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B EXERCISES
B Exercise 4.2.1 Give a detailed proof of (4.2.1).

M Exercise 4.2.2 Verify directly that for any fixed number n_ruhc sum of l_gf p +412} 7—
lg pover all pwith exactly mdigits is 1, as it should be according to Proposition 4.2.7.

@ Exercise 4.2.3 Verify the calculation needed to deduce Proposition 4.2.7 from
Proposition 4.1.7 or Theorem 4.2.3.

i ; 2
| Exercise 4.2.4 Referring to Proposition 4.2.7, determine limn.co F‘“.“.l:’{ r;
and find the asymptotic frequencies of 0 and 9, respectively, as the second digit o

powers of 2.

@ Exercise 4.2.5 Referring to the proof of Proposition 4.2.8, assume v # {]ti:lrllg
replace the section C; by the section C; = {xz = U}“Prove that the resulting re
map is a rotation and determine the rotation angle in terms of y.

| Exercise 4.2.6 Verify by direct calculation of the time derivatives that the
functions x 4 x? and x? + x7 are invariant under (4.2.5).

@ Exercise 4.2.7 Formulate the natural uniform distribution property referred to
in Proposition 4.2.9 and proved in Section 4.2.5.4.

B Exercise 4.2.8 Prove that any closed proper subgroup I" of R is cyclic, that is,
' = {na}ez for some a € R.
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M Exercise 4.2.9 Given an initial direction, how many slopes are there for the
billiard flow in a square and in each of the two triangles, and what are they?

I Exercise 4.2.10 Suppose a horizontal light beam enters a circular room with
mirrored walls, Describe the possibilities for which areas of the room will be best lit.

@ Exercise 4.2.11 Prove that a complete unfolding of a regular pentagon covers
every point of the plane infinitely many times.

W Exercise 4.2.12 Obtain the continuation of orbits in the billiard description of

the 2-particle system by interpreting double collisions as limits of a series of simple
collisions.

4.3 INVERTIBLE CIRCLE MAPS

The success in analyzing circle rotations is due in large part to the fact that
these come from linear dynamical systems, namely, from rotations of the plane
(Section 3.1). This causes the great homogeneity of the orbit structure that gives
uniform density of orbits and uniform distribution. However, another ingredient,
perhaps less apparent, is the simple structure of the circle itself. Analogously to
the study of interval homeomorphisms (Section 2.3.1) this makes it possible to
give a fairly satisfactory analysis of the orbit structure of any invertible map of
the circle. One-dimensionality of the circle provides two (related) features that
make a fairly detailed analysis possible: the (cyclic) ordering of its points and the
Intermediate-Value Theorem. These have the effect of tying together different
orbits tightly enough to make the possible orbit structures relatively easy to
describe. The importance of the order structure will become particularly apparent
in Proposition 4.3.11 and Proposition 4.3.15.

For noninvertible maps of an interval or of the circle the order of points may not
be preserved and hence use of this first property fails, while the Intermediate-Value
Theorem can still be used so long as we have continuity. Accordingly, the structural
features are much more complicated while still amenable to rather extensive
analysis. Chapter 11 outlines this for some interval maps.

One principle that will manifestitselfin various guises throughout this section is
that while, unlike the situation with rotations, the orbit structure of invertible circle
maps is not always entirely homogeneous, the asymptotic behavior is in various
different ways about as homogeneous, or at least coherent, as the entire orbit
structure of a rotation and, in fact, ultimately turns out to look much like a rotation.

In this section a fundamental dichotomy is central: A circle homeomorphism
(Definition A.1.16) may or may not have periodic points. Every orbit has the same
type of asymptotic behavior, and it corresponds in a precise sense to the behavior
of an orbit of a rational or an irrational rotation, respectively. The tool that leads to
this conclusion is a parameter that reflects asymptotic rotation rates and is rational
or not according to whether there are periodic points.

4.3.1 Lift and Degree
Recall the relation between the circle S! — R/Z and the line R (see Section 2.6.2).
There is a projection r: & —» §1 » X > [x], where [x] is the equivalence class of x in
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Figure 4.3.1. A lift and degree.

/7 as in Section 2.6.2. Here [] denotes an equivalence class, whereas the integer
part of a number is written |- |. We use (-} for the fractional part.

Proposition 4.3.1 If f: S' — S! is continuous, then there exists a continuous
F: R — R, called alift of f toR, such that

(4.3.1) fo_rr:?toF,

that is, f(lz1) = [F(2)]. Such a lift is unique up to an additive integer constant, and
deg(f) := F(x + 1) — F(x) is an integer independent of x € R and the lift F. It is
called the degree of f. If f is a homeomorphism, then |deg(f)| = L.

Proof Existence: Pick a point p € S'. Then p = [xy] for some xo € R and f(p) = (]
for some yp € R. From these choices of x, and y, define F: R — IR by requiring that
F(x) = ¥, F is continuous, and f([z]) = [F(2g)] for all z € R. One can construct
such an F by varying the initial point p continuously, which causes f(p) to vary
continuously. Then there is no ambiguity of how to vary x and y continuously, and
thus F(x) = y defines a continuous map.?

Uniqueness: Suppose F is another lift. Then [F (x)] = f([x]) = [F(x)] for all x,
meaning F — F is always an integer. Because it is continuous it must be constant.

Degree: F(x+ 1) — F(x) is an integer (now evidently independent of the
choice of lift) because [F(x+ 1)) = f(lx+1]) = f([x]) = [F(x)]. By continuity,
F(x + 1) — F(x) =: deg( f) must be a constant.

Invertibility: If deg(f) = 0, then F(x + 1) = F(x) and thus F is not monotone.
Then f is noninvertible because it cannot be monotone. If |deg(f)} > 1, then
|F(x+1) — F(x)] = 1 and, by the Intermediate-Value Theorem, there exists a

3 To elaborate, take 5 = 0 such that d([x], [x']} < & implies d( f([x]). f(Ix'])) < 1/2. Then define F on
[xg — 8. % + 8] as follows: If [x — xo| = 5, then d{f([x}).g) < 1/2 and there is a unique y € (o —
1/2. yp + 1/2) suchthat[y] = f((x]). Define F(x) = y. Analogous steps extend the domain by another
4 at a time, until F is defined on an interval of unit length. Then f(iz]) = [F(2)] defines F onR.

4.3 Invertible Circle Maps 125

y € (x,x+1) with |F(y) - F(x)| = 1. Then f([y]) = f(x]) and [y] # [x], so f is
noninvertible. [

Definition 4.3.2 Suppose f is invertible. If deg(f) =1, then we say that f is
orientation-preserving; if deg( f) = —1, then f is said to reverse orientation.

Remark 4.3.3 The function F(x) — xdeg( f) is periodic because
F(x+1) — (x + 1) deg(f) = F(x) + deg(f) — (x + 1) deg( f) = F(x) + xdeg(f)

for all x. In particular, if f is an orientation-preserving homeomorphism, then
F(x) — x is periodic and so F — Id is bounded. A slightly stronger observation will
come in handy soon.

Lemma 4.3.4 If f is an orientation-preserving circle homeomorphism and F a lift,
then F(y) —y < F(x) —x+1forallx,y e R.

Proof Letk= |y — x]. Then
(4.3.2) FO)—y=FWP+Fx+B-Fx+R+x+b—-x+k—-y
=(Flx+8 -+ +Fy - Fx+b) - - x+R).

Now F(x+ k) — (x+ k) = F(x) —xand 0 < y — (x + k) < 1 by choice of k, so F(y) —
F(x + k) < 1. Thus the right-hand side above is at most F(x) —x+4+1-0. O

4.3.2 Rotation Number

The presence or absence of periodic points is determined by a single parameter
called the rotation number. It also tells us which rotation to compare a circle
homeomorphism to.

Proposition 4.3.5 Let f: S' — S' be an orientation-preserving homeomorphism
and F: R — R alift of f. Then

1
(4.3.3) p(F):= lim —(F"(x) — x)
Ini-sco R
exists for all x € R. p(F) is independent of x and well defined up to an integer; that
is, if F is another lift of f, then p(F) — p(F) = F — F € Z. p(F) is rational if and
only if f has a periodic point.

The fact that the rotation number is independent of the point is the first
manifestation of the coherent asymptotic behavior of orbits that we will come to
expect. This proposition justifies the following terminology:

Definition 4.3.6 p(f) := [p(F)] is called the rotation number of f.




