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Measure and dimension

1.1 Basic measure theory
This section contains a condensed account of the basic measure

theory we require. More complete treatments may be found in Kingman &
Taylor (1966) or Rogers (1970).

Let X be any set. (We shall shortly take X to be n-dimensional Euclidean
space Un.) A non-empty collection ¥ of subsets of X is termed a sigma-field
(or o-field) if 9* is closed under complementation and under countable
union (so if Es9, then X\Ee9 and if £ t , E2,.. .€&, then (JJL x EpSf\ A
little elementary set theory shows that a a-field is also closed under
countable intersection and under set difference and, further, that X and the
null set 0 are in Sf.

The lower and upper limits of a sequence of sets {Ej} are defined as

!im£,= U C\EJ
j^oo k=lj = k

and

Thus lim Ej consists of those points lying in all but finitely many Ej9 and
lim Ej consists of those points in infinitely many E}. From the form of these
definitions it is clear that if Ej lies in the a-field Sf for each j , then Hm Ej,
limEjE^. If lim Ej = lim Ej, then we write lim Ej for the common value;
this always happens if {Ej} is either an increasing or a decreasing sequence
of sets.

Let # be any collection of subsets of X. Then the d-field generated by #,
written Sf (#), is the intersection of all c-fields containing #. A straightfor-
ward check shows that Sf {%>) is itself a a-field which may be thought of as the
'smallest' c-field containing (€.

A measure \i is a function defined on some a-field Sf of subsets of X and
taking values in the range [0, oo] such that

M0) = o (1.1)
and
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for every countable sequence of disjoint sets {£,} in $f.
It follows from (1.2) that \i is an increasing set function, that is, if E c E'

and £ ,£ ' e^ , then

Theorem 1.1 (continuity of measures)
Let pi be a measure on a o-field Sf of subsets of X.
(a) IfEt c: E2 <=... is an increasing sequence of sets in </*, then

/i(lim Ej) = lim fi(Ej).
j->ao j-*co

(b) IfFx =) F2 =>... is a deer easing sequence of sets in Sf and iitfi) < co,then

ti(\imFj)= lim fi(Fj).

(c) For any sequence of sets {Fj} in Sf,

ftPim Fj) < Mm p(Fj\

Proof, (a) We may express U " = i ^ a s ^ e disjoint union
u 7 j - 1 ) - T h u s

= Um /i(£v).

(b) If £̂  = FAF7., then {£,.} is as in (a). Since f)/j = F , \ U A '
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= lim fi(Fj).
j->co

(c) Now let Ek = f]JLkFj. Then {Ek} is an increasing sequence of sets in
so by (a),

M lim Fj) = J (J Ek ) = lim /*(£*) < Urn M*> D
J-+00 \ k = l / k-+ao j-+oo

Next we introduce outer measures which are essentially measures with
property (1.2) weakened to subadditivity. Formally, an outer measure v on a
set X is a function defined on all subsets of X taking values in [0, oo] such
that

v(0) = O, (1.3)

v(A)<v(A') if A c A' (1.4)

and

v( Q Aj ) < f v(Aj) for any subsets {Aj} of X. (1.5)

Outer measures are useful since there is always a d-field of subsets on
which they behave as measures; for reasonably defined outer measures this
(j-field can be quite large.

A subset E of X is called v-measurable or measurable with respect to the
outer measure v if it decomposes every subset of X additively, that is, if

v(A) = v(A n E) + v(A\E) (1.6)

for all 'test sets' Acz X. Note that to show that a set E is v-measurable, it is
enough to check that

v(A)>v(AnE) + v(A\E\ (1.7)

since the opposite inequality is included in (1.5). It is trivial to verify that if
v(E) = 0, then E is v-measurable.

Theorem 1.2
Let v be an outer measure. The collection M of v-measurable sets forms a a-
field, and the restriction ofvtoJt is a measure.

Proof. Clearly, 0eJt, so Jt is non-empty. Also, by the symmetry of (1.6),
AtM if and only if X \AeJt. Hence M is closed under taking complements.

To prove that Ji is closed under countable union, suppose that
El9E29...eJt and let A be any set. Then applying (1.6) to El9E2,...in turn
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with appropriate test sets,

= v(AnEt

Hence

v(A)> Zv([A\[ji
j=i \ \ » = i

for all k and so

j=

On the other hand,
7 - 1

so, using (1.5),

n 0 i) ^_0

by (1.8). It follows that \}^XE^M, so ^ is a a-field.
Now let E1,£2, . . . be disjoint sets of M. Taking ^ = UJ = I £ J i n

and combining this with (1.5) we see that v is a measure on Jt. •

We say that the outer measure v is regular if for every set A there is a v-
measurable set E containing A with v(A) = v(E).

Lemma 1.3
If v is a regular outer measure and {Aj} is any increasing sequence of sets,

lim v(Aj) = v( lim Aj).
j-*oo j-*oo

Proof. Choose a v-measurable Ej with Ej =5 Aj and v^^) = v(Aj) for each/
Then, using (1.4) and Theorem l.l(c),

v(lim Aj) = vfljm>47) < v(HmEj) <\jmV{EJ) = limv(A7).
The opposite inequality follows from (1.4). •
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Now let (X, d) be a metric space. (For our purposes X will usually be n-
dimensional Euclidean space, Un

9 with d the usual distance function.) The
sets belonging to the (r-field generated by the closed subsets of X are called
the Borel sets of the space. The Borel sets include the open sets (as
complements of the closed sets), the Fa-sets (that is, countable unions of
closed sets), the Gd-sets (countable intersections of open sets), etc.

An outer measure v on X is termed a metric outer measure if
F) (1.9)

whenever E and F are positively separated, that is, whenever
d(E,F) = inf{d{x9y):xeE,yeF} > 0.

We show that if v is a metric outer measure, then the collection of v-
measurable sets includes the Borel sets. The proof is based on the following
version of 'Caratheodory's lemma'.

Lemma 1.4
Let v be a metric outer measure on (X,d). Let {Aj}f be an increasing

sequence of subsets ofX with A = lim Aj9 and suppose that d(Aj9A\Aj+ x) > 0
j-oo

for each j . Then v(A) = lim v(Aj).
j->co

Proof It is enough to prove that

v(A) < lim v(Aj), (1.10)
j-*ao

since the opposite inequality follows from (1.4). Let B1=Al and Bj =
Aj\Aj_! for j > 2. If j + 2 < i, then Bj c Aj and Bt c A\Ai_1 c A\Aj+ x, so
B£ and Bj are positively separated. Thus, applying (1.9) (m - 1) times,

k = l

We may assume that both these series converge - if not we would have
lim v(Aj) = oo, since (J™= lB2k_l and \J™= x B2k are both contained in A2m.
J-+CC

Hence

X v(Bk)
k=j+i
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<limv(Ai)+ f v(Bk).
i-*oo k=j+l

Since the sum tends to 0 as j -> oo, (1.10) follows. •

Theorem 1.5
Ifv is a metric outer measure on (X,d)9 then all Borel subsets of X are v-
measurable.

Proof. Since the v-measurable sets form a tr-field, and the Borel sets form
the smallest <7-field containing the closed subsets of X, it is enough to show
that (1.7) holds when E is closed and A is arbitrary.

Let Aj be the set of points in A\E at a distance at least l/j from E. Then
d{AnE,Aj)>l/j9 so

v(AnE) + v(Aj) = v((AnE)vAj)<v(A) (1.11)

for each 7, as v is a metric outer measure. The sequence of sets {Aj} is
increasing and, since E is closed, A\E= (J°°=i Ay Hence, provided that

d(Ay A\E\Aj+ i)>0 for all;, Lemma 1.4 gives v(A\E) < lim v(Aj) and (1.7)

follows from (1.11). But if xeA\E\Aj+l there exists zeE with d{x,z)<
1/(7+ l),soif^€AJthend(x,j;)>rf(>;,z)-d(x,z)> 1 / / - l / ( /+ l )>0.Thus
d(ApA\E\Aj+1) > 0, as required. •

There is another important class of sets which, unlike the Borel sets, are
defined explicitly in terms of unions and intersections of closed sets. If (AT, d)
is a metric space, the Souslin sets are the sets of the form

*= u n*M,...fc.
where Eiih ik is a closed set for each finite sequence {il9i2,. • -Jk} of
positive integers. Note that, although E is built up from a countable
collection of closed sets, the union is over continuum-many infinite
sequences of integers. (Each closed set appears in the expression in many
places.)

It may be shown that every Borel set is a Souslin set and that, if the
underlying metric spaces are complete, then any continuous image of a
Souslin set is Souslin. Further, if v is an outer measure on a metric space
{X,d\ then the Souslin sets are v-measurable provided that the closed sets
are v-measurable. It follows from Theorem 1.5 that if v is a metric outer
measure on (X,d), then the Souslin sets are v-measurable. We shall only
make passing reference to Souslin sets. Measure-theoretic aspects are
described in greater detail by Rogers (1970), and the connoisseur might also
consult Rogers et al. (1980).
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1.2 Hausdorff measure
For the remainder of this book we work in Euclidean w-space, IRn,

although it should be emphasized that much of what is said is valid in a
general metric space setting.

If U is a non-empty subset of Un we define the diameter of U as
\U\ = sup{\x-y\:x,yeU}. If £ c \JtUt and 0<|irf |<<5 for each i, we
say that {t/J is a S-cover of £.

Let £ be a subset of !Rn and let 5 be a non-negative number. For 8 > 0
define

JT5(£) = inf f |l/,r, (1.12)

where the infimum is over all (countable) ^-covers {Ut} of £. A trivial check
establishes that Jf J is an outer measure on R".

To get the Hausdorff s-dimensional outer measure of £ we let <5 -• 0. Thus
JT(£) = lim Jf J(E) = sup JT J(£). (1.13)

£->0 <5>0

The limit exists, but may be infinite, since MPs
d increases as 8 decreases. Jfs is

easily seep to be an outer measure, but it is also a metric outer measure. For
if 8 is less than the distance between positively separated sets E and F, no set
in a <5-cover of £ u F can intersect both £ and F, so that

leading to a similar equality for Jfs. The restriction of Jfs to the a-field of
j^-measurable sets, which by Theorem 1.5 includes the Borel sets (and,
indeed, the Souslin sets) is called Hausdorff s-dimensional measure.

Note that an equivalent definition of Hausdorff measure is obtained if the
infimum in (1.12) is taken over ^-covers of E by convex sets rather than by
arbitrary sets since any set lies in a convex set of the same diameter.
Similarly, it is sometimes convenient to consider ^-covers of open, or
alternatively of closed, sets. In each case, although a different value of Jt?*d

may be obtained for S > 0, the value of the limit Jfs is the same, see Da vies
(1956). (If however, the infimum is taken over ^-covers by balls, a different
measure is obtained; Besicovitch (1928a, Chapter 3) compares such
'spherical Hausdorff measures' with Hausdorff measures.)

For any E it is clear that 3tfs(E) is non-increasing as s increases from 0 to
00. Furthermore, if s < t, then

which implies that if Jf \E) is positive, then Jf S(E) is infinite. Thus there is a
unique value, dim £, called the Hausdorff dimension of £, such that

oo if 0 < s < d i m £ , j H £ ) = 0 i fd im£<5<oo. (1.14)
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If C is a cube of unit side in (Rn, then by dividing C into kn subcubes of side
l//c in the obvious way, we see that if 3 ̂  k~ ln± then Jf%C) < k^k' lri*)n

< n±\ so that ^n(C) < oo. Thus if s > n, then Jfs(C) = 0 and #"(RH) = 0,
since Un is expressible as a countable union of such cubes. It follows
that 0<dim E<n for any £czRw. It is also clear that if £<=£' then
dim£<dimF.

An Jf 5-measurable set £cR" for which 0< J^\E)< oo is termed an
s-set; a 1-set is sometimes called a linearly measurable set. Clearly, the
Hausdorff dimension of an s-set equals s, but it is important to realize that
an s-set is something much more specific than a measurable set of Hausdorff
dimension s. Indeed, Besicovitch (1942) shows that any set can be expressed
as a disjoint union of continuum-many sets of the same dimension. Most of
this book is devoted to studying the geometric properties of s-sets.

The definition of Hausdorff measure may be generalized by replacing
| (7,1s in (1.12) by h(\ Ut\), where h is some positive function, increasing and
continuous on the right. Many of our results have direct analogues for these
more general measures, though sometimes at the expense of algebraic
simplicity. The Hausdorff'dimension' of a set E may then be identified more
precisely as a partition of the functions which measure E as zero or infinity
(see Rogers (1970)). Some progress is even possible if | £/f|s is replaced by
h(Ut), where h is simply a function of the set Ui (see Davies (1969) and
Davies & Samuels (1974)).

We next prove that Jtfs is a regular measure, together with the useful
consequence that we may approximate to s-sets from below by closed
subsets. This proof is given by Besicovitch (1938) who also demonstrates
(1954) the necessity of the finiteness condition in Theorem 1.6(b).

Theorem 1.6
(a) / / E is any subset of Un there is a Gs-set G containing E with 3tfs{G) =
34?S(E). In particular, Jf?s is a regular outer measure.
(b) Any 3^s-measurable set of finite 3tfs-measure contains an Fa-set of equal
measure, and so contains a closed set differing from it by arbitrarily small
measure.

Proof (a) If 3tfs(E)= oo, then Un is an open set of equal measure, so
suppose that Jts(E) < oo. For each i = 1,2... choose an open 2/7-cover of £,
{U^j, such that

Then E c G, where G = ( X i Ui°= i utjis a Ga"set s i n c e { u vh i s a 2I1'
cover of G, M^iiG) ^Jf^E) + 1/i, and it follows on letting i-> oo that
Jfs(E) = Jf 5(G). Since G -̂sets are Jf s-measurable, Jfs is a regular outer
measure.
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(b) Let E be Jf s-measurable with J f S(E) < oo. Using (a) we may find open
sets O19O2,...containing F, with Jtrs(f)?L1Oi\E)= JHf)£i<>,• ) - Jfs(E)
= 0. Any open subset of Un is an F^-set, so suppose O t = ( J ^ F ^ . f°r

each i, where {F^}; is an increasing sequence of closed sets. Then by
continuity of 3tfs,

lim Jts(E n Ftj) = 3tfs(E n Ot) = «^fs(£).

Hence, given s > 0, we may find y,. such that

JT'(£\ / r
U l )<2- '£ (i = l ,2, . . .) .

If F is the closed set f ^ FiJt, then

^fs(F) > Jfs(£n F) > Jfs(E) - f Jfs(E\Fijt) > Jfs(E) - e.

Since F c z f ) , " ^ , then Jfs(F\E) < Jfs(f]T=i O(\E) = 0. By (a) F \£ is
contained in some G^-set G with JfS(G) = 0. Thus F\G is an Fff-set
contained in E with

tf\F) - Jts(G) > Jfs(E) - e.
Taking a countable union of such F^-sets over e = ^ , | , i , . . . gives an Fff-set
contained in E and of equal measure to E. •

The next lemma states that any attempt to estimate the Hausdorff
measure of a set using a cover of sufficiently small sets gives an answer not
much smaller than the actual Hausdorff measure.

Lemma 1.7
Let E be Jtif*-measurable with J^S{E) < oo, and let e be positive. Then there
exists p > 0, dependent only on E and e, such that for any collection ofBorel
sets { l / j £ x with 0 < | Ut\ <p we have

Proof. From the definition of Jfs as the limit of Jt s
d as S -> 0, we may choose

p such that

J H £ ) < D ^ - | s + i£ (1-15)
for any p-cover {Wt} of E. Given Borel sets {Ut} with 0 < | Ut\ < p, we may
find a p-cover {[/.} of £\Ul-I/f such that

Since { t / J u j ^ . } is then a p-cover of F,
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by (1.15). Hence

Ut\ = *?%E) - W E\\) v

Finally in this section, we prove a simple lemma on the measure of sets
related by a 'uniformly Lipschitz' mapping

Lemma 1.8
Let i//:E—>F be a surjective mapping such that

Mx)-t(y)\£c\x-y\ (x,yeE)
for a constant c. Then Jfs(F) < <?3tfs(E).

Proof. For each i, \^(UtnE)\ < c\ Ut\. Thus if {C/J is a <5-cover of E, then
is a c<5-cover of F. Also ^ ^ ( l ^ n E ) ! 5 ^ L l ^ l * s o t h a t

J(JE), and the result follows on letting <5-»0. •

1.3 Covering results
The Vitali covering theorem is one of the most useful tools of

geometric measure theory. Given a 'sufficiently large' collection of sets that
cover some set E, the Vitali theorem selects a disjoint subcollection that
covers almost all of E.

We include the following lemma at this point because it illustrates the
basic principle embodied in the proof of Vitali's result, but in a simplified
setting. A collection of sets is termed semidisjoint if no member of the
collection is contained in any different member.

Lemma 1.9
Let ^ be a collection of balls contained in a bounded subset ofUn. Then we
may find a finite or countably infinite disjoint subcollection {Bt} such that

U
Be*

where B\ is the ball concentric with Bt and of five times the radius. Further,
we may take the collection {B'i} to be semidisjoint.

Proof. We select the {Bt} inductively. Let d0 = sup{ |B|: Be<#} and choose
Bx from # with 11*!| >£</<>• V Bu...9 Bm have been chosen let dm =
sup{|B|: BeW, B disjoint from \J™Bt}. If dm = 0 the process terminates.
Otherwise choose Bm+1 from # disjoint from (j7Bf with \Bm+1\>$dm.
Certainly, these balls are disjoint; we claim that they also have the required
covering property. If Be<£9 then either B = Bt for some i, or B intersects
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some Biv/ith2\Bi\>\B\. If this was not the case B would have been selected
in preference to the first ball Bm for which 2 | B J < | £ | . (Note that, by
summing volumes, X |£ f | 2 < oo so that \Bt\ ->0 as i-+ oo if infinitely many
balls are selected.) In either case, B c B j , giving (1.16). To get the {BJ}
semidisjoint, simply remove Bt from the subcollection if B\ c= B) for any; ^ i
noting that B\ can only be contained in finitely many B). •

A collection of sets V is called a Vitali class for £ if for each xeE and
5 > 0 there exists 17 e f with xe£/ and 0 < | U\ < 5.

Theorem 1.10 (Vitali covering theorem)
(a) Let E be an ̂ -measurable subset of Un and let V be a Vitali class of
closed sets for E. Then we may select a (finite or countable) disjoint sequence
{Ujfrom r such that either £ | Ut\s = oo or ^ s ( £ \ ( J i Ut) = 0.
(b) IfJts(E) < oo, then, given s > 0, we may also require that

Proof Fix p > 0; we may assume that | U\ < p for all Uef". We choose the
{C/J inductively. Let U1 be any member of y. Suppose that Ul,..., Um

have been chosen, and let dm be the supremum of | U | taken over those U in
-T which do not intersect Ux,..., Um. If dm = 0, then E c (J7 l/^ so that (a)
follows and the process terminates. Otherwise let Um+l be a set in V
disjoint from (JT^/ such that | Um+11 > \dm.

Suppose that the process continues indefinitely and that Y^\Ui\s < °°-
For each i let Bt be a ball with centre in I/, and with radius 311/.|. We claim
that for every fc > 1

I
fc+1

For if xe£ \J\ Ui there exists t/ef^" not intersecting Ul9...,Uk with xe(7.
Since | Ut | -> 0, | U \ > 21 Um \ for some m. By virtue of the method of selection
of {L/J, U must intersect C/f for some/ with k< i <mfor which \U\ <2\Ut\.
By elementary geometry U c Bf, so (1.17) follows. Thus if ^ > 0,

provided k is large enough to ensure that \Bt\<S for i>k. Hence
*KE\ U T ui) = 0 for all £ > 0, so ^ s ( £ \ (J f I/.) = 0, which proves (a).

To get (b), we may suppose that p chosen at the beginning of the proof is
the number corresponding to s and E given by Lemma 1.7. If £ | Utf = oo,
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then (b) is obvious. Otherwise, by (a) and Lemma 1.7,

() + JT(En |J Ut)
i

Covering theorems are studied extensively in their own right, and are of
particular importance in harmonic analysis, as well as in geometric measure
theory. Results for very general classes of sets and measures are described in
the two books by de Guzman (1975, 1981) which also contain further
references. One approach to covering principles is due to Besicovitch
(1945a, 1946, 1947); the first of these papers includes applications to
densities such as described in Section 2.2 of this book.

1.4 Lebesgue measure
We obtain n-dimensional Lebesgue measure as an extension of the

usual definition of the volume in Un (we take 'volume' to mean length in R1

and area in IR2).
Let C be a coordinate block in Un of the form

C = [_alybx) x [a2,b2) x ••• x [an,bn\

where a{ < bt for each i. Define the volume of C as

in the obvious way. If E c W let

£ (1.18)
i

where the infimum is taken over all coverings of £ by a sequence {C^ of
blocks. It is easy to see that <£n is an outer measure on IR", known as
Lebesgue n-dimensional outer measure. Further, 3?n{E) coincides with the
volume of E if E is any block; this follows by approximating the sum in
(1.18) by a finite sum and then by subdividing E by the planes containing the
faces of the Q . Since any block Ct may be decomposed into small subblocks
leaving the sum in (1.18) unaltered, it is enough to take the infimum over S-
covers of E for any S > 0. Thus S£n is a metric outer measure on Un. The
restriction of <£n to the if-measurable sets or Lebesgue-measurable sets,
which, by Theorem 1.5, include the Borel sets, is called Lebesgue n-
dimensional measure or volume.

Clearly, the definitions of JS?1 and «#1 on U1 coincide. As might be
expected, the outer measures <£n and 3tfn on IRn are related if n > 1, in fact
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they differ only by a constant multiple. To show this we require the
following well-known geometric result, the 'isodiametric inequality', which
says that the set of maximal volume of a given diameter is a sphere. Proofs,
using symmetrization or other methods, may be found in any text on
convexity, e.g. Eggleston (1958), see also Exercise 1.6.

Theorem 1.11
The n-dimensional volume of a closed convex set of diameter d is, at most,
n*n(jd)n/(^n)\, the volume of a ball of diameter d.

Theorem 1.12
/ / E c i " , then &n(E) = cnJ^\E\ where cn = n*n/2n(±n)l In particular,
cx = \ and c2 = n/4.

Proof Given s > 0 we may cover E by a collection of closed convex sets
{J7J such that £ | Ut\n < Jtfn(E) + e. By Theorem 1.11 ^"(l / , ) < cn\ Ut\\ so
<?n(E) <^n(Ui) < cnJTn(E) + cne, giving JS?-(JE) <cnJfn(E).

Conversely, let {C^ be a collection of coordinate blocks covering E with

(1.19)

We may suppose these blocks to be open by expanding them slightly whilst
retaining this inequality. For each i the closed balls contained in Cf of radius,
at most, 8 form a Vitali class for Ct. By the Vitali covering theorem,
Theorem 1.10(a), there exist disjoint balls {£0}7 in C, of diameter, at most, 6,
with Jf "(QUJL i BtJ) = 0 and so with ^ ( Q l J J L ^ = °- S i n c e ^ i s a

Borel measure, £"= ^"(By) = &n{\Jf= xBtj) < X*(Ct). Thus

i = l £ = 1 j =1 i = l \ j-1
00 00

^ c;» J if"(C,.) < c; 'if"(£) + c;
i = l

by (1.19). Thus cnJ^n
d(E) < &n(E) + e for all 6 and <5, giving

D

One of the classical results in the theory of Lebesgue measure is the
Lebesgue density theorem. Much of our later work stems from attempts to
formulate such a theorem for Hausdorff measures. The reader may care to
furnish a proof as an exercise in the use of the Vitali covering theorem.
Alternatively, the theorem is a simple consequence of Theorem 2.2.
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Theorem 1.13 (Lebesgue density theorem)
Let E be an ̂ -measurable subset ofUn. Then the Lebesgue density ofE at x,

<?»(EnBr(x))
r - 0 y? \pr\x))

exists and equals 1 ifxeE and 0 ifx^E, except for a set ofx of ^"-measure 0.
(Br(x) denotes the closed ball of centre x and radius r, and, as always, r tends to
0 through positive values.)

1.5 Calculation of Hausdorff dimensions and measures
It is often difficult to determine the Hausdorff dimension of a set

and harder still to find or even to estimate its Hausdorff measure. In the
cases that have been considered it is usually the lower estimates that are
awkward to obtain. We conclude this chapter by analysing the dimension
and measure of certain sets; further examples will be found throughout the
book. It should become apparent that there is a vast range of s-sets in Un for
all values of s and n, so that the general theory to be described is widely
applicable.

The most familiar set of real numbers of non-integral Hausdorff di-
mension is the Cantor set. Let Eo = [0, 1], Ex = [0, 1/3] u [2/3, 1], E2 =
[0, 1/9] u [2/9, 1/3] u [2/3, 7/9] u [8/9, 1], etc., where Ej+ x is obtained by
removing the (open) middle third of each interval in Ej; see Figure 1.1. Then
Ej consists of 2J intervals, each of length 3~J. Cantor's set is the perfect
(closed and dense in itself) set E= [)™=0Ej. (The collection of closed
intervals that occur in this construction form a 'net', that is, any two such
intervals are either disjoint or else one is contained in the other. The idea of
a net of sets crops up frequently in this book.) Equivalently, E is, to within a
countable set of points, the set of numbers in [0, 1] whose base three
expansions do not contain the digit 1. We calculate explicitly the Hausdorff
dimension and measure of E; this basic type of computation extends to
rather more complicated sets.

Fig. 1.1
o

I1

Theorem 1.14
The Hausdorff dimension of the Cantor set E is s = log 2/log 3 = 0.6309
Moreover, Jtfs(E)=l.

Proof Since E may be covered by the 2j intervals of length 3 " j that form
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Ej9 we see at once that Jfs
3-j(E)<2i3~sj = 2j2~j =1. Letting j-+oo,

To prove the opposite inequality we show that if J is any collection of
intervals covering E, then

' i < I ms. (1.21)

By expanding each interval slightly and using the compactness of £, it is
enough to prove (1.21) when J is a finite collection of closed intervals. By a
further reduction we may take each / e / to be the smallest interval that
contains some pair of net intervals, J and J\ that occur in the construction
of E. (J and J' need not be intervals of the same Ej.) If J and J' are the largest
such intervals, then / is made up of J, followed by an interval K in the
complement of E, followed by J'. From the construction of the Ej we see
that

\J\,\J'\<\K\. (1.22)
Then

using the concavity of the function f and the fact that 3s = 2. Thus replacing
/ by the two subintervals J and Jf does not increase the sum in (1.21). We
proceed in this way until, after a finite number of steps, we reach a covering
of E by equal intervals of length 3~\ say. These must include all the
intervals of Ej9 so as (1.21) holds for this covering it holds for the original
covering J. •

There is nothing special about the factor ^ used in the construction of the
Cantor set. If we let Eo be the unit interval and obtain Ej+ x by removing a
proportion I —2k from the centre of each interval of Ej9 then by an
argument similar to the above (with (1.22) replaced by \J\, \J'\<
\K\k/(l - 2k) we may show that jes(f]fEj) = 1, where s = Iog2/log(l//c).

We may construct irregular subsets in higher dimensions in a similar
fashion. For example, take Eo to be the unit square in U2 and delete all but
the four corner squares of side k to obtain Ex. Continue in this way, at the
jth stage replacing each square of Ej_ t by four corner squares of side kJ to
get Ej (see Figure 1.2 for the first few stages of construction). Then the same
sort of calculation gives positive upper and lower bounds for Jf s(f]fEj)9

where s = Iog4/log(l/fe). More precision is required to find the exact value
of the measure in such cases, and we do not discuss this further.

Instead, we describe a generalization of the Cantor construction on the
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real line. Let s be a number strictly between 0 and 1; the set constructed will
have dimension 5. Let Eo denote the unit interval; we define inductively sets
E0^E1=>E2...9 each a finite union of closed intervals, by specifying
EJ+1nI for each interval / of Ej. If / is such an interval, let m > 2 be an
integer, and let Jl9J2,...9Jm be equal and equally spaced closed
subintervals of / with lengths given by

w s = - m s , (i.23)

and such that the left end of Jx coincides with the left end of/ and the right
end of Jm with the right end of /. Thus

where d is the spacing between two consecutive intervals Jt. Define Ej+ x by
requiring that EJ+lnI = (J7«A- Note that the value of m may vary over
different intervals / in Ej9 so that the sets E} can contain intervals of many
different lengths.

The set E = C\JL0Ej is a perfect nowhere dense subset of the unit interval.
The following analysis is to appear in a forthcoming paper of Davies.

Theorem 1.15
If E is the set described above, then 3^S(E) = 1.

Proof. An interval used in the construction of E9 that is, a component
subinterval of some Ej9 is called a net interval. For F a E let

(1.25)

where the infimum is taken over all possible coverings of F by collections J
of net intervals. Then \i is an outer measure (and, indeed, a Borel measure)
on the subsets of E. Note that the value of \i is unaltered if we insist that J be
a 5-cover of F for case S > 0, since using (1.23) we may always replace a net
interval / by a number of smaller net intervals without altering the sum in
(1.25).

Let J be a cover of E by net intervals. To find a lower bound for £ |/ |s
we may assume that the collection J is finite (since each net interval is open
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relative to the compact set E) and also that the intervals in J are pairwise
disjoint (we may remove those intervals contained in any others by virtue of
the net property). Let J be one of the shortest intervals o{J\ suppose that J
is a component interval of Ej9 say. Then J c= / for some interval I in Ej_1.
Since J is a disjoint cover of E, all the other intervals of E} n / must be in«/.
If we replace these intervals by the single interval /, the value of £ | / | s is
unaltered by (1.23). We may proceed in this way, replacing sets of net
intervals by larger intervals without altering the value of the sum, until we
reach the single interval [0,1]. It follows that ]T/6/| / |5 = | [0,1] |s = 1, so, in
particular,

In exactly the same manner we see that if J is any net interval, then

li(JnE) = \J\s. (1.26)

Next we show that

li(JnE)<\J\s (1.27)

for an arbitrary interval J. Contracting J if necessary, it is enough to prove
this on the assumptions that J c [0,1] and that the endpoints of J lie in E,
and, by approximating, coincide with endpoints of net intervals contained
in J. Let / be the smallest net interval containing J; say / is an interval of Ej.
Suppose that J intersects the intervals Jq,Jq+1,...,Jr among the com-
ponent intervals of Ej+ x n / , where 1 < q < r < m. (There must be at least
two such intervals by the minimality of /.) We claim that

| j €n j r + | j €+ 1 r + - + | j r . 1 r + | j r n j r ^ u r . (1.28)
If Jqn J is not the whole of Jq or if Jrn J is not the whole of Jr9 then on
increasing J slightly the left-hand side of inequality (1.28) increases faster
than the right-hand side. Hence it is enough to prove (1.28) when J is the
smallest interval containing Jq and Jr. Under such circumstances (1.28)
becomes

fc|Jf|s < |J\s = (k\Jt\ + (k - \)d)\ (1.29)

where k = r — q+l. This is true ifk = m by (1.23) and (1.24), and is trivial if
k=l, with equality holding in both cases. Differentiating twice, we see that
the right-hand expression of (1.29) is a convex function ofk, so (1.29) holds
for 1 <k <m, and the validity of (1.28) follows.

Finally, if either JqnJorJrnJis not a single net interval, we may repeat
the process, replacing JqnJ and Jrn J by smaller net intervals to obtain an
expression similar to (1.28) but involving intervals of Ej+2 rather than of
Ej+ x. We continue in this way to find eventually that | J\s is at least the sum
of the sth powers of the lengths of disjoint net intervals covering JnE and
contained in J. Thus (1.27) follows from (1.26) for any interval J.
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As (1.25) remains true if the infimum is taken over ^-covers J for any
5 > 0, jes(E) < fi(E). On the other hand, by (1.27),

for any cover {Jj of E, so n(E)< Jfs(£). We conclude that Jfs(E) =

Similar constructions in higher dimensions involve nested sequences of
squares or cubes rather than intervals. The same method allows the
Hausdorff dimension to be found and the corresponding Hausdorff
measure to be estimated.

The basic method of Theorem 1.15 may also be applied to find the
dimensions of other sets of related types. For example, if in the construction
of E the intervals J t , . . . , Jm in each / are just 'nearly equal' or 'nearly equally
spaced', the method may be adapted to find the dimension of E. Similarly, if
in obtaining Ej+ x from E. equations (1.23) and (1.24) only hold 'in the limit
as j-+ oo', it may still be possible to find the dimension of E.

Another technique useful for finding the dimension of a set is to 'distort' it
slightly to give a set of known dimension and to apply Lemma 1.8. The
reader may wish to refer to Theorem 8.15(a) where this is illustrated.

Eggleston (1952) finds the Hausdorff dimension of very general sets
formed by intersection processes; his results have been generalized by
Peyriere (1977). Recently an interesting and powerful method has been
described by Da vies & Fast (1978). Other related constructions are given by
Randolph (1941), Erdos (1946), Ravetz (1954), Besicovitch & Taylor (1954),
Beardon (1965), Best (1942), Cigler & Volkmann (1963) and Wegmann
(1971b), these last three papers continuing earlier works of the same
authors. A further method of estimating Hausdorff measures is described in
Section 8.3.

Exercises on Chapter 1
1.1 Show that if /x is a measure on a a-field of sets M and E^J({\ < y < oo),

then ju(fim Ej) > fim n(Ej) provided that n(\JfEj) < oo.

1.2 Let v be an outer measure on a metric space (X, d) such that every Borel set
is v-measurable. Show that v is a metric outer measure.

1.3 Show that the outer measure Jfs on Un is translation invariant, that is,
Jfs(x + E) = M\E\ where x + E = {x + y :yeE}. Deduce that x + E is
Jfs-measurable if and only if E is Jf s-measurable. Similarly, show that
Jfs{cE) = csJfs(E), where cE = {cyiyeE}.

1.4 Prove the following version of the Vitali covering theorem for a general
measure \i\ let E be a /x-measurable subset of Un with fi(E) < oo. If TT is a
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Vitali class of (measurable) sets for E, then there exist disjoint sets
UliU29...e'T such that fi(E\\JiUi) = 0.

1.5 Use the Vitali covering theorem to prove the Lebesgue density theorem.
(Consider the class of balls r = {Br(x):xeE,r <p and &n(Br(x)nE) <
<x£en{Br{x))} for each a < 1 and p > 0.)

1.6 Prove that the area of a plane convex set U of diameter d is, at most, \ n d 2.
(For one method take a point on the boundary of U as origin for polar
coordinates so that the area of U is \ Jr((/>)2d</>, and observe that r(0)2

+ r(<p + ^TT)2 < d2 for each 0.)
1.7 Use the Lebesgue density theorem to deduce the result of Steinhaus, that if

£ is a Lebesgue-measurable set of real numbers of positive measure, then
the difference set {y — x :x, yeE} contains an interval (— h, h). Show more
generally that if £ and E' are measurable with positive Lebesgue measure,
then {y-x:xeE,yeE'} contains an interval.

1.8 Let /x be a Borel measure on U" and let £ be a ^-measurable set with
0 < / / (£ )< oo. Show that

(a) if llmr~sii(Br(x)nE) < c < oo for xeE, then Jfs(E) > 0,
r->0

(b) if Enr~sfi(Br(x)nE)> c> 0 for xeE, then J^S(E) < oo.
r-0

(For (a) use the definition of Hausdorff measure, for (b) use the version of
the Vitali covering theorem in Exercise 1.4.)

1.9 Let E be the set of numbers between 0 and 1 that contain no odd digit in
their decimal expansion. Obtain the best upper and lower estimates that
you can for the Hausdorff dimension and measure of E. (In fact E is an s-set
where s = log 5/log 10. This example is intended to illustrate some of the
difficulties that can arise in finding Hausdorff measures, being a little more
awkward than the Cantor set. One approach to such questions is
described in Section 8.3.)


