- 1. (a) The maps are monotonically increasing if x > 1 and monotnically decreasing if x < 0, so the non-wandering sets must be contained in [0.1]. The map f satisfied f([0,1]) = [0,1], so hence $\Lambda_f = [0,1]$. The map g does not map [0,1] to itself, for instance $g(5/12) \notin [0,1]$ and $\lim_{n\to\infty} |g^n(5/12)| = \infty$, so $5/12 \notin \Lambda_g$.
 - (b) (i) Let $\Delta_0 := [0, \frac{1}{3}]$, $\Delta_1 := [\frac{1}{3}, \frac{2}{3}]$, and $\Delta_2 := [\frac{2}{3}, 1]$. Let Σ_3 denote the set of (half) infinite sequences in the three symbols $\{0, 1, 2\}$ and $h : \Sigma_3 \to [0, 1]$ be given by $h(\omega_0\omega_1...) = \bigcap_{i=0}^{\infty} f^{-1}(\operatorname{Int}(\Delta_{\omega_i}))$, with "Int" denoting the interior Since $|\Delta_{\omega_0\omega_1...\omega_j}| \leq \frac{1}{3} |\Delta_{\omega_0\omega_1...\omega_{j-1}}|$ it follows that $\lim_{j\to\infty} \Delta_{\omega_0\omega_1...\omega_j} \in [0, 1]$. By construction h is not invertible due to ambiguity on boundary points between labelling intervals, for instance h(02222222...) = h(1222222...) = 1/3. h is continuous if we endow Σ_3 with the metric $d(x, y) := \sum_{i=0}^{\infty} \delta_i(x, y)/4^i$ where $x = x_0x_1...$ and $y = y_0y_1...$ with $x_k, y_k \in \{0, 1, 2\}$ for all $k \in \mathbb{N}$ and $\delta_i(x, y) = 0$ if $x_i = y_i$, and $\delta_i(x, y) = 0$ otherwise. By construction then $f \circ h(\omega) = h \circ \sigma(\omega)$ for any $\omega \in \Sigma_3$, where $\sigma : \Sigma_3 \to \Sigma_3$ denotes the shift $\sigma(\omega_0\omega_1\omega_2...) = \omega_1\omega_2...$
 - (ii) For g we follow a similar construction, with $\Delta_0 := [0, \frac{1}{3}]$, $\Delta_1 := [\frac{4}{9}, \frac{5}{9}]$, and $\Delta_2 := [\frac{2}{3}, 1]$ and we observe now that for each fixed j, the labelling domains $\Delta_{\omega_0\omega_1\ldots\omega_j} := \overline{\bigcap_{i=0}^j f^{-1}(\operatorname{Int}(\Delta_{\omega_i}))}$ are disjoint. Hence, the limit points $h(\omega)$ uniquely depend on ω so that h is invertible on Λ_q .
- 2. (i) The topology is such that each open neighbourhood of Σ_3 contains a cylinder $C_{\alpha_0...\alpha_j} := \{\omega = \omega_0 \omega_1 \ldots \in \Sigma_3 \mid \omega_i = \alpha_i, 0 \le i \le j\}$ that are the open balls (monotonically and uniformly shrinking in size as $j \to \infty$).

Density of periodic orbits is demonstrated by the fact that every cylinder set contains a periodic sequence. Namely, A is transitive as A^2 contains no zero entries. Hence given $\alpha_0 \ldots \alpha_j$, for every choice of $\alpha_{j+2} \in \{0, 1, 2\}$ there exists an $\alpha_{j+1} \in \{0, 1, 2\}$ such that $\alpha_0 \ldots \alpha_j \alpha_{j+1} \alpha_{j+2}$ is an admissible subsequence of elements of $\Sigma_{3,A}$ (the set of A-admissible subsequences of Σ_3). This in turn implies that given any $\alpha_0 \ldots \alpha_j$ there exists α_{j+1} such that the period sequence $\overline{\alpha_0 \ldots \alpha_j \alpha_{j+1}} \in C_{\alpha_0 \ldots \alpha_j,A} := C_{\alpha_0 \ldots \alpha_j} \cap \Sigma_{3,A}$. To prove topological mixing, let V, W be open with $C_{\alpha_0 \ldots \alpha_j} \subset V$ and $C_{\beta_0 \ldots \beta_k} \subset$ W, then for all integer values of p > 1 there exist $\alpha_{j+1}, \ldots, \alpha_{j+p} = \beta_0$ such that $\alpha_0 \ldots \alpha_j \alpha_{j+1}, \ldots, \alpha_{j+p}$ is an admissible subsequence of $\Sigma_{3,A}$ so that $\alpha_0 \ldots \alpha_j \alpha_{j+1} \ldots \alpha_{j+p} \beta_1 \ldots \beta_k$ is admissible as well and thus for all $p > 1+j f^p(V) \cap W \neq \emptyset$.

(ii) We first note that admissible sequences are made up of blocks "0", "10", and "20", concatenated in arbitrary order. Given any element of a cylinder set $C_{\alpha_0...\alpha_j,A}$, we can find another element of this cylinder whose sequence eventually differs but in the worst case, for the element $x = \alpha_0 \dots \alpha_j \overline{0}$ we can only create a sequence that has a mismatch with the tail of this sequence at best only every other digit. In other words, $\max_{y \in C_{\alpha_0...\alpha_j,A}, p \in \mathbb{Z}^+} d(f^p(x), f^p(y)) = \sum_{i=0}^{\infty} (1/4)^{2i} = 16/15.$