1. (a) The maps are monotonically increasing if $x>1$ and montonically decreasing if $x<0$, so the non-wandering sets must be contained in [0.1]. The map f satisfied $f([0,1])=[0,1]$, so hence $\Lambda_{f}=[0,1]$. The map g does not map $[0,1]$ to itself, for instance $g(5 / 12) \notin[0,1]$ and $\lim _{n \rightarrow \infty}\left|g^{n}(5 / 12)\right|=\infty$, so $5 / 12 \notin \Lambda_{g}$.
(b) (i) Let $\Delta_{0}:=\left[0, \frac{1}{3}\right], \Delta_{1}:=\left[\frac{1}{3}, \frac{2}{3}\right]$, and $\Delta_{2}:=\left[\frac{2}{3}, 1\right]$. Let Σ_{3} denote the set of (half) infinite sequences in the three symbols $\{0,1,2\}$ and $h: \Sigma_{3} \rightarrow[0,1]$ be given by $h\left(\omega_{0} \omega_{1} \ldots\right)=\overline{\bigcap_{i=0}^{\infty} f^{-1}\left(\operatorname{Int}\left(\Delta_{\omega_{i}}\right)\right)}$, with "Int" denoting the interior Since $\left|\Delta_{\omega_{0} \omega_{1} \ldots \omega_{j}}\right| \leq \frac{1}{3}\left|\Delta_{\omega_{0} \omega_{1} \ldots \omega_{j-1}}\right|$ it follows that $\lim _{j \rightarrow \infty} \Delta_{\omega_{0} \omega_{1} \ldots \omega_{j}} \in[0,1]$. By construction h is not invertible due to ambiguity on boundary points between labelling intervals, for instance $h(02222222 \ldots)=h(1222222 \ldots)=1 / 3 . h$ is continuous if we endow Σ_{3} with the metric $d(x, y):=\sum_{i=0}^{\infty} \delta_{i}(x, y) / 4^{i}$ where $x=x_{0} x_{1} \ldots$ and $y=y_{0} y_{1} \ldots$ with $x_{k}, y_{k} \in\{0,1,2\}$ for all $k \in \mathbb{N}$ and $\delta_{i}(x, y)=0$ if $x_{i}=y_{i}$, and $\delta_{i}(x, y)=0$ otherwise. By construction then $f \circ h(\omega)=h \circ \sigma(\omega)$ for any $\omega \in \Sigma_{3}$, where $\sigma: \Sigma_{3} \rightarrow \Sigma_{3}$ denotes the shift $\sigma\left(\omega_{0} \omega_{1} \omega_{2} \ldots\right)=\omega_{1} \omega_{2} \ldots$
(ii) For g we follow a similar construction, with $\Delta_{0}:=\left[0, \frac{1}{3}\right], \Delta_{1}:=\left[\frac{4}{9}, \frac{5}{9}\right]$, and $\Delta_{2}:=\left[\frac{2}{3}, 1\right]$ and we observe now that for each fixed j, the labelling domains $\Delta_{\omega_{0} \omega_{1} \ldots \omega_{j}}:=\overline{\bigcap_{i=0}^{j} f^{-1}\left(\operatorname{Int}\left(\Delta_{\omega_{i}}\right)\right)}$ are disjoint. Hence, the limit points $h(\omega)$ uniquely depend on ω so that h is invertible on Λ_{g}.
2. (i) The topology is such that each open neighbourhood of Σ_{3} contains a cylinder $C_{\alpha_{0} \ldots \alpha_{j}}:=$ $\left\{\omega=\omega_{0} \omega_{1} \ldots \in \Sigma_{3} \mid \omega_{i}=\alpha_{i}, 0 \leq i \leq j\right\}$ that are the open balls (monotonically and uniformly shrinking in size as $j \rightarrow \infty$).
Density of periodic orbits is demonstrated by the fact that every cylinder set contains a periodic sequence. Namely, A is transitive as A^{2} contains no zero entries. Hence given $\alpha_{0} \ldots \alpha_{j}$, for every choice of $\alpha_{j+2} \in\{0,1,2\}$ there exists an $\alpha_{j+1} \in\{0,1,2\}$ such that $\alpha_{0} \ldots \alpha_{j} \alpha_{j+1} \alpha_{j+2}$ is an admissible subsequence of elements of $\Sigma_{3, A}$ (the set of A-admissibe subsequences of Σ_{3}). This in turn implies that given any $\alpha_{0} \ldots \alpha_{j}$ there exists α_{j+1} such that the period sequence $\overline{\alpha_{0} \ldots \alpha_{j} \alpha_{j+1}} \in C_{\alpha_{0} \ldots \alpha_{j}, A}:=C_{\alpha_{0} \ldots \alpha_{j}} \cap \Sigma_{3, A}$. To prove topological mixing, let V, W be open with $C_{\alpha_{0} \ldots \alpha_{j}} \subset V$ and $C_{\beta_{0} \ldots \beta_{k}} \subset$ W, then for all integer values of $p>1$ there exist $\alpha_{j+1}, \ldots, \alpha_{j+p}=\beta_{0}$ such that $\alpha_{0} \ldots \alpha_{j} \alpha_{j+1}, \ldots, \alpha_{j+p}$ is an admissible subsequence of $\Sigma_{3, A}$ so that $\alpha_{0} \ldots \alpha_{j} \alpha_{j+1} \ldots \alpha_{j+p} \beta_{1} \ldots \beta_{k}$ is admissible as well and thus for all $p>1+j f^{p}(V) \cap W \neq$ \emptyset.
(ii) We first note that admissible sequences are made up of blocks " 0 ", " 10 ", and " 20 ", concatenated in arbitrary order. Given any element of a cylinder set $C_{\alpha_{0} \ldots \alpha_{j}, A}$, we can find another element of this cylinder whose sequence eventually differs but in the worst case, for the element $x=\alpha_{0} \ldots \alpha_{j} \overline{0}$ we can only create a sequence that has a mismatch with the tail of this sequence at best only every other digit. In other words, $\max _{y \in C_{\alpha_{0} \ldots \alpha_{j}, A, p \in \mathbb{Z}^{+}}} d\left(f^{p}(x), f^{p}(y)\right)=\sum_{i=0}^{\infty}(1 / 4)^{2 i}=16 / 15$.
