
Chapter 9 Iterated function
systems—self-similar
and self-affine sets

9.1 Iterated function systems

Many fractals are made up of parts that are, in some way, similar to the whole.
For example, the middle third Cantor set is the union of two similar copies of
itself, and the von Koch curve is made up of four similar copies. These self-
similarities are not only properties of the fractals: they may actually be used to
define them. Iterated function systems do this in a unified way and, moreover,
often lead to a simple way of finding dimensions.

Let D be a closed subset of !n, often D = !n. A mapping S : D → D is
called a contraction on D if there is a number c with 0 < c < 1 such that
|S(x) − S(y)| ! c|x − y| for all x, y ∈ D. Clearly any contraction is continuous.
If equality holds, i.e. if |S(x) − S(y)| = c|x − y|, then S transforms sets into
geometrically similar sets, and we call S a contracting similarity.

A finite family of contractions {S1, S2, . . . , Sm}, with m " 2, is called an iter-
ated function system or IFS. We call a non-empty compact subset F of D an
attractor (or invariant set) for the IFS if

F =
m⋃

i=1

Si(F ).

The fundamental property of an iterated function system is that it determines a
unique attractor, which is usually a fractal. For a simple example, take F to be
the middle third Cantor set. Let S1, S2 : ! → ! be given by

S1(x) = 1
3x; S2(x) = 1

3x + 2
3 .

Then S1(F ) and S2(F ) are just the left and right ‘halves’ of F , so that F =
S1(F ) ∪ S2(F ); thus F is an attractor of the IFS consisting of the contractions
{S1, S2}, the two mappings, which represent the basic self-similarities of the
Cantor set.
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Figure 9.1 The Hausdorff distance between the sets A and B is the least δ > 0 such that
the δ-neighbourhood Aδ of A contains B and the δ-neighbourhood Bδ of B contains A

We shall prove the fundamental property that an IFS has a unique (non-empty
compact, i.e. closed and bounded) attractor. This means, for example, that the
middle third Cantor set is completely specified as the attractor of the mappings
{S1, S2} given above.

To this end, we define a metric or distance d between subsets of D. Let S denote
the class of all non-empty compact subsets of D. Recall that the δ-neighbourhood
of a set A is the set of points within distance δ of A, i.e. Aδ = {x ∈ D : |x − a| !
δ for some a ∈ A}. We make S into a metric space by defining the distance
between two sets A and B to be the least δ such that the δ-neighbourhood of A
contains B and vice versa:

d(A, B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}

(see figure 9.1). A simple check shows that d is a metric or distance function, that
is, satisfies the three requirements (i) d(A, B) " 0 with equality if and only if A =
B, (ii) d(A,B) = d(B,A), (iii) d(A, B) ! d(A, C) + d(C, B) for all A, B,C ∈
S. The metric d is known as the Hausdorff metric on S. In particular, if d(A, B)
is small, then A and B are close to each other as sets.

We give two proofs of the fundamental result on IFSs. The first depends on
Banach’s contraction mapping theorem, and the second is direct and elementary.

Theorem 9.1
Consider the iterated function system given by the contractions {S1, . . . , Sm} on
D ⊂ !n, so that

|Si(x) − Si(y)| ! ci |x − y| (x, y) ∈ D (9.1)

with ci < 1 for each i. Then there is a unique attractor F, i.e. a non-empty compact
set such that

F =
m⋃

i=1

Si(F ). (9.2)
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Moreover, if we define a transformation S on the class S of non-empty compact
sets by

S(E) =
m⋃

i=1

Si(E) (9.3)

for E ∈ S, and write Sk for the kth iterate of S (so S0(E) = E and Sk(E) =
S(Sk−1(E)) for k " 1), then

F =
∞⋂

k=0

Sk(E) (9.4)

for every set E ∈ S such that Si(E) ⊂ E for all i.

First proof. Note that sets in S are transformed by S into other sets of S. If
A, B ∈ S then

d(S(A), S(B)) = d

(
m⋃

i=1

Si(A),

m⋃

i=1

Si(B)

)

! max
1!i!m

d(Si(A), Si(B))

using the definition of the metric d and noting that if the δ-neighbourhood
(Si(A))δ contains Si(B) for all i then (

⋃m
i=1 Si(A))δ contains

⋃m
i=1 Si(B), and

vice versa. By (9.1)

d(S(A), S(B)) ! ( max
1!i!m

ci)d(A, B). (9.5)

It may be shown that d is a complete metric on S, that is every Cauchy sequence
of sets in S is convergent to a set in S. Since 0 < max1!i!m ci < 1, (9.5) states that
S is a contraction on the complete metric space (S, d). By Banach’s contraction
mapping theorem, S has a unique fixed point, that is there is a unique set F ∈ S
such that S(F ) = F , which is (9.2), and moreover Sk(E) → F as k → ∞. In
particular, if Si(E) ⊂ E for all i then S(E) ⊂ E, so that Sk(E) is a decreasing
sequence of non-empty compact sets containing F with intersection

⋂∞
k=0 Sk(E)

which must equal F . #

Second proof. Let E be any set in S such that Si(E) ⊂ E for all i; for example
E = D ∩ B(0, r) will do provided r is sufficiently large. Then Sk(E) ⊂ Sk−1(E),
so that Sk(E) is a decreasing sequence of non-empty compact sets, which nec-
essarily have non-empty compact intersection F = ⋂∞

k=1 Sk(E). Since Sk(E) is
a decreasing sequence of sets, it follows that S(F ) = F , so F satisfies (9.2) and
is an attractor of the IFS.

To see that the attractor is unique, we derive (9.5) exactly as in the first proof.
Suppose A and B are both attractors, so that S(A) = A and S(B) = B. Since 0 <
max1!i!m ci < 1 it follows from (9.5) that d(A, B) = 0, implying A = B. #
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There are two main problems that arise in connection with iterated function
systems. The first problem is to represent or ‘code’ a given set as the attractor
of some IFS, and the second is to ‘decode’ the IFS by displaying its attractor.
In both cases, we may wish to go on to analyse the structure and dimensions of
the attractor, and the IFS can be a great aid in doing this.

Finding an IFS that has a given F as its unique attractor can often be done
by inspection, at least if F is self-similar or self-affine. For example, the Cantor
dust (figure 0.4) is easily seen to be the attractor of the four similarities which
give the basic self-similarities of the set:

S1(x, y) = ( 1
4x, 1

4y + 1
2 ), S2(x, y) = ( 1

4x + 1
4 , 1

4y),

S3(x, y) = ( 1
4x + 1

2 , 1
4y + 3

4 ), S4(x, y) = ( 1
4x + 3

4 , 1
4y + 1

4 ).

In general it may not be possible to find an IFS with a given set as attractor, but
we can normally find one with an attractor that is a close approximation to the
required set. This question of representing general objects by IFSs is considered
in Section 9.5.

The transformation S introduced in Theorem 9.1 is the key to computing the
attractor of an IFS; indeed (9.4) already provides a method for doing so. In
fact, the sequence of iterates Sk(E) converges to the attractor F for any ini-
tial set E in S, in the sense that d(Sk(E), F ) → 0. This follows since (9.5)
implies that d(S(E), F ) = d(S(E), S(F )) ! cd(E,F ), so that d(Sk(E), F ) !
ckd(E, F ), where c = max1!i!m ci < 1. Thus the Sk(E) provide increasingly
good approximations to F . If F is a fractal, these approximations are sometimes
called pre-fractals for F .

For each k

Sk(E) =
⋃

Ik

Si1
◦ · · · ◦Sik (E) =

⋃

Ik

Si1(Si2(· · · (Sik (E)) · · ·)) (9.6)

where the union is over the set Ik of all k-term sequences (i1, . . . , ik) with
1 ! ij ! m; see figure 9.2. (Recall that Si1

◦ · · · ◦Sik denotes the composition of
mappings, so that (Si1

◦ · · · ◦Sik )(x) = Si1(Si2(· · · (Sik (x)) · · ·)).) If Si(E) is con-
tained in E for each i and x is a point of F , it follows from (9.4) that there is
a (not necessarily unique) sequence (i1, i2, . . .) such that x ∈ Si1

◦ · · · ◦Sik (E) for
all k. This sequence provides a natural coding for x, with

x = xi1,i2,... =
∞⋂

k=1

Si1
◦ · · · ◦Sik (E), (9.7)

so that F = ⋃{xi1,i2,...}.
This expression for xi1,i2,... is independent of E provided that Si(E) is contained

in E for all i.
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S1(S1(E ))

S1(E )

E

S2(E )

S1(S2(E ))
S2(S1(E ))

S2(S2(E ))

Figure 9.2 Construction of the attractor F for contractions S1 and S2 which map the large
ellipse E onto the ellipses S1(E) and S2(E). The sets Sk(E) = ⋃

ii=1,2 Si1
◦ · · · ◦ Sik (E)

give increasingly good approximations to F

Notice that if the union in (9.2) is disjoint then F must be totally disconnected
(provided the Si are injections), since if xi1,i2,... )= xi ′1,i

′
2,...

we may find k such
that (i1, . . . , ik) )= (i′1, . . . , i

′
k) so that the disjoint closed sets Si1

◦ · · · ◦Sik (F ) and
Si ′1

◦ · · · ◦Si ′
k
(F ) disconnect the two points.

Again this may be illustrated by S1(x) = 1
3x, S2(x) = 1

3x + 2
3 and F the Cantor

set. If E = [0, 1] then Sk(E) = Ek, the set of 2k basic intervals of length 3−k

obtained at the kth stage of the usual Cantor set construction; see figure 0.1.
Moreover, xi1,i2,... is the point of the Cantor set with base-3 expansion 0 · a1a2 . . . ,
where ak = 0 if ik = 1 and ak = 2 if ik = 2. The pre-fractals Sk(E) provide
the usual construction of many fractals for a suitably chosen initial set E; the
Si1

◦ · · · ◦Sik (E) are called the level-k sets of the construction.
This theory provides us with two methods for computer drawing of IFS attrac-

tors in the plane, as indicated in figure 9.3. For the first method, take any initial
set E (such as a square) and draw the kth approximation Sk(E) to F given by
(9.6) for a suitable value of k. The set Sk(E) is made up of mk small sets—either
these can be drawn in full, or a representative point of each can be plotted. If
E can be chosen as a line segment in such a way that S1(E), . . . , Sm(E) join
up to form a polygonal curve with endpoints the same as those of E, then the
sequence of polygonal curves Sk(E) provides increasingly good approximations
to the fractal curve F . Taking E as the initial interval in the von Koch curve
construction is an example of this, with Sk(E) just the kth step of the construc-
tion (Ek in figure 0.2). Careful recursive programming is helpful when using
this method.
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Figure 9.3 Two ways of computer drawing the attractor F of the IFS consisting of the
three affine transformations S1, S2 and S3 which map the square onto the rectangles.
In method (a) the 3k parallelograms Si1(Si2 (· · · (Sik (E)) · · ·)) for ij = 1, 2, 3 are drawn
(k = 6 here). In method (b) the sequence of points xk is plotted by choosing Sik at random
from S1, S2 and S3 for successive k and letting xk = Sik (xk−1)

For the second method, take x0 as any initial point, select a contraction Si1

from S1, . . . , Sm at random, and let x1 = Si1(x0). Continue in this way, choos-
ing Sik from S1, . . . , Sm at random (with equal probability, say) and letting
xk = Sik (xk−1) for k = 1, 2, . . . . For large enough k, the points xk will be indis-
tinguishably close to F , with xk close to Sik

◦ · · · ◦Si1(F ), so the sequence {xk}
will appear randomly distributed across F . A plot of the sequence {xk} from,
say, the hundredth term onwards may give a good impression of F . (It is a con-
sequence of ergodic theory that, with probability 1, this sequence of points will
fill F , in a manner that approximates a certain measure on F .)

9.2 Dimensions of self-similar sets

One of the advantages of using an iterated function system is that the dimension of
the attractor is often relatively easy to calculate or estimate in terms of the defining
contractions. In this section we discuss the case where S1, . . . , Sm : !n → !n are
similarities, i.e. with

|Si(x) − Si(y)| = ci |x − y| (x, y ∈ !n) (9.8)

where 0 < ci < 1 (ci is called the ratio of Si). Thus each Si transforms sub-
sets of !n into geometrically similar sets. The attractor of such a collection of
similarities is called a (strictly) self-similar set, being a union of a number of
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smaller similar copies of itself. Standard examples include the middle third Can-
tor set, the Sierpiński triangle and the von Koch curve, see figures 0.1–0.5. We
show that, under certain conditions, a self-similar set F has Hausdorff and box
dimensions equal to the value of s satisfying

m∑

i=1

cs
i = 1 (9.9)

and further that F has positive and finite Hs-measure. A calculation similar to the
‘heuristic calculation’ of Example 2.7 indicates that the value given by (9.9) is at
least plausible. If F = ⋃m

i=1 Si(F ) with the union ‘nearly disjoint’, we have that

Hs(F ) =
m∑

i=1

Hs(Si(F )) =
m∑

i=1

cs
iH

s(F ) (9.10)

using (9.8) and Scaling property 2.1. On the assumption that 0 < Hs(F ) < ∞ at
the ‘jump’ value s = dimHF , we get that s satisfies (9.9).

For this argument to give the right answer, we require a condition that ensures
that the components Si(F ) of F do no overlap ‘too much’. We say that the Si

satisfy the open set condition if there exists a non-empty bounded open set V
such that

V ⊃
m⋃

i=1

Si(V ) (9.11)

with the union disjoint. (In the middle third Cantor set example, the open set
condition holds for S1 and S2 with V as the open interval (0, 1).) We show that,
provided that the similarities Si satisfy the open set condition, the Hausdorff
dimension of the attractor is given by (9.9).

We require the following geometrical result.

Lemma 9.2

Let {Vi} be a collection of disjoint open subsets of !n such that each Vi contains
a ball of radius a1r and is contained in a ball of radius a2r . Then any ball B of
radius r intersects at most (1 + 2a2)

na−n
1 of the closures V i .

Proof. If V i meets B, then V i is contained in the ball concentric with B of
radius (1 + 2a2)r . Suppose that q of the sets V i intersect B. Then, summing the
volumes of the corresponding interior balls of radii a1r , it follows that q(a1r)

n !
(1 + 2a2)

nrn, giving the stated bound for q. #

The derivation of the lower bound in the following theorem is a little awk-
ward. The reader may find it helpful to follow through the proof with the
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middle third Cantor set in mind, or by referring to the ‘general example’ of
figure 9.2. Alternatively, the proof of Proposition 9.7 covers the case when the
sets S1(F ), . . . , Sm(F ) are disjoint, and is rather simpler.

Theorem 9.3

Suppose that the open set condition (9.11) holds for the similarities Si on !n with
ratios 0 < ci < 1 for 1 ! i ! m. If F is the attractor of the IFS {S1, . . . , Sm},
that is

F =
m⋃

i=1

Si(F ), (9.12)

then dimHF = dimBF = s, where s is given by

m∑

i=1

cs
i = 1. (9.13)

Moreover, for this value of s, 0 < Hs(F ) < ∞.

Proof. Let s satisfy (9.13). LetIk denote the set of all k-term sequences (i1, . . . , ik)
with 1 ! ij ! m. For any set A and (i1, . . . , ik) ∈ Ik we write Ai1,...,ik =
Si1

◦ . . . ◦Sik (A). It follows, by using (9.12) repeatedly, that

F =
⋃

Ik

Fi1,...,ik .

We check that these covers of F provide a suitable upper estimate for the Haus-
dorff measure. Since the mapping Si1

◦ · · · ◦Sik is a similarity of ratio ci1 · · · cik ,
then

∑

Ik

|Fi1,...,ik |s =
∑

Ik

(ci1 · · · cik )
s |F |s =

(
∑

i1

cs
i1

)

· · ·
(

∑

ik

cs
ik

)

|F |s = |F |s

(9.14)
by (9.13). For any δ > 0, we may choose k such that |Fi1,...,ik | ! (maxi ci)

k|F | !
δ, so Hs

δ(F ) ! |F |s and hence Hs(F ) ! |F |s .
The lower bound is more awkward. Let I be the set of all infinite sequences I =

{(i1, i2, . . .) : 1 ! ij ! m}, and let Ii1,...,ik = {(i1, . . . , ik, qk+1, . . .) : 1 ! qj ! m}
be the ‘cylinder’ consisting of those sequences in I with initial terms (i1, . . . , ik).
We may put a mass distribution µ on I such that µ(Ii1,...,ik ) = (ci1 · · · cik )

s . Since
(ci1 · · · cik )

s = ∑m
i=1(ci1 · · · cik ci)

s , i.e. µ(Ii1,...,ik ) = ∑m
i=1 µ(Ii1,...,ik,i ), it follows

that µ is indeed a mass distribution on subsets of I with µ(I) = 1. We
may transfer µ to a mass distribution µ̃ on F in a natural way by defining
µ̃(A) = µ{(i1, i2, . . .) : xi1,i2,... ∈ A} for subsets A of F . (Recall that xi1,i2,... =
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⋂∞
k=1 Fi1,...,ik .) Thus the µ̃-mass of a set is the µ-mass of the corresponding

sequences. It is easily checked that µ̃(F ) = 1.
We show that µ̃ satisfies the conditions of the Mass distribution principle 4.2.

Let V be the open set of (9.11). Since V ⊃ S(V ) = ⋃m
i=1 Si(V ), the decreas-

ing sequence of iterates Sk(V ) converges to F ; see (9.4). In particular V ⊃ F
and V i1,...,ik ⊃ Fi1,...,ik for each finite sequence (i1, . . . , ik). Let B be any ball of
radius r < 1. We estimate µ̃(B) by considering the sets Vi1,...,ik with diameters
comparable with that of B and with closures intersecting F ∩ B.

We curtail each infinite sequence (i1, i2, . . .) ∈ I after the first term ik for which
(

min
1!i!m

ci

)
r ! ci1ci2 · · · cik ! r (9.15)

and let Q denote the finite set of all (finite) sequences obtained in this way.
Then for every infinite sequence (i1, i2, . . .) ∈ I there is exactly one value of k
with (i1, . . . , ik) ∈ Q. Since V1, . . . , Vm are disjoint, so are Vi1,...,ik ,1, . . . , Vi1,...,ik ,m

for each (i1, . . . , ik). Using this in a nested way, it follows that the collection
of open sets {Vi1,...,ik : (i1, . . . , ik) ∈ Q} is disjoint. Similarly F ⊂ ⋃

Q Fi1,...,ik ⊂⋃
Q V i1,...,ik .
We choose a1 and a2 so that V contains a ball of radius a1 and is contained in

a ball of radius a2. Then, for all (i1, . . . , ik) ∈ Q, the set Vi1,...,ik contains a ball
of radius ci1 · · · cika1 and therefore one of radius (mini ci)a1r , and is contained
in a ball of radius ci1 · · · cika2 and hence in a ball of radius a2r . Let Q1 denote
those sequences (i1, . . . , ik) in Q such that B intersects V i1,...,ik . By Lemma 9.2
there are at most q = (1 + 2a2)

na−n
1 (mini ci)

−n sequences in Q1. Then

µ̃(B) = µ̃(F ∩ B) = µ{(i1, i2, . . .) : xi1,i2,... ∈ F ∩ B}

! µ

{
⋃

Q1

Ii1,...,ik

}

since, if xi1,i2,... ∈ F ∩ B ⊂ ⋃
Q1

V i1,...,ik , then there is an integer k such that
(i1, . . . , ik) ∈ Q1. Thus

µ̃(B) !
∑

Q1

µ(Ii1,...,ik )

=
∑

Q1

(ci1 · · · cik )
s !

∑

Q1

rs ! rsq

using (9.15). Since any set U is contained in a ball of radius |U |, we have
µ̃(U) ! |U |sq, so the Mass distribution principle 4.2 gives Hs(F ) " q−1 > 0,
and dimHF = s.

If Q is any set of finite sequences such that for every (i1, i2, . . .) ∈ I there
is exactly one integer k with (i1, . . . , ik) ∈ Q, it follows inductively from (9.13)
that

∑
Q(ci1ci2 · · · cik )

s = 1. Thus, if Q is chosen as in (9.15), Q contains at
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most (mini ci)
−sr−s sequences. For each sequence (i1, . . . , ik) ∈ Q we have

|V i1,...,ik | = ci1 · · · cik |V | ! r|V |, so F may be covered by (mini ci)
−sr−s sets

of diameter r|V | for each r < 1. It follows from Equivalent definition 3.1(iv)
that dimBF ! s; noting that s = dimHF ! dimBF ! dimBF ! s, using (3.17),
completes the proof. #

If the open set condition is not assumed in Theorem 9.3, it may be shown that
we still have dimHF = dimBF though this value may be less than s.

Theorem 9.3 enables us to find the dimension of many self-similar fractals.

Example 9.4. Sierpiński triangle

The Sierpiński triangle or gasket F is constructed from an equilateral triangle by
repeatedly removing inverted equilateral triangles; see figure 0.3. Then dimHF =
dimBF = log 3/ log 2.

Calculation. The set F is the attractor of the three obvious similarities of ratios
1
2 which map the triangle E0 onto the triangles of E1. The open set condition
holds, taking V as the interior of E0. Thus, by Theorem 9.3, dimHF = dimBF =
log 3/ log 2, which is the solution of 3( 1

2 )s = ∑3
1(

1
2 )s = 1. #

The next example involves similarity transformations of more than one ratio.

Generator

E1

E2

E3

E4

E5
~ F

Figure 9.4 Construction of a modified von Koch curve—see Example 9.5
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Example 9.5. Modified von Koch curve

Fix 0 < a ! 1
3 and construct a curve F by repeatedly replacing the middle pro-

portion a of each interval by the other two sides of an equilateral triangle; see
figure 9.4. Then dimHF = dimBF is the solution of 2as + 2( 1

2 (1 − a))s = 1.

Calculation. The curve F is the attractor of the similarities that map the unit
interval onto each of the four intervals in E1. The open set condition holds,

Generator

E1

E2

E3

E4 ~− F

Figure 9.5 Stages in the construction of a fractal curve from a generator. The lengths of
the segments in the generator are 1

3 , 1
4 , 1

3 , 1
4 , 1

3 , and the Hausdorff and box dimensions of
F are given by 3( 1

3 )s + 2( 1
4 )s = 1 or s = 1.34 . . .
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Figure 9.6 A fractal curve and its generator. The Hausdorff and box dimensions of the
curve are equal to log 8/ log 4 = 1 1

2

taking V as the interior of the isosceles triangle of base length 1 and height
1
2a

√
3, so Theorem 9.3 gives the dimension stated. #

There is a convenient method of specifying certain self-similar sets diagram-
matically, in particular self-similar curves such as Example 9.5. A generator

Figure 9.7 A tree-like fractal and its generator. The Hausdorff and box dimensions are
equal to log 5/ log 3 = 1.465 . . .
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consists of a number of straight line segments and two points specially identi-
fied. We associate with each line segment the similarity that maps the two special
points onto the endpoints of the segment. A sequence of sets approximating to the
self-similar attractor may be built up by iterating the process of replacing each
line segment by a similar copy of the generator; see figures 9.5–9.7 for some
examples. Note that the similarities are defined by the generator only to within
reflection and 180◦ rotation but the orientation may be specified by displaying
the first step of the construction.

9.3 Some variations

The calculations underlying Theorem 9.3 may be adapted to estimate the dimen-
sion of the attractor F of an IFS consisting of contractions that are not similarities.

Proposition 9.6

Let F be the attractor of an IFS consisting of contractions {S1, . . . , Sm} on a
closed subset D of !n such that

|Si(x) − Si(y)| ! ci |x − y| (x, y ∈ D)

with 0 < ci < 1 for each i. Then dimHF ! s and dimBF ! s, where
∑m

i=1 cs
i = 1.

Proof. These estimates are essentially those of the first and last paragraphs of the
proof of Theorem 9.3, noting that we have the inequality |Ai1,...,ik | ! ci1 · · · cik |A|
for each set A, rather than equality. #

We next obtain a lower bound for dimension in the case where the components
Si(F ) of F are disjoint. Note that this will certainly be the case if there is some
non-empty compact set E with Si(E) ⊂ E for all i and with the Si(E) disjoint.

Proposition 9.7

Consider the IFS consisting of contractions {S1, . . . , Sm} on a closed subset D of
!n such that

bi |x − y| ! |Si(x) − Si(y)| (x, y ∈ D) (9.16)

with 0 < bi < 1 for each i. Assume that the (non-empty compact) attractor
F satisfies

F =
m⋃

i=1

Si(F ), (9.17)
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with this union disjoint. Then F is totally disconnected and dimHF " s where

m∑

i=1

bs
i = 1. (9.18)

Proof. Let d > 0 be the minimum distance between any pair of the disjoint com-
pact sets S1(F ), . . . , Sm(F ), i.e. d = mini )=j inf{|x − y| : x ∈ Si(F ), y ∈ Sj (F )}.
Let Fi1,...,ik = Si1

◦ · · · ◦Sik (F ) and define µ by µ(Fii,...ik ) = (bi1 · · · bik )
s . Since

m∑

i=1

µ(Fi1,...,ik,i ) =
m∑

i=1

(bi1 · · · bikbi)
s

= (bi1 · · · bik )
s = µ(Fi1,...,ik )

= µ

(
k⋃

i=1

Fi1,...,ik ,i

)

it follows that µ defines a mass distribution on F with µ(F ) = 1.
If x ∈ F , there is a unique infinite sequence i1, i2, . . . such that x ∈ Fi1,...,ik for

each k. For 0 < r < d let k be the least integer such that

bi1 · · · bikd ! r < bi1 · · · bik−1d.

If i′1, . . . , i
′
k is distinct from i1, . . . , ik , the sets Fi1,...,ik and Fi ′1,...,i

′
k

are disjoint and
separated by a gap of at least bi1 · · · bik−1d > r . (To see this, note that if j is the
least integer such that ij )= i′j then Fij ,...,ik ⊂ Fij and Fi ′

j
,...,i ′

k
⊂ Fi ′

j
are separated

by d , so Fi1,...,ik and Fi ′1,...,i
′
k

are separated by at least bi1 · · · bij−1d .) It follows that
F ∩ B(x, r) ⊂ Fi1,...,ik so

µ(F ∩ B(x, r)) ! µ(Fi1,...,ik ) = (bi1 . . . bik )
s ! d−srs .

If U intersects F , then U ⊂ B(x, r) for some x ∈ F with r = |U |. Thus µ(U) !
d−s |U |s , so by the Mass distribution principle 4.2 Hs(F ) > 0 and dimHF " s.

The separation indicated above implies that F is totally disconnected. #

Example 9.8. ‘Non-linear’ Cantor set

Let D =
[

1
2 (1 +

√
3), (1 +

√
3)

]
and let S1, S2 : D → D be given by

S1(x) = 1 + 1/x, S2(x) = 2 + 1/x. Then 0.44 < dimHF ! dimBF ! dimBF <
0.66 where F is the attractor of {S1, S2}. (This example arises in connection with
number theory ; see Section 10.2.)

Calculation. We note that S1(D) =
[

1
2 (1 +

√
3),

√
3
]

and S2(D) =
[

1
2 (3 +

√
3) ,

1 +
√

3
]

so we can use Propositions 9.6 and 9.7 to estimate dimHF . By
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the mean value theorem (see Section 1.2) if x, y ∈ D are distinct points then
(Si(x) − Si(y))/(x − y) = S ′

i (zi) for some zi ∈ D. Thus for i = 1, 2,

inf
x∈D

|S ′
i (x)| ! |Si(x) − Si(y)|

|x − y| ! sup
x∈D

|S ′
i (x)|.

Since S ′
1(x) = S ′

2(x) = −1/x2 it follows that

1
2 (2 −

√
3) = (1 +

√
3)−2 ! |Si(x) − Si(y)|

|x − y| ! ( 1
2 (1 +

√
3))−2 = 2(2 −

√
3)

for both i = 1 and i = 2. According to Propositions 9.6 and 9.7 lower and
upper bounds for the dimensions are given by the solutions of 2( 1

2 (2 −√
3))s = 1 and 2(2(2 −

√
3))s = 1 which are s = log 2/ log(2(2 +

√
3)) = 0.34

and log 2/ log( 1
2 (2 +

√
3)) = 1.11 respectively.

For a subset of the real line, an upper bound greater than 1 is not of much
interest. One way of getting better estimates is to note that F is also the attractor
of the four mappings on [0, 1]

Si◦Sj = i + 1/(j + 1/x) = i + x/(jx + 1) (i, j = 1, 2).

By calculating derivatives and using the mean-value theorem as before, we
get that

(Si◦Sj )
′(x) = (jx + 1)−2

so

(j (1 +
√

3) + 1)−2|x − y| ! |Si◦Sj (x) − Si◦Sj (y)| ! ( 1
2j (1 +

√
3) + 1)−2|x − y|.

Lower and upper bounds for the dimensions are now given by the solutions
of 2(2 +

√
3)−2s + 2(3 + 2

√
3)−2s = 1 and 2( 1

2 (3 +
√

3))−2s + 2(2 +
√

3)−2s =
1, giving 0.44 < dimHF < 0.66, a considerable improvement on the previous
estimates. In fact dimHF = 0.531, a value that may be obtained by looking at
yet higher-order iterates of the Si . #

*[The rest of this subsection may be omitted.]

The technique used in Example 9.8 to improve the dimension estimates is
often useful for attractors of transformations that are not strict similarities. If
F is the attractor for the IFS {S1, . . . , Sm} on D then F is also the attractor
for the IFS consisting of the mk transformations {Si1

◦ · · · ◦Sik } for each k. If
the Si are, say, twice differentiable on an open set containing F , it may be
shown that when k is large, the contractions Si1

◦ · · · ◦Sik are in a sense, close
to similarities on D. In particular, for transformations on a subset D of !, if
b = infx∈D |(Si1

◦ · · · ◦Sik )
′(x)| and c = supx∈D |(Si1

◦ · · · ◦Sik )
′(x)|, then

b|x − y| ! |Si1
◦ · · · ◦Sik (x) − Si1

◦ · · · ◦Sik (y)| ! c|x − y| (x, y ∈ D)
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If k is large then b/c will be close to 1, and applying Propositions 9.6 and 9.7
to the mk transformations Si1

◦ · · · ◦Sik gives good upper and lower estimates for
the dimensions of F .

We may take this further. If the Si are twice differentiable on a subset D of !,

|Si1
◦ · · · ◦Sik (x) − Si1

◦ · · · ◦Sik (y)|
|x − y| ∼ |(Si1

◦ · · · ◦Sik )
′(w)|

for large k, where x, y and w are any points of D. The composition of mappings
Si1

◦ · · · ◦Sik is close to a similarity on D, so by comparison with Theorem 9.3
we would expect the dimension of the attractor F to be close to the value of s
for which ∑

Ik

|(Si1
◦ · · · ◦Sik )

′(w)|s = 1 (9.19)

where the sum is over the set Ik of all k-term sequences. This expectation moti-
vates the following theorem.

Theorem 9.9

Let V ⊂ ! be an open interval. Let S1, . . . , Sm be contractions on V that are
twice differentiable on V with a ! |S ′

i (w)| ! c for all i and w ∈ V , where 0 <
a ! c < 1 are constants. Suppose that the Si satisfy the open set condition (9.11)
with open set V. Then the limit

lim
k→∞




∑

Ik

|(Si1
◦ · · · ◦Sik )

′(w)|s



1/k

= ϕ(s) (9.20)

exists for each s > 0, is independent of w ∈ V , and is decreasing in s. If F is
the attractor of {S1, . . . , Sm} then dimHF = dimBF is the solution of ϕ(s) = 1,
and F is an s-set, i.e. 0 < Hs(F ) < ∞ for this value of s.

Note on Proof. The main difficulty is to show that the limit (9.20) exists—this
depends on the differentiability condition on the Si . Given this, the argument
outlined above may be used to show that the value of s satisfying (9.19) is a
good approximation to the dimension when k is large; letting k → ∞ then gives
the result.

Similar ideas, but involving the rate of convergence to the limit in (9.20), are
needed to show that 0 < Hs(F ) < ∞. #

There are higher-dimensional analogues of Theorem 9.9. Suppose that the con-
tractions S1, . . . , Sm on a domain D in the complex plane are complex analytic
mappings. Then the Si are conformal, or in other words are locally like similarity
transformations, contracting at the same rate in every direction. We have

Si(z) = Si(z0) + S ′
i (z0)(z − z0) + terms in (z − z0)

2 and higher powers
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so that if z − z0 is small

Si(z) . Si(z0) + S ′
i (z0)(z − z0) (9.21)

where S ′
i (z0) is a complex number with |S ′

i (z0)| < 1. But the right-hand side of
(9.21) is just a similarity expressed in complex notation. In this setting, Theo-
rem 9.9 holds, by the same sort of argument as in the 1-dimensional case.

Results such as these are part of the ‘thermodynamic formalism’, a body of
theory that leads to dimension formulae for many attractors.

9.4 Self-affine sets

Self-affine sets form an important class of sets, which include self-similar sets as
a particular case. An affine transformation S : !n → !n is a transformation of
the form

S(x) = T (x) + b

where T is a linear transformation on !n (representable by an n × n matrix)
and b is a vector in !n. Thus an affine transformation S is a combination of
a translation, rotation, dilation and, perhaps, a reflection. In particular, S maps
spheres to ellipsoids, squares to parallelograms, etc. Unlike similarities, affine
transformations contract with differing ratios in different directions.

If an IFS consists of affine contractions {S1, . . . , Sm} on !n, the attractor F
guaranteed by Theorem 9.1 is termed a self-affine set. An example is given in
figure 9.8: S1, S2 and S3 are defined as the transformations that map the square
E onto the three rectangles in the obvious way. (In the figure the attractor F
is represented as the aggregate of Si1

◦ · · · ◦Sik (E) over all sequences (i1, . . . , ik)
with ij = 1, 2, 3 for suitably large k. Clearly F is made up of the three affine
copies of itself: S1(F ), S2(F ) and S3(F ).)

It is natural to look for a formula for the dimension of self-affine sets that gen-
eralizes formula (9.13) for self-similar sets. We would hope that the dimension
depends on the affine transformations in a reasonably simple way, easily express-
ible in terms of the matrices and vectors that represent the affine transformation.
Unfortunately, the situation is much more complicated than this—the following
example shows that if the affine transformations are varied in a continuous way,
the dimension of the self-affine set need not change continuously.

Example 9.10

Let S1, S2 be the affine contractions on !2 that map the unit square onto the
rectangles R1 and R2 of sides 1

2 and ε where 0 < ε < 1
2 , as in figure 9.9. The

rectangle R1 abuts the y-axis, but the end of R2 is distance 0 ! λ ! 1
2 from the

y-axis. If F is the attractor of {S1, S2}, we have dimHF " 1 when λ > 0, but
dimHF = log 2/ − log ε < 1 when λ = 0.
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S1(F )

S1(E )

S2(F )

S3(F )

S2(E )

S3(E )

E

Figure 9.8 A self-affine set which is the attractor of the affine transformations that map
the square E onto the rectangles shown

R1 E ER1

R2 e eR2

1
2

1
2

1
2

1
2

λ

Proj F

(a) (b)

e e

F

Figure 9.9 Discontinuity of the dimension of self-affine sets. The affine mappings S1 and
S2 map the unit square E onto R1 and R2. In (a) λ > 0 and dimHF " dimH proj F = 1,
but in (b) λ = 0, and dimHF = log 2/ − log ε < 1
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Calculation. Suppose λ > 0 (figure 9.9(a)). Then the kth stage of the construction
Ek = ⋃

Si1
◦ · · · ◦Sik (E) consists of 2k rectangles of sides 2−k and εk with the

projection of Ek onto the x-axis, proj Ek, containing the interval [0, 2λ]. Since
F = ⋂∞

i=1 Ek it follows that proj F contains the interval [0, 2λ]. (Another way
of seeing this is by noting that proj F is the attractor of S̃1, S̃2 : ! → ! given by
S̃1(x) = 1

2x, S̃2(x) = 1
2x + λ, which has as attractor the interval [0, 2λ].) Thus

dimHF " dimHproj F = dimH[0, 2λ] = 1.
If λ = 0, the situation changes (figure 9.9(b)). Ek consists of 2k rectangles of

sides 2−k and εk which all have their left-hand ends abutting the y-axis, with
Ek contained in the strip {(x, y) : 0 ! x ! 2−k}. Letting k → ∞ we see that
F is a uniform Cantor set contained in the y-axis, which may be obtained by
repeatedly removing a proportion 1 − 2ε from the centre of each interval. Thus
dimHF = log 2/ − log ε < 1 (see Example 4.5). #

With such discontinuous behaviour, which becomes even worse for more
involved sets of affine transformations, it is likely to be difficult to obtain a
general expression for the dimension of self-affine sets. However, one situation
which has been completely analysed is the self-affine set obtained by the follow-
ing recursive construction; a specific case is illustrated in figures 9.10 and 9.11.

Example 9.11

Let the unit square E0 be divided into a p × q array of rectangles of sides 1/p
and 1/q where p and q are positive integers with p < q. Select a subcollection of
these rectangles to form E1, and let Nj denote the number of rectangles selected
from the jth column for 1 ! j ! p; see figure 9.10. Iterate this construction in
the usual way, with each rectangle replaced by an affine copy of E1, and let F
be the limiting set obtained. Then

dimHF = log




p∑

j=1

N
log p/ log q
j



 1
log p

and

dimBF = log p1

log p
+ log



 1
p1

p∑

j=1

Nj



 1
log q

where p1 is the number of columns containing at least one rectangle of E1.

Calculation. Omitted. #

Notice in this example that the dimension depends not only on the number of
rectangles selected at each stage, but also on their relative positions. Moreover
dimHF and dimBF are not, in general, equal.

*[The rest of this subsection may be omitted.]
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N1 Np

1/q

1/p

•  •  •

Figure 9.10 Data for the self-affine set of Example 9.11. The affine transformations map
the square onto selected 1/p × 1/q rectangles from the p × q array

The above example is rather specific in that the affine transformations are
all translates of each other. Obtaining a dimension formula for general self-
affine sets is an intractable problem. We briefly outline an approach which leads
to an expression for the dimension of the attractor of the affine contractions
Si(x) = Ti(x) + bi(1 ! i ! m) for almost all sequences of vectors b1, . . . , bm.

Let T : !n → !n be a linear mapping that is contracting and non-singular.
The singular values 1 > α1 " α2 " · · · " αn > 0 of T may be defined in two
ways: they are the lengths of the principal semi-axes of the ellipsoid T (B) where

E0 E1

F

E2

Figure 9.11 Construction of a self-affine set of the type considered in Example 9.11.
Such sets may have different Hausdorff and box dimensions
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B is the unit ball in !n, and they are the positive square roots of the eigenvalues
of T ∗T , where T ∗ is the adjoint of T . Thus the singular values reflect the con-
tractive effect of T in different directions. For 0 ! s ! n we define the singular
value function

ϕs(T ) = α1α2 · · ·αr−1α
s−r+1
r (9.22)

where r is the integer for which r − 1 < s ! r . Then ϕs(T ) is continuous and
strictly decreasing in s. Moreover, for fixed s, ϕs may be shown to be submul-
tiplicative, i.e.

ϕs(T U) ! ϕs(T )ϕs(U)

for any linear mappings T and U . We introduce the kth level sums &s
k ≡∑

Ik
ϕs(Ti1

◦ · · · ◦Tik ) where Ik denotes the set of all k-term sequences (i1, . . . , ik)
with 1 ! ij ! m. For fixed s

&s
k+q =

∑

Ik+q

ϕs(Ti1
◦ · · · ◦Tik+q

)

!
∑

Ik+q

ϕs(Ti1
◦ · · · ◦Tik )ϕ

s(Tik+1
◦ · · · ◦Tik+q

)

=




∑

Ik

ϕs(Ti1
◦ · · · ◦Tik )








∑

Iq

ϕs(Ti1
◦ · · · ◦Tiq )



 = &s
k&

s
q

i.e. the sequence &s
k is submultiplicative in k. By a standard property of submul-

tiplicative sequences, (&s
k)

1/k converges to a number &s
∞ as k → ∞. Since ϕs is

decreasing in s, so is &s
∞. Provided that &n

∞ ! 1, there is a unique s, which we
denote by d(T1, . . . , Tm), such that 1 = &s

∞ = limk→∞
(∑

Ik
ϕs(Ti1

◦ · · · ◦Tik )
)1/k.

Equivalently

d(T1, . . . , Tm) = inf

{

s :
∞∑

k=1

∑

Ik

ϕs(Ti1
◦ · · · ◦Tik ) < ∞

}

. (9.23)

Theorem 9.12

Let T1, . . . , Tm be linear contractions and let y1, . . . , ym ∈ !n be vectors. If F is
the self-affine set satisfying

F =
m⋃

i=1

(Ti(F ) + yi)

then dimHF = dimBF ! d(T1, . . . , Tm). If |Ti(x) − Ti(y)| ! c|x − y| for all i
where 0 < c < 1

2 , then equality holds for almost all (y1, . . . , ym) ∈ !nm in the
sense of nm-dimensional Lebesgue measure.
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Figure 9.12 Each of the fractals depicted above is the attractor of the set of transforma-
tions that map the square onto the three rectangles. The affine transformations for each
fractal differ only by translations, so by Theorem 9.12 the three fractals all have the same
dimension (unless we have been very unlucky in our positioning!). A computation gives
this common value of Hausdorff and box dimension as about 1.42

Partial proof. We show that dimHF ! d(T1, . . . , Tm) for all y1, . . . , ym. Write
Si for the contracting affine transformation Si(x) = Ti(x) + yi . Let B be a
large ball so that Si(B) ⊂ B for all i. Given δ > 0 we may choose k large
enough to get |Si1

◦ · · · ◦Sik (B)| < δ for every k-term sequence (i1, . . . , ik) ∈ Ik.
By (9.6) F ⊂ ⋃

Ik
Si1

◦ · · · ◦Sik (B). But Si1
◦ · · · ◦Sik (B) is a translate of the

ellipsoid Ti1
◦ · · · ◦Tik (B) which has principal axes of lengths α1|B|, . . . ,αn|B|,

where α1, . . . ,αn are the singular values of Ti1
◦ · · · ◦Tik . Thus Si1

◦ · · · ◦Sik (B) is
contained in a rectangular parallelepiped P of side lengths α1|B|, . . . ,αn|B|. If
0 ! s ! n and r is the least integer greater than or equal to s, we may divide P
into at most

(
2α1

αr

)(
2α2

αr

)
· · ·

(
2αr−1

αr

)
! 2nα1 · · ·αr−1α

1−r
r
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cubes of side αr |B| < δ. Hence Si1
◦ · · · ◦Sik (B) may be covered by a collection

of cubes Ui with |Ui | < δ
√

n such that

∑

i

|Ui|s ! 2nα1 · · ·αr−1α
1−r
r αs

r |B|s

! 2n|B|sϕs(Ti1
◦ · · · ◦Tik ).

Taking such a cover of Si1
◦ · · · ◦Sik (B) for each (i1, . . . , ik) ∈ Ik it follows that

Hs
δ
√

n(F ) ! 2n|B|s
∑

Ik

ϕs(Ti1
◦ · · · ◦Tik ).

But k → ∞ as δ → 0, so by (9.23), Hs(F ) = 0 if s > d(T1, . . . , Tm). Thus
dimHF ! d(T1, . . . , Tm).

The lower estimate for dimHF may be obtained using the potential theoretic
techniques of Section 4.3. We omit the somewhat involved details. #

One consequence of this theorem is that, unless we have been unfortunate
enough to hit on an exceptional set of parameters, the fractals in figure 9.12 all
have the same dimension, estimated at about 1.42.

9.5 Applications to encoding images

In this chapter, we have seen how a small number of contractions can deter-
mine objects of a highly intricate fractal structure. This has applications to data
compression—if a complicated picture can be encoded by a small amount of
information, then the picture can be transmitted or stored very efficiently.

It is desirable to know which objects can be represented as, or approximated
by, attractors of an iterated function system, and also how to find contractions that
lead to a good representation of a given object. Clearly, the possibilities using,
say, three or four transformations are limited by the small number of parameters
at our disposal. Such sets are also likely to have a highly repetitive structure.

However, a little experimentation drawing self-affine sets on a computer (see
end of Section 9.1) can produce surprisingly good pictures of naturally occurring
objects such as ferns, grasses, trees, clouds, etc. The fern and tree in figure 9.13
are the attractors of just four and six affine transformations, respectively. Self-
similarity and self-affinity are indeed present in nature.

The following theorem, sometimes known as the collage theorem, gives an
idea of how good an approximation a set is to the attractor of an IFS.

Theorem 9.13

Let {S1, . . . , Sm} be an IFS and suppose that |Si(x) − Si(y)| ! c|x − y| for
all x, y ∈ !n and all i, where c < 1. Let E ⊂ !n be any non-empty compact
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(a) (b)

Figure 9.13 The fern (a) and tree (b) are the attractors of just four and six affine trans-
formations, respectively

set. Then

d(E,F ) ! d

(

E,

m⋃

i=1

Si(E)

)
1

(1 − c)
(9.24)

where F is the attractor for the IFS, and d is the Hausdorff metric.

Proof. Using the triangle inequality for the Hausdorff metric followed by the
definition (9.2) of the attractor

d(E,F ) ! d

(

E,

m⋃

i=1

Si(E)

)

+ d

(
m⋃

i=1

Si(E), F

)

= d

(

E,

m⋃

i=1

Si(E)

)

+ d

(
m⋃

i=1

Si(E),

m⋃

i=1

Si(F )

)

! d

(

E,

m⋃

i=1

Si(E)

)

+ cd(E, F )

by (9.5), as required. #

A consequence of Theorem 9.13 is that any compact subset of !n can be
approximated arbitrarily closely by a self-similar set.
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Corollary 9.14

Let E be a non-empty compact subset of !n. Given δ > 0 there exist contracting
similarities S1, . . . , Sm with attractor F satisfying d(E,F ) < δ.

Proof. Let B1, . . . , Bm be a collection of balls that cover E and which have
centres in E and radii at most 1

4δ. Then E ⊂ ⋃m
i=1 Bi ⊂ Eδ/4, where Eδ/4 is

the 1
4δ-neighbourhood of E. For each i, let Si be any contracting similarity

of ratio less than 1
2 that maps E into Bi . Then Si(E) ⊂ Bi ⊂ (Si(E))δ/2, so

(
⋃m

i=1 Si(E)) ⊂ Eδ/4 and E ⊂ ⋃m
i=1(Si(E))δ/2. By definition of the Hausdorff

metric, d(E,
⋃m

i=1 Si(E)) ! 1
2δ. It follows from (9.24) that d(E,F ) < δ where

F is the attractor. #

The approximation by the IFS attractor given by the above proof is rather
coarse—it is likely to yield a very large number of contractions that take little
account of the fine structure of E. A rather more subtle approach is required to
obtain convincing images with a small number of transformations. One method
which often gives good results is to draw a rough outline of the object and
then cover it, as closely as possible, by a number of smaller similar (or affine)
copies. The similarities (or affinities) thus determined may be used to compute an
attractor which may be compared with the object being modelled. Theorem 9.13
guarantees that the attractor will be a good approximation if the union of the
smaller copies is close to the object. A trial and error process allows modification
and improvements to the picture.

More complex objects may be built up by superposition of the invariant sets
of several different sets of transformations.

Ideally, it would be desirable to have a ‘camera’ which could be pointed at an
object to produce a ‘photograph’ consisting of a specified number of affine trans-
formations whose attractor is a good approximation to the object. Obviously, the
technical problems involved are considerable. One approach is to scan the object
to estimate various geometric parameters, and use these to impose restrictions on
the transformations.

For example, for a ‘natural fractal’ such as a fern, we might estimate the dimen-
sion by a box-counting method. The assumption that the similarities or affinities
sought must provide an attractor of this dimension gives, at least theoretical,
restrictions on the possible set of contractions, using results such as Theorem 9.3
or 9.12. In practice, however, such information is rather hard to utilize, and we
certainly need many further parameters for it to be of much use.

Very often, attractors in the plane that provide good pictures of physical objects
will have positive area, so will not be fractals in the usual sense. Nevertheless,
such sets may well be bounded by fractal curves, a feature that adds realism to
pictures of natural objects. However, fractal properties of boundaries of invariant
sets seem hard to analyse.

These ideas may be extended to provide shaded or coloured images, by
assigning a probability pi to each of the contractions Si , where 0 < pi < 1 and∑m

i=1 pi = 1. Without going into details, these data define a mass distribution
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µ on the attractor F such that µ(A) = ∑m
i=1 piµ(S−1

i (A)), and the set may be
shaded, or even coloured, according to the local density of µ.

This leads to the following modification of the second method of drawing
attractors mentioned at the end of Section 9.1. Let x0 be any initial point. We
choose Sj1 from S1, · · · , Sm at random in such a way that the probability of
choosing Si is pi , and let x1 = Sj1(x0). We continue in this way, so that xk =
Sjk

(xk−1) where Sjk
equals Si with probability pi . Plotting the sequence {xk}

(after omitting the first 100 terms, say) gives a rendering of the attractor F , but
in such a way that a proportion pi1 · · · piq of the points tends to lie in the part
Si1

◦ · · · ◦Siq (F ) for each i1, . . . , iq . This variable point density provides a direct
shading of F . Alternatively, the colour of a point of F can be determined by
some rule, which depends on the number of {xk} falling close to each point. The
computer artist may care to experiment with the endless possibilities that this
method provides—certainly, some very impressive colour pictures have been
produced using relatively few transformations.

It is perhaps appropriate to end this section with some of the ‘pros and cons’
of representing images using iterated function systems. By utilizing the self-
similarity and repetition in nature, and, indeed, in man-made objects, the method
often enables scenes to be described by a small number (perhaps fewer than
100) of contractions and probabilities in an effective manner. This represents an
enormous compression of information compared, for example, with that required
to detail the colour in each square of a fine mesh. The corresponding disadvan-
tage is that there is a high correlation between different parts of the picture—the
method is excellent for giving an overall picture of a tree, but is no use if the
exact arrangement of the leaves on different branches is important. Given a set of
affine contractions, reproduction of the image is computationally straightforward,
is well-suited to parallel computation, and is stable—small changes in the con-
tractions lead to small changes in the attractor. The contractions define the image
at arbitrarily small scales, and it is easy to produce a close-up of a small region.
At present, the main disadvantage of the method is the difficulty of obtaining a
set of contractions to represent a given object or picture.

9.6 Notes and references

The first systematic account of what are now known as iterated function sys-
tems is that of Hutchinson (1981), though similar ideas were around earlier. The
derivation of the formula for the dimension of self-similar sets was essentially
given by Moran (1946). Computer pictures of self-similar sets and attractors of
other IFSs are widespread, the works of Mandelbrot (1982), Dekking (1982),
Peitgen, Jürgens and Saupe (1992) and Barnsley (1993) contain many interesting
and beautiful examples.

For details of the thermodynamic formalism and material relating to Theo-
rem 9.9, see Ruelle (1983), Bedford (1991), Beck and Schlögl (1993), Falconer
(1997) and Pesin (1997).
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A discussion of self-affine sets is given by Mandelbrot (1986) and a survey
on their dimension properties by Peres and Solomyak (2000). Full details of
Example 9.11 are given by McMullen (1984) and of Theorem 9.12 by Falconer
(1988) and Solomyak (1998).

These ideas have been extended in many directions: for example, for IFSs with
infinitely many transformations see Mauldin and Urbański (1996, 1999), and for
graph directed constructions see Mauldin and Williams (1988).

Applications to image compression and encoding are described by Barnsley
(1993), Barnsley and Hurd (1993) and Fisher (1995).

Exercises
9.1 Verify that the Hausdorff metric satisfies the conditions for a metric.
9.2 Find a pair of similarity transformations on ! for which the interval [0, 1] is the

attractor. Now find infinitely many such pairs of transformations.
9.3 Find sets of (i) four and (ii) three similarity transformations on ! for which the

middle third Cantor set is the attractor. Check that (9.13) has solution log 2/ log 3
in each case.

9.4 Write down (using matrix notation) the four basic similarity transformations that
define the von Koch curve (figure 0.2). Find an open set for which the open set
condition holds and deduce from Theorem 9.3 that the von Koch curve does indeed
have box and Hausdorff dimension of log 4/ log 3.

9.5 Find an IFS for the set depicted in figure 0.5 and deduce that it has Hausdorff and
box dimensions given by 4( 1

4 )s + ( 1
2 )s = 1.

9.6 Sketch the first few steps in the construction of a self-similar set with generator
. What are the Hausdorff and box dimensions of this fractal? (The stem of

the T is one quarter of the total length of the top.)
9.7 Let F be the set obtained by a Cantor-type construction in which each interval is

replaced by two intervals, one of a quarter of the length at the left-hand end, and one
of half the length at the right-hand end. Thus E0 is the interval [0, 1], E1 consists
of the intervals [0, 1

4 ] and [ 1
2 , 1], etc. Find an IFS with attractor F , and thus find the

Hausdorff and box dimensions of F .
9.8 Describe the attractors of the following IFSs on !.

(i) S1(x) = 1
4 x, S2(x) = 1

4 x + 3
4 ;

(ii) S1(x) = 1
2 x, S2(x) = 1

2 x + 1
2 ;

(iii) S1(x) = 2
3 x, S2(x) = 2

3 x + 1
3 .

9.9 Divide the unit square E0 into p2 squares of side 1/p in the obvious way and choose
some m of these squares to form E1. Let Si(1 ! i ! m) be similarity transformations
that map E0 onto each of these squares. Show that the attractor F of the IFS so
defined has dimHF = dimBF = log m/ log p.

9.10 Let S1, S2 : [0, 1] → [0, 1] be given by S1(x) = x/(2 + x) and S2(x) = 2/(2 + x).
Show that the attractor F of this IFS satisfies 0.52 < dimHF < 0.81.

9.11 Show that any self-similar set F satisfying the conditions of Theorem 9.3 has c1 !
D(F, x) ! D(F, x) ! c2 for all x ∈ F , where c1 and c2 are positive constants. (See
equations (5.2) and (5.3) for the definition of the densities.)
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9.12 Let S1, . . . , Sm be bi-Lipschitz contractions on a subset D of !n and let F be the
attractor satisfying (9.2). Show that, if V is any open set intersecting F , then F
and F ∩ V have equal Hausdorff, equal upper box and equal lower box dimensions.
Deduce from Corollary 3.9 that dimPF = dimBF .

9.13 Verify the Hausdorff dimension formula in Example 9.11 in the cases (a) where
Nj = N for 1 ! j ! p and (b) where Nj = N or 0 for 1 ! j ! p, where N is an
integer with 1 < N < q. (Hint: see Example 7.13.)

9.14 Find the Hausdorff and box dimensions of the set in figure 9.11.
9.15 Write a computer program to draw self-similar sets in the plane, given a generator

of the set.
9.16 Write a computer program to draw the attractor of a given collection of contractions

of a plane region (see the end of Section 9.1). Examine the attractors of similarities,
affinities and try some non-linear transformations. If you are feeling really enter-
prising, you might write a program to estimate the dimension of these sets using a
box-counting method.


