may be
different for different intervals I in the construction, so that the kth level intervals
may have widely differing lengths.)

Calculation. With I , Ii , as above,

|I |s =
m∑

i=1

|Ii |s . (4.5)

Applying this inductively to the kth level intervals for successive k, we have,
for each k, that 1 = ∑ |Ii |s , where the sum is over all the kth level intervals Ii .

E0

E1

E2

E3···
F = ∩     Ekk=0

∞

Figure 4.1 An example of the general construction of a subset of !
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The kth level intervals cover F ; since the maximum interval length tends to 0 as
k → ∞, we have Hs

δ(F ) ! 1 for sufficiently small δ, giving Hs(F ) ! 1.
Now distribute a mass µ on F in such a way that µ(I) = |I |s whenever I

is any level k interval. Thus, starting with unit mass on [0, 1] we divide this
equally between each level 1 interval, the mass on each of these intervals being
divided equally between each level 2 subinterval, and so on; see Proposition 1.7.
Equation (4.5) ensures that we get a mass distribution on F with µ(I) = |I |s
for every basic interval. We estimate µ(U) for an interval U with endpoints in
F . Let I be the smallest basic interval that contains U ; suppose that I is a kth
level interval, and let Ii, . . . , Im be the (k + 1)th level intervals contained in I .
Then U intersects a number j " 2 of the Ii , otherwise U would be contained in
a smaller basic interval. The spacing between consecutive Ii is

(|I | − m|Ii |)/(m − 1) = |I |(1 − m|Ii|/|I |)/(m − 1)

= |I |(1 − m1−1/s)/(m − 1)

" cs |I |/m

using (4.4) and that m " 2 and 0 < s < 1, where cs = (1 − 21−1/s). Thus

|U | " j − 1
m

cs |I | " j

2m
cs |I |.

By (4.4)

µ(U) ! jµ(Ii) = j |Ii |s = j

m
|I |s

! 2sc−s
s

(
j

m

)1−s

|U |s ! 2sc−s
s |U |s. (4.6)

This is true for any interval U with endpoints in F , and so for any set U (by
applying (4.6) to the smallest interval containing U ∩ F ). By the Mass distribu-
tion principle 4.2, Hs(F ) > 0. #

A more careful estimate of µ(U) in Example 4.4 leads to Hs(F ) = 1.
We call the sets obtained when m is kept constant throughout the construction

of Example 4.4 uniform Cantor sets ; see figure 4.2. These provide a natural
generalization of the middle third Cantor set.

Example 4.5. Uniform Cantor sets

Let m " 2 be an integer and 0 < r < 1/m. Let F be the set obtained by the
construction in which each basic interval I is replaced by m equally spaced subin-
tervals of lengths r|I |, the ends of I coinciding with the ends of the extreme subin-
tervals. Then dimHF = dimBF = log m/− log r , and 0 < Hlog m/− log r (F ) < ∞.
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E0

E1

E2

E3

E4

F

···

Figure 4.2 A uniform Cantor set (Example 4.5) with m = 3, r = 4
15 , dimHF = dimBF =

log 3/− log 4
15 = 0.831 . . .

Calculation. The set F is obtained on taking m constant and s = log m/(− log r)
in Example 4.4. Equation (4.4) becomes (r|I |)s = (1/m)|I |s , which is satisfied
identically, so dimHF = s. For the box dimension, note that F is covered by the
mk kth level intervals of length r−k for each k, leading to dimBF ! log m/− log r
in the usual way. "

The middle λ Cantor set is obtained by repeatedly removing a proportion
0 < λ < 1 from the middle of intervals, starting with the unit interval. This is a
special case of a uniform Cantor set, having m = 2 and r = 1

2 (1 − λ) and thus
Hausdorff and box dimensions log 2/ log(2/(1 − λ)).

The next example is another case of the general construction.

Example 4.6

Suppose in the general construction (4.3) each (k − 1)th level interval contains
at least mk # 2 kth level intervals (k = 1, 2, . . .) which are separated by gaps of
at least εk , where 0 < εk+1 < εk for each k. Then

dimHF # lim
k→∞

log(m1 · · ·mk−1)

− log(mkεk)
. (4.7)

Calculation. We may assume that the right hand side of (4.7) is positive, otherwise
(4.7) is obvious. We may assume that each (k − 1)th level interval contains
exactly mk kth level intervals; if not we may throw out excess intervals to get
smaller sets Ek and F for which this is so. We may define a mass distribution
µ on F by assigning a mass of (m1 · · · mk)

−1 to each of the m1 · · ·mk kth
level intervals.

Let U be an interval with 0 < |U | < ε1; we estimate µ(U). Let k be the integer
such that εk ! |U | < εk−1. The number of kth level intervals that intersect U is

(i) at most mk since U intersects at most one (k − 1)th level interval
(ii) at most (|U |/εk) + 1 ! 2|U |/εk since the kth level intervals have gaps of

at least εk between them.



Basic methods 65

Each kth level interval supports mass (m1 · · · mk)
−1 so that

µ(U) ! (m1 · · · mk)
−1 min{2|U |/εk,mk}

! (m1 · · · mk)
−1(2|U |/εk)

sm1−s
k

for every 0 ! s ! 1.
Hence

µ(U)

|U |s ! 2s

(m1 · · ·mk−1)m
s
kε

s
k

.

If
s < lim

k→∞
log(m1 · · · mk−1)/− log(mkεk)

then (m1 · · · mk−1)m
s
kε

s
k > 1 for large k, so µ(U) ! 2s |U |s , and dimHF " s by

Principle 4.2, giving (4.7). #

Now suppose that in Example 4.6 the kth level intervals are all of length δk ,
and that each (k − 1)th level interval contains exactly mk kth level intervals,
which are ‘roughly equally spaced’ in the sense that mkεk " cδk−1, where c > 0
is a constant. Then (4.7) becomes

dimHF " lim
k→∞

log(m1 · · · mk−1)

− log c − log δk−1
= lim

k→∞

log(m1 · · · mk−1)

− log δk−1
.

But Ek−1 comprises m1 · · · mk−1 intervals of length δk−1, so this expression equals
the upper bound for dimHF given by Proposition 4.1. Thus in the situation where
the intervals are well spaced, we get equality in (4.7).

Examples of the following form occur in number theory; see Section 10.3.

Example 4.7

Fix 0 < s < 1 and let n0, n1, n2, . . . be a rapidly increasing sequence of integers,
say nk+1 " max {nk

k, 4n
1/s
k } for each k. For each k let Hk ⊂ ! consist of equally

spaced equal intervals of lengths n
−1/s
k with the midpoints of consecutive intervals

distance n−1
k apart. Then writing F = ⋂∞

k=1 Hk , we have dimHF = s.

Calculation. Since F ⊂ Hk for each k, the set F ∩ [0, 1] is contained in at most
nk + 1 intervals of length n

−1/s
k , so Proposition 4.1 gives dimH(F ∩ [0, 1]) !

limk→∞ log(nk + 1)/− log n
−1/s
k = s. Similarly, dimH(F ∩ [n, n + 1]) ! s for

all n ∈ ", so dimHF ! s as a countable union of such sets.
Now let E0 = [0, 1] and, for k " 1, let Ek consist of the intervals of Hk that

are completely contained in Ek−1. Then each interval I of Ek−1 contains at least
nk|I | − 2 " nkn

−1/s
k−1 − 2 " 2 intervals of Ek, which are separated by gaps of at
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least n−1
k − n

−1/s
k ! 1

2n−1
k if k is large enough. Using Example 4.6, and noting

that setting mk = nkn
−1/s
k−1 rather than mk = nkn

−1/s
k−1 − 2 does not affect the limit,

dimH(F ∩ [0, 1]) ! dimH

∞⋂

k=1

Ek ! lim
k→∞

log((n1 · · · nk−2)
1−1/snk−1)

− log(nkn
−1/s
k−1

1
2n−1

k )

= lim
k→∞

log(n1 · · · nk−2)
1−1/s + log nk−1

log 2 + (log nk−1)/s
.

Provided that nk is sufficiently rapidly increasing, the terms in log nk−1 in the
numerator and denominator of this expression are dominant, so that dimHF !
dimH(F ∩ [0, 1]) ! s, as required. "

Although the Mass distribution principle 4.2 is based on a simple idea, we
have seen that it can be very useful in finding Hausdorff and box dimensions.
We now develop some important variations of the method.

It is enough for condition (4.1) to hold just for sufficiently small balls centred
at each point of F . This is expressed in Proposition 4.9(a). Although mass dis-
tribution methods for upper bounds are required far less frequently, we include
part (b) because it is, in a sense, dual to (a). Note that density expressions, such
as limr→0 µ(B(x, r))/rs play a major role in the study of local properties of
fractals—see Chapter 5. (Recall that B(x, r) is the closed ball of centre x and
radius r .)

We require the following covering lemma in the proof of Proposition 4.9(b).

Covering lemma 4.8

Let C be a family of balls contained in some bounded region of !n. Then there
is a (finite or countable) disjoint subcollection {Bi} such that

⋃

B∈C
B ⊂

⋃

i

B̃i (4.8)

where B̃i is the closed ball concentric with Bi and of four times the radius.

Proof. For simplicity, we give the proof when C is a finite family; the basic idea
is the same in the general case. We select the {Bi} inductively. Let B1 be a
ball in C of maximum radius. Suppose that B1, . . . , Bk−1 have been chosen. We
take Bk to be the largest ball in C (or one of the largest) that does not intersect
B1, . . . , Bk−1. The process terminates when no such ball remains. Clearly the
balls selected are disjoint; we must check that (4.8) holds. If B ∈ C, then either
B = Bi for some i, or B intersects one of the Bi with |Bi | ! |B|; if this were
not the case, then B would have been chosen instead of the first ball Bk with
|Bk| < |B|. Either way, B ⊂ B̃i , so we have (4.8). (It is easy to see that the
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result remains true taking B̃i as the ball concentric with Bi and of 3 + ε times
the radius, for any ε > 0; if C is finite we may take ε = 0.) !

Proposition 4.9

Let µ be a mass distribution on !n, let F ⊂ !n be a Borel set and let 0 < c < ∞
be a constant.

(a) If limr→0µ(B(x, r))/rs < c for all x ∈ F then Hs(F ) " µ(F )/c
(b) If limr→0µ(B(x, r))/rs > c for all x ∈ F then Hs(F ) # 2sµ(!n)/c.

Proof

(a) For each δ > 0 let

Fδ = {x ∈ F : µ(B(x, r)) < crs for all 0 < r # δ}.

Let {Ui} be a δ-cover of F and thus of Fδ . For each Ui containing a point
x of Fδ , the ball B with centre x and radius |Ui | certainly contains Ui . By
definition of Fδ ,

µ(Ui) # µ(B) < c|Ui|s

so that

µ(Fδ) #
∑

i

{µ(Ui) : Ui intersects Fδ} # c
∑

i

|Ui |s .

Since {Ui} is any δ-cover of F , it follows that µ(Fδ)#cHs
δ(F )#cHs(F ).

But Fδ increases to F as δ decreases to 0, so µ(F ) # cHs(F ) by (1.7).
(b) For simplicity, we prove a weaker version of (b) with 2s replaced by 8s ,

but the basic idea is similar. Suppose first that F is bounded. Fix δ > 0
and let C be the collection of balls

{B(x, r) : x ∈ F, 0 < r # δ and µ(B(x, r)) > crs}.

Then by the hypothesis of (b) F ⊂ ⋃
B∈C B. Applying the Covering

lemma 4.8 to the collection C, there is a sequence of disjoint balls Bi ∈ C
such that

⋃
B∈C B ⊂ ⋃

i B̃i where B̃i is the ball concentric with Bi but of
four times the radius. Thus {B̃i} is an 8δ-cover of F , so

Hs
8δ(F ) #

∑

i

|B̃i|s # 4s
∑

i

|Bi|s

# 8sc−1
∑

i

µ(Bi) # 8sc−1µ(!n).
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Letting δ → 0, we get Hs(F ) ! 8sc−1µ(!n) < ∞. Finally, if F is un-
bounded and Hs(F ) > 8sc−1µ(!n), the Hs-measure of some bounded
subset of F will also exceed this value, contrary to the above. "

Note that it is immediate from Proposition 4.9 that if limr→0 log µ(B(x, r))/
log r = s for all x ∈ F then dimHF = s.

Applications of Proposition 4.9 will occur throughout the book.
We conclude this section by a reminder that these calculations can be used

in conjunction with the basic properties of dimensions discussed in Chapters 2
and 3. For example, since f (x) = x2 is Lipschitz on [0, 1] and bi-Lipschitz on
[ 2

3 , 1], it follows that dimH{x2 : x ∈ C} = dimHf (C) = log 2/ log 3, where C is
the middle third Cantor set.

4.2 Subsets of finite measure

This section may seem out of place in a chapter about finding dimensions. How-
ever, Theorem 4.10 is required for the important potential theoretic methods
developed in the following section. Sets of infinite measure can be awkward to
work with, and reducing them to sets of positive finite measure can be a very
useful simplification.

Theorem 4.10 guarantees that any (Borel) set F with Hs(F ) = ∞ contains a
subset E with 0 < Hs(E) < ∞ (i.e. with E an s-set). At first, this might seem
obvious—just shave pieces off F until what remains has positive finite measure.
Unfortunately it is not quite this simple—it is possible to jump from infinite
measure to zero measure without passing through any intermediate value. Stating
this in mathematical terms, it is possible to have a decreasing sequence of sets
E1 ⊃ E2 ⊃ . . . with Hs(Ek) = ∞ for all k, but with Hs(

⋂∞
k=1 Ek) = 0. (For a

simple example, take Ek = [0, 1/k] ⊂ ! and 0 < s < 1.) To prove the theorem
we need to look rather more closely at the structure of Hausdorff measures.
Readers mainly concerned with applications may prefer to omit the proof!

Theorem 4.10

Let F be a Borel subset of !n with 0 < Hs(F ) ! ∞. Then there is a compact
set E ⊂ F such that 0 < Hs(E) < ∞.

∗Sketch of proof. The complete proof of this is complicated. We indicate the ideas
involved in the case where F is a compact subset of [0, 1) ⊂ ! and 0 < s < 1.

We work with the net measures Ms which are defined in (2.17)–(2.18) using
the binary intervals [r2−k, (r + 1)2−k) and are related to Hausdorff measure by
(2.19). We define inductively a decreasing sequence E0 ⊃ E1 ⊃ E2 ⊃ . . . of com-
pact subsets of F . Let E0 = F . For k # 0 we define Ek+1 by specifying its
intersection with each binary interval I of length 2−k. If Ms

2−(k+1) (Ek ∩ I ) ! 2−sk

we let Ek+1 ∩ I = Ek ∩ I . Then

Ms
2−(k+1) (Ek+1 ∩ I ) = Ms

2−k (Ek ∩ I ) (4.9)
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since using I itself as a covering interval in calculating Ms
2−k gives an esti-

mate at least as large as using shorter binary intervals. On the other hand, if
Ms

2−(k+1) (Ek+1 ∩ I ) > 2−sk we take Ek+1 ∩ I to be a compact subset of Ek ∩ I

with Ms
2−(k+1) (Ek+1 ∩ I ) = 2−sk . Such a subset exists since Ms

2−(k+1) (Ek ∩ I ∩
[0, u]) is finite and continuous in u. (This is why we need to work with the Ms

δ

rather than Ms .) Since Ms
2−k (Ek ∩ I ) = 2−sk , (4.9) again holds. Summing (4.9)

over all binary intervals of length 2−k we get

Ms
2−(k+1) (Ek+1) = Ms

2−k (Ek). (4.10)

Repeated application of (4.10) gives Ms
2−k (Ek) = Ms

1(E0) for all k. Let E be
the compact set

⋂∞
k=0 Ek. Taking the limit as k → ∞ gives Ms (E) = Ms

1(E0)
(this step needs some justification). The covering of E0 = F by the single
interval [0, 1) gives Ms(E) = Ms

1(E0) ! 1. Since Ms(E0) " Hs(E0) > 0 we
have Ms

2−k (E0) > 0 if k is large enough. Thus either Ms (E) = Ms
1(E0) " 2−ks ,

or Ms
1(E0) < 2−ks in which case Ms(E) = Ms

1(E0) = Ms
2−k (E0) > 0. Thus

0 < Ms(E) < ∞, and the theorem follows from (2.19). #

A number of results, for example those in Chapter 5, apply only to s-sets,
i.e. sets with 0 < Hs(F ) < ∞. One way of approaching s-dimensional sets with
Hs(F ) = ∞ is to use Theorem 4.10 to extract a subset of positive finite measure,
to study its properties as an s-set, and then to interpret these properties in the
context of the larger set F . Similarly, if 0 < s < t , any set F of Hausdorff
dimension t has Hs(F ) = ∞ and so contains an s-set.

The following proposition which follows from Proposition 4.9, leads to an
extension of Theorem 4.10.

Proposition 4.11

Let F be a Borel set satisfying 0 < Hs(F ) < ∞. There is a constant b and a
compact set E ⊂ F with Hs(E) > 0 such that

Hs(E ∩ B(x, r)) ! brs (4.11)

for all x ∈ !n and r > 0.

Proof. In Proposition 4.9(b) take µ as the restriction of Hs to F , i.e. µ(A) =
Hs(F ∩ A). Then, if

F1 =
{
x ∈ !n : lim

r→0
Hs(F ∩ B(x, r))/rs > 21+s

}

it follows that Hs(F1)!2s2−(1+s)µ(F ) = 1
2H

s(F ). Thus Hs(F\F1)" 1
2H

s(F )

> 0, so if E1 = F\F1 thenHs(E1) > 0 and limr→0Hs(F ∩ B(x, r))/rs ! 21+s for
x ∈ E1. By Egoroff’s theorem (see also Section 1.3) it follows that there is a com-
pact set E ⊂ E1 with Hs(E) > 0 and a number r0 > 0 such that
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Hs(F ∩ B(x, r))/rs ! 22+s for all x ∈ E and all 0 < r ! r0. However, we
have that Hs(F ∩ B(x, r))/rs ! Hs(F )/rs

0 if r " r0 so (4.11) holds for all
r > 0. #

Corollary 4.12

Let F be a Borel subset of !n with 0 < Hs(F ) ! ∞. Then there is a compact
set E ⊂ F such that 0 < Hs(E) < ∞ and a constant b such that

Hs(E ∩ B(x, r)) ! brs

for all x ∈ !n and r > 0.

Proof. Theorem 4.10 provides us with a compact subset F1 of F of positive finite
measure, and applying Proposition 4.11 to F1 gives the result. #

Corollary 4.12, which may be regarded as a converse of the Mass distribution
principle 4.2, is often called ‘Frostman’s lemma’.

4.3 Potential theoretic methods

In this section we introduce a technique for calculating Hausdorff dimensions
that is widely used both in theory and in practice. This replaces the need for
estimating the mass of a large number of small sets, as in the Mass distribution
principle, by a single check for the convergence of a certain integral.

The ideas of potential and energy will be familiar to readers with a knowledge
of gravitation or electrostatics. For s " 0 the s-potential at a point x of !n due
to the mass distribution µ on !n is defined as

φs(x) =
∫

dµ(y)

|x − y|s . (4.12)

(If we are working in !3 and s = 1 then this is essentially the familiar Newtonian
gravitational potential.) The s-energy of µ is

Is(µ) =
∫

φs(x)dµ(x) =
∫∫

dµ(x)dµ(y)

|x − y|s . (4.13)

The following theorem relates Hausdorff dimension to seemingly unconnected
potential theoretic ideas. Particularly useful is part (a): if there is a mass distri-
bution on a set F which has finite s-energy, then F has dimension at least s.

Theorem 4.13

Let F be a subset of !n.

(a) If there is a mass distribution µ on F with Is(µ) < ∞ then Hs(F ) = ∞
and dimHF " s.
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(b) If F is a Borel set with Hs(F ) > 0 then there exists a mass distribution µ
on F with It (µ) < ∞ for all 0 < t < s.

Proof
(a) Suppose that Is(µ) < ∞ for some mass distribution µ with support con-

tained in F . Define

F1 =
{
x ∈ F : lim

r→0
µ(B(x, r))/rs > 0

}
.

If x ∈ F1 we may find ε > 0 and a sequence of numbers {ri} decreasing to
0 such that µ(B(x, ri)) ! εrs

i . Since µ({x}) = 0 (otherwise Is(µ) = ∞)
it follows from the continuity of µ that, by taking qi (0 < qi < ri) small
enough, we get µ(Ai) ! 1

4εrs
i (i = 1, 2, . . .), where Ai is the annulus

B(x, ri)\B(x, qi). Taking subsequences if necessary, we may assume that
ri+1 < qi for all i, so that the Ai are disjoint annuli centred on x. Hence
for all x ∈ F1

φs(x) =
∫

dµ(y)

|x − y|s !
∞∑

i=1

∫

Ai

dµ(y)

|x − y|s

!
∞∑

i=1

1
4εrs

i r
−s
i = ∞

since |x − y|−s ! r−s
i on Ai . But Is(µ) =

∫
φs(x)dµ(x) < ∞, so

φs(x) < ∞ for µ-almost all x. We conclude that µ(F1) = 0. Since
limr→0µ(B(x, r))/rs = 0 if x ∈ F\F1, Proposition 4.9(a) tells us that,
for all c > 0, we have

Hs(F ) ! Hs(F\F1) ! µ(F\F1)/c ! (µ(F ) − µ(F1))/c = µ(F )/c.

Hence Hs(F ) = ∞.
(b) Suppose that Hs(F ) > 0. We use Hs to construct a mass distribution µ

on F with It (µ) < ∞ for every t < s.
By Corollary 4.12 there exist a compact set E ⊂ F with 0 < Hs(E) <

∞ and a constant b such that

Hs(E ∩ B(x, r)) " brs

for all x ∈ !n and r > 0. Let µ be the restriction of Hs to E, so that
µ(A) = Hs(E ∩ A); then µ is a mass distribution on F . Fix x ∈ !n

and write

m(r) = µ(B(x, r)) = Hs(E ∩ B(x, r)) " brs. (4.14)
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Then, if 0 < t < s

φt (x) =
∫

|x−y|!1

dµ(y)

|x − y|t +
∫

|x−y|>1

dµ(y)

|x − y|t

!
∫ 1

0
r−tdm(r) + µ(!n)

= [r−tm(r)]1
0+ + t

∫ 1

0
r−(t+1)m(r)dr + µ(!n)

! b + bt

∫ 1

0
rs−t−1dr + µ(!n)

= b

(
1 + t

s − t

)
+ Hs(F ) = c,

say, after integrating by parts and using (4.14). Thus φt (x) ! c for all
x ∈ !n, so that It (µ) =

∫
φt (x)dµ(x) ! cµ(!n) < ∞. "

Important applications of Theorem 4.13 will be given later in the book, for
example, in the proof of the projection theorems in Chapter 6 and in the deter-
mination of the dimension of Brownian paths in Chapter 16. The theorem is often
used to find the dimension of fractals Fθ which depend on a parameter θ . There
may be a natural way to define a mass distribution µθ on Fθ for each θ . If we
can show, that for some s,

∫
Is(µθ )dθ =

∫∫∫
dµθ (x)dµθ (y)dθ

|x − y|s < ∞,

then Is(µθ ) < ∞ for almost all θ , so that dimHFθ # s for almost all θ .
Readers familiar with potential theory will have encountered the definition of

the s-capacity of a set F :

Cs(F ) = sup
µ

{1/Is(µ) : µ is a mass distribution on F with µ(F ) = 1}

(with the convention that 1/∞ = 0). Thus another way of expressing Theo-
rem 4.13 is

dimHF = inf{s # 0 : Cs(F ) = 0} = sup{s # 0 : Cs(F ) > 0}.

Whilst this is reminiscent of the definition (2.11) of Hausdorff dimension in terms
of Hausdorff measures, it should be noted that capacities behave very differently
from measures. In particular, they are not generally additive.
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*4.4 Fourier transform methods

In this section, we do no more than indicate that Fourier transforms can be a
powerful tool for analysing dimensions.

The n-dimensional Fourier transforms of an integrable function f and a mass
distribution µ on !n are defined by

f̂ (u) =
∫

!n

f (x) exp(ix · u)dx (u ∈ !n) (4.15)

µ̂(u) =
∫

!n

exp(ix · u)dµ(x) (u ∈ !n) (4.16)

where x · u represents the usual scalar product. (Fourier transformation extends
to a much wider class of function using the theory of distributions.)

The s-potential (4.12) of a mass distribution µ is just the convolution

φs(x) = (| · |−s ∗ µ)(x) ≡
∫

|x − y|−sdµ(y).

Formally, the transform of |x|−s may be shown to be c|u|s−n, where c depends
on n and s, so the convolution theorem, which states that the transform of the
convolution of two functions equals the product of the transforms of the func-
tions, gives

φ̂s(u) = c|u|s−nµ̂(u).

Parseval’s theorem tells us that
∫

φs(x)dµ(x) = (2π)n
∫

φ̂s(u)µ̂(u)du

where the bar denotes complex conjugation, so

Is(µ) = (2π)nc

∫
|u|s−n|µ̂(u)|2du. (4.17)

This expression for Is(µ), which may be established rather more rigorously, is
sometimes a convenient way of expressing the energy (4.13) required in Theo-
rem 4.13. Thus if there is a mass distribution µ on a set F for which the integral
(4.17) is finite, then dimHF ! s. In particular, if

|µ̂(u)| " b|u|−t/2 (4.18)

for some constant b, then, noting that, by (4.16), |µ̂(u)| " µ(!n) for all u, we
have from (4.17) that

Is(µ) " c1

∫

|u|"1
|u|s−ndu + c2

∫

|u|>1
|u|s−n|u|−tdu
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which is finite if 0 < s < t . Thus if (4.18) holds, any set F which supports µ has
Hausdorff dimension at least t . The greatest value of t for which there is a mass
distribution µ on F satisfying (4.18) is sometimes called the Fourier dimension
of F , which never exceeds the Hausdorff dimension.

4.5 Notes and references

Many papers are devoted to calculating dimensions of various classes of fractal,
for example the papers of Eggleston (1952), Beardon (1965) and Peyrière (1977)
discuss fairly general constructions.

The potential theoretic approach was, essentially, due to Frostman (1935);
see Taylor (1961), Hayman and Kennedy (1976), Carleson (1967) or Kahane
(1985) for more recent accounts. For an introduction to Fourier transforms see
Papoulis (1962).

The work on subsets of finite measure originates from Besicovitch (1952)
and a very general treatment is given in Rogers (1998). Complete proofs of
Theorem 4.10 may be found in Falconer (1985a) and Mattila (1995).

Subsets of finite positive packing measure are investigated by Joyce and
Preiss (1995).

Exercises

4.1 What is the Hausdorff dimension of the ‘Cantor tartan’ given by {(x, y) ∈ !2 :
either x ∈ F or y ∈ F } where F is the middle third Cantor set?

4.2 Use the mass distribution principle and a natural upper bound to show that the set of
numbers in [0, 1] containing only even digits has Hausdorff dimension log 5/ log 10.

4.3 Use the mass distribution method to show that the ‘Cantor dust’ depicted in figure 0.4
has Hausdorff dimension 1. (Hint: note that, taking the square E0 to have side 1,
any two squares in the set Ek of the construction are separated by a distance of at
least 4−k .)

4.4 Fix 0 < λ ! 1
2 , and let F be the set of real numbers

F =
{ ∞∑

k=1

akλ
k : ak = 0 or 1 for k = 1, 2, . . .

}
.

Find the Hausdorff and box dimensions of F .
4.5 What is the Hausdorff dimension of F × F ⊂ !2, where F is the middle third

Cantor set?
4.6 Let F be the middle third Cantor set. What is the Hausdorff dimension of the plane

set given by {(x, y) ∈ !2 : x ∈ F and 0 ! y ! x2}?
4.7 Use a mass distribution method to obtain the result of Example 4.5 directly rather

than via Example 4.4.
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4.8 Show that every number x ! 0 may be expressed in the form

x = m + a2

2!
+ a3

3!
+ · · ·

where m ! 0 is an integer and ak is an integer with 0 " ak " k − 1 for each k. Let
F = {x ! 0 : m = 0 and ak is even for k = 2, 3, . . .}. Find dimHF .

4.9 Show that there is a compact subset F of [0, 1] of Hausdorff dimension 1 but
with H1(F ) = 0. (Hint: try a ‘Cantor set’ construction, but reduce the proportion of
intervals removed at each stage.)

4.10 Deduce from Theorem 4.10 that if F is a Borel subset of !n with Hs (F ) = ∞ and
c is a positive number, then there is a Borel subset E of F with Hs (E) = c.

4.11 Let µ be the natural mass distribution on the middle third Cantor set F (see after
Principle 4.2). Estimate the s-energy of µ for s < log 2/ log 3 and deduce from
Theorem 4.13 that dimHF ! log 2/ log 3.


