## M345PA46: 2nd progress test 18/11/2013

1. Let $\Omega_{3}$ denote the set of bi-infinite sequences $\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ whose entries $\omega_{i}$ are taken from a set of three symbols, for instance $\{0,1,2\}$.
(i) Consider the cylinder

$$
C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}:=\left\{\omega \in \Omega_{3}\left|\omega_{i}=\alpha_{i},|i|<n\right\} .\right.
$$

Let

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{m \in \mathbb{Z}} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}}
$$

where $\delta(a, b)=0$ if $a=b$ and $\delta(a, b)=1$ if $a \neq b$.
(a) Show that $d$ is a metric on $\Omega_{3}$.

Answer: All properties follow by comparing components in the sum: (i) $d(x, y)=d(y, x)$ follows from the fact that $\delta(a, b)=\delta(b, a)$. (ii) $d(x, y)=0 \Leftrightarrow x=y$ follows again from the definition of $\delta$ : as soon as two sequences have one different symbol, the distance is positive, and the distance between two equal sequences is equal to zero. (iii) $d(x, y)+d(y, z) \geq d(x, z)$ follows from the fact that $\delta(a, b)+\delta(b, c) \geq \delta(a, c)$. This is obviously satisfied if $a=c$. If $a \neq c$ then $b \neq c$ or $a \neq b$ so that the inequality is also satsified.
(b) Consider $\Omega_{3}$ as a metric space with metric $d$. Show that the cylinder $C_{\alpha_{-1} \alpha_{0} \alpha_{1}}$ is a ball in $\Omega_{3}$ around any point $\alpha$ of the form $\alpha=\ldots \alpha_{-1} \alpha_{0} \alpha_{1} \ldots$ and determine its radius.
Answer: Let $\alpha \in C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$. If $\omega \in C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$ then

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{|m| \geq n} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}} \leq \sum_{|m| \geq n} \frac{1}{4^{m}}=\frac{1}{4^{n-1}} \frac{2}{3}<\frac{1}{4^{n-1}}
$$

On the other hand if $\omega \notin C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$,

$$
d\left(\omega, \omega^{\prime}\right) \geq \frac{1}{4^{n-1}}
$$

Thus $C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$ is exactly equal to the ball around $\alpha$ of radius $4^{1-n}$. In the case that $n=2$, as asked, this yields a ball or radius $1 / 4$.
(ii) Give for each of the following, an example of a topological Markov chain on $\Omega_{3}$ (endowed with metric $d$ ), by means of its transition matrix or Markov graph, that has this property:

1. a topological Markov chain that is not transitive
2. a topological Markov chain that is topologically mixing

Answer: For instance, $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ is a transition matrix for a transitive and topologically mixing Markov chain (full shift) and and $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is a transition matrix for a Markov chain (identity) that is neither transitive nor topologically mixing .
2. Consider the piecewise linear map $F:[0,1] \rightarrow[0,1]$ given by

$$
F(x)= \begin{cases}3 x & \text { if } x \in \Delta_{0} \\ 2-3 x & \text { if } x \in \Delta_{1} \\ x-\frac{2}{3} & \text { if } x \in \Delta_{2}\end{cases}
$$

where $\Delta_{0}=\left[0, \frac{1}{3}\right], \Delta_{1}=\left[\frac{1}{3}, \frac{2}{3}\right]$, and $\Delta_{2}=\left[\frac{2}{3}, 1\right]$. [It may be useful to draw the graph of $F$ ]
We consider a coding of orbits by means of (half-)inifinite sequences of the form $\omega=$ $\omega_{0} \omega_{1} \ldots \in \Omega_{3}^{R}$, where $\Omega_{3}^{R}$ denotes the metric space of (half-) infinite sequences with symbols $\omega_{i} \in\{0,1,2\}$ and distance

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{m \in \mathbb{N}} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}}
$$

where $\delta(a, b)=0$ if $a=b$ and $\delta(a, b)=1$ if $a \neq b$.
We propose the coding $h: \Omega_{3}^{R} \rightarrow[0,1]$ to be such that if $x=h(\omega)$, with $\omega=\omega_{0} \omega_{1} \omega_{2} \ldots$ and $y:=f^{n}(x)$ then $y \in \Delta_{\omega_{n}}$.
(i) Let $\Delta_{\omega_{0} \ldots \omega_{n}}:=\overline{\bigcap_{i=0}^{n} f^{-i}\left(\operatorname{lnt}\left(\Delta_{\omega_{i}}\right)\right)}$. Determine $\Delta_{a b}$ for all $a, b \in\{0,1,2\}$.

Answer: $\Delta_{00}=\left[0, \frac{1}{9}\right], \Delta_{01}=\left[\frac{1}{9}, \frac{2}{9}\right], \Delta_{02}=\left[\frac{2}{9}, \frac{1}{3}\right], \Delta_{12}=\left[\frac{1}{3}, \frac{4}{9}\right], \Delta_{11}=\left[\frac{4}{9}, \frac{5}{9}\right], \Delta_{10}=\left[\frac{5}{9}, \frac{2}{3}\right]$, $\Delta_{20}=\left[\frac{2}{3}, 1\right], \Delta_{21}=\emptyset, \Delta_{22}=\emptyset$.
(ii) Determine the sequences in $\Omega_{3}^{R}$ that represent the points $0, \frac{1}{3}, \frac{2}{3}$ and 1 , and point out whether or not these sequences are unique.
Answer: $h^{-1}(0)=\overline{0}(=00000 \ldots), h^{-1}\left(\frac{1}{3}\right)=\{\overline{02}, 1 \overline{20}\}, h^{-1}\left(\frac{2}{3}\right)=\{1 \overline{0}, 2 \overline{0}\}$ and $h^{-1}(1)=\overline{20}$.
(iii) Show that the map $F$ is topologically semi-conjugate to a three-state topological Markov chain determined by the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$.
Answer: $A$ represents the admissible transitions between the labelling regions. Main item to prove is that $h$ is surjective function, where $h(\omega)=\Delta_{\omega}$. We note that $F$ is expanding on $\left[0, \frac{2}{3}\right]$ and non-expanding (translation) on $\left[\frac{2}{3}, 1\right]$. We note that $F^{2}$ is expanding so that $\lim _{n \rightarrow \infty} \Delta_{\omega_{0} \ldots \omega_{n}}$ is indeed a single point. Taking into account the fact that $F$ does not expand on $\Delta_{3}$ (and that $F\left(\Delta_{3}\right)=\Delta_{1}$ ) we obtain uniform expansion with rate 3 for $F^{2}$, so that $\left|\Delta_{\omega_{0} \ldots \omega_{n}}\right| \leq \frac{1}{3}\left(\frac{1}{\sqrt{3}}\right)^{n-1}$.

