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and f j (bj ) belong to the same ball Bj ∈ B, so d( f j (a j ), f j (bj )) < δ. Thus,
d( f n(a j ), f n(bj )) < ε for −∞ < n ≤ j . Since W is finite, there are distinct
x0, y0 ∈ W such that

a j = x0 and bj = y0

for infinitely many positive j and hence d( f n(x0), f n(y0)) < ε for all n ≥ 0.
&'

Proposition 2.4.1 is also true for non-invertible maps (Exercise 2.4.3).

COROLLARY 2.4.2. Let f be an expansive homeomorphism of an infinite
compact metric space X. Then there are x0, y0 ∈ X such that d( f n(x0),
f n(y0)) → 0 as n → ∞.

Proof. Let δ > 0 be an expansiveness constant for f . By Proposition 2.4.1,
there are x0, y0 ∈ X such that d( f n(x0), f n(y0)) < δ for all n ∈ N. Suppose
d( f n(x0), f n(y0)) ! 0. Then by compactness, there is a sequence nk → ∞
such that f nk(x0) → x′ and f nk(y0) → y′ with x′ *= y′. Then f nk+m(x0) →
f m(x′) and f nk+m(y0) → f m(y′) for any m ∈ Z. For k large, nk + m > 0 and
hence d( f m(x′), f m(y′)) ≤ δ for all m ∈ Z, which contradicts expansiveness.

&'
Exercise 2.4.1. Prove that every isometry of a compact metric space to
itself is surjective and therefore is a homeomorphism.

Exercise 2.4.2. Show that the expanding circle endomorphisms Em, |m| ≥
2, the full one- and two-sided shifts, the hyperbolic toral automorphisms,
the horseshoe, and the solenoid are expansive, and compute expansiveness
constants for each.

Exercise 2.4.3. Show that Proposition 2.4.1 is true for non-invertible con-
tinuous maps of infinite metric spaces.

2.5 Topological Entropy

Topological entropy is the exponential growth rate of the number of es-
sentially different orbit segments of length n. It is a topological invariant
that measures the complexity of the orbit structure of a dynamical system.
Topological entropy is analogous to measure-theoretic entropy, which we
introduce in Chapter 9.
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Let (X, d) be a compact metric space, and f : X → X a continuous map.
For each n ∈ N, the function

dn(x, y) = max
0≤k≤n−1

d( f k(x), f k(y))

measures the maximum distance between the first n iterates of x and y. Each
dn is a metric on X, dn ≥ dn−1, and d1 = d. Moreover, the di are all equivalent
metrics in the sense that they induce the same topology on X(Exercise 2.5.1).

Fix ε > 0. A subset A⊂ X is (n, ε)-spanning if for every x ∈ X there is
y ∈ A such that dn(x, y) < ε. By compactness, there are finite (n, ε)-spanning
sets. Let span(n, ε, f ) be the minimum cardinality of an (n, ε)-spanning set.

A subset A⊂ X is (n, ε)-separated if any two distinct points in A are at
least ε apart in the metric dn.Any (n, ε)-separated set is finite. Let sep(n, ε, f )
be the maximum cardinality of an (n, ε)-separated set.

Let cov(n, ε, f ) be the minimum cardinality of a covering of X by sets of
dn-diameter less than ε (the diameter of a set is the supremum of distances
between pairs of points in the set). Again, by compactness, cov(n, ε, f ) is
finite.

The quantities span(n, ε, f ), sep(n, ε, f ), and cov(n, ε, f ) count the num-
ber of orbit segments of length n that are distinguishable at scale ε. These
quantities are related by the following lemma.

LEMMA 2.5.1. cov(n, 2ε, f ) ≤ span(n, ε, f ) ≤ sep(n, ε, f ) ≤ cov(n, ε, f ).

Proof. Suppose A is an (n, ε)-spanning set of minimum cardinality. Then the
open balls of radius ε centered at the points of Acover X. By compactness,
there exists ε1 < ε such that the balls of radius ε1 centered at the points of
Aalso cover X. Their diameter is 2ε1 < 2ε, so cov(n, 2ε, f ) ≤ span(n, ε, f ).
The other inequalities are left as an exercise (Exercise 2.5.2). &'

Let

hε( f ) = lim
n→∞

1
n

log(cov(n, ε, f )). (2.2)

The quantity cov(n, ε, f ) increases monotonically as ε decreases, so hε( f )
does as well. Thus the limit

htop = h( f ) = lim
ε→0+

hε( f )

exists; it is called the topological entropy of f . The inequalities in Lemma 2.5.1
imply that equivalent definitions of h( f ) can be given using span(n, ε, f ) or
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sep(n, ε, f ), i.e.,

h( f ) = lim
ε→0+

lim
n→∞

1
n

log(span(n, ε, f )) (2.3)

= lim
ε→0+

lim
n→∞

1
n

log(sep(n, ε, f )). (2.4)

LEMMA 2.5.2. The limit lim n→∞
1
n log(cov(n, ε, f )) = hε( f ) exists and is

finite.

Proof. Let U have dm-diameter less than ε, and V have dn-diameter less
than ε. Then U ∩ f −m(V) has dm+n-diameter less than ε. Hence

cov(m + n, ε, f ) ≤ cov(m, ε, f ) · cov(n, ε, f ),

so the sequence an = log(cov(n, ε, f )) ≥ 0 is subadditive. A standard
lemma from calculus implies that an/n converges to a finite limit as n → ∞
(Exercise 2.5.3). &'

It follows from Lemmas 2.5.1 and 2.5.2 that the lim sups in Formulas (2.2),
(2.3), and (2.4) are finite. Moreover, the corresponding lim infs are finite, and

h( f ) = lim
ε→0+

lim
n→∞

1
n

log(cov(n, ε, f )) (2.5)

= lim
ε→0+

lim
n→∞

1
n

log(span(n, ε, f )) (2.6)

= lim
ε→0+

lim
n→∞

1
n

log(sep(n, ε, f )). (2.7)

The topological entropy is either +∞ or a finite non-negative number.
There are dramatic differences between dynamical systems with positive
entropy and dynamical systems with zero entropy. Any isometry has zero
topological entropy (Exercise 2.5.4). In the next section, we show that topo-
logical entropy is positive for several of the examples from Chapter 1.

PROPOSITION 2.5.3. The topological entropy of a continuous map f : X →
Xdoes not depend on the choice of a particular metric generating the topology
of X.

Proof. Suppose d and d′ are metrics generating the topology of X. For ε > 0,
let δ(ε) = sup{d′(x, y): d(x, y) ≤ ε}. By compactness, δ(ε) → 0 as ε → 0. If
U is a set of dn-diameter less than ε, then U has d′

n-diameter at most δ(ε).
Thus cov′(n, δ(ε), f ) ≤ cov(n, ε, f ), where cov and cov′ correspond to the
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metrics d and d′, respectively. Hence,

lim
δ→0+

lim
n→∞

1
n

log(cov′(n, δ, f )) ≤ lim
ε→0+

lim
n→∞

1
n

log(cov(n, ε, f )).

Interchanging d and d′ gives the opposite inequality. &'
COROLLARY 2.5.4. Topological entropy is an invariant of topological con-
jugacy .

Proof. Suppose f : X → X and g: Y → Y are topologically conjugate dy-
namical systems, with conjugacy φ: Y → X. Let d be a metric on X. Then
d′(y1, y2) = d(φ(y1), φ(y2)) is a metric on Y generating the topology of Y.
Since φ is an isometry of (X, d) and (Y, d′), and the entropy is independent
of the metric by Proposition 2.5.3, it follows that h( f ) = h(g). &'
PROPOSITION 2.5.5. Let f : X → X be a continuous map of a compact met-
ric space X.

1. h( f m) = m · h( f ) for m ∈ N.
2. If f is invertible, then h( f −1) = h( f ). Thus h( f m) = |m| · h( f ) for all

m ∈ Z.
3. If Ai , i = 1, . . . , k are closed (not necessarily disjoint) forward f -

invariant subsets of X, whose union is X, then

h( f ) = max
1≤i≤k

h( f |Ai ).

In particular, if A is a closed forward invariant subset of X, then
h( f |A) ≤ h( f ).

Proof. 1: Note that

max
0≤i<n

d( f mi (x), f mi (y)) ≤ max
0≤ j<mn

d( f j (x), f j (y)).

Thus, span(n, ε, f m) ≤ span(mn, ε, f ), so h( f m) ≤ m · h( f ). Conversely, for
ε > 0, there is δ(ε) > 0 such that d(x, y) < δ(ε) implies that d( f i (x), f i (y)) <

ε for i = 0, . . . , m. Then span(n, δ(ε), f m) ≥ span(mn, ε, f ), so h( f m) ≥ m ·
h( f ).

2: The nth image of an (n, ε)-separated set for f is (n, ε)-separated for
f −1, and vice versa.

3: Any (n, ε)-separated set in Ai is (n, ε)-separated in X, so h( f |Ai ) ≤
h( f ). Conversely, the union of (n, ε)-spanning sets for the Ai s is an (n, ε)-
spanning set for X. Thus if spani (n, ε, f ) is the minimum cardinality of an
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(n, ε)-spanning subset of Ai , then

span(n, ε, f ) ≤
k

∑

i=1

spani (n, ε, f ) ≤ k · max
1≤i≤k

spani (n, ε, f ).

Therefore,

lim
n→∞

1
n

log (span(n, ε, f )) ≤ lim
n→∞

1
n

log k + lim
n→∞

1
n

log
(

max
1≤i≤k

spani (n, ε, f )
)

= 0 + max
1≤i≤k

lim
n→∞

1
n

log (spani (n, ε, f ))

The result follows by taking the limit as ε → 0. &'

PROPOSITION 2.5.6. Let (X, dX) and (Y, dY) be compact metric spaces, and
f : X → X, g: Y → Y continuous maps. Then:

1. h( f × g) = h( f ) + h(g); and
2. if g is a factor of f (or equivalently, f is an extension of g), then h( f ) ≥

h(g).

Proof. To prove part 1, note that the metric d((x, y), (x′, y′)) =
max{dX(x, x′), dY(y, y′)} generates the product topology on X × Y, and

dn((x, y), (x′, y′)) = max
{

dX
n (x, x′), dY

n (y, y′)
}

.

If U ⊂ X and V ⊂ Y have diameters less than ε, then U × V has d-diameters
less than ε. Hence

cov(n, ε, f × g) ≤ cov(n, ε, f ) · cov(n, ε, g),

so h( f × g) ≤ h( f ) + h(g). On the other hand, if A⊂ X and B ⊂ Y are
(n, ε)-separated, then A× B is (n, ε)-separated for d. Hence

sep(n, ε, f × g) ≥ sep(n, ε, f ) · sep(n, ε, g),

so, by (2.7), h( f × g) ≥ h( f ) + h(g).
The proof of part 2 is left as an exercise (Exercise 2.5.5). &'

PROPOSITION 2.5.7. Let (X, d) be a compact metric space, and f : X → X
an expansive homeomorphism with expansiveness constant δ. Then h( f ) =
hε( f ) for any ε < δ.

Proof. Fix γ and ε with 0 < γ < ε < δ. We will show that h2γ ( f ) = hε( f ).
By monotonicity, it suffices to show that h2γ ( f ) ≤ hε( f ).

By expansiveness, for distinct points x and y, there is some i ∈ Z such
that d( f i (x), f i (y)) ≥ δ > ε. Since the set {(x, y) ∈ X × X: d(x, y) ≥ γ }
is compact, there is k = k(γ , ε) ∈ N such that if d(x, y) ≥ γ , then
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d( f i (x), f i (y)) > ε for some |i | ≤ k. Thus if A is an (n, γ )-separated set,
then f −k(A) is (n + 2k, ε)-separated. Hence, by Lemma 2.5.1, hε( f ) ≥
h2γ ( f ). &'
REMARK 2.5.8. The topological entropy of a continuous (semi)flow can be
defined as the entropy of the time-1 map. Alternatively, it can be defined using
the analog dT, T > 0, of the metrics dn. The two definitions are equivalent
because of the equicontinuity of the family of time-t maps, t ∈ [0, 1].

Exercise 2.5.1. Let (X, d) be a compact metric space. Show that the metrics
di all induce the same topology on X.

Exercise 2.5.2. Prove the remaining inequalities in Lemma 2.5.1.

Exercise 2.5.3. Let {an} be a subadditive sequence of non-negative real
numbers, i.e., 0 ≤ am+n ≤ am + an for all m, n ≥ 0. Show that limn→∞ an/n =
infn≥0 an/n.

Exercise 2.5.4. Show that the topological entropy of an isometry is zero.

Exercise 2.5.5. Let g: Y → Y be a factor of f : X → X. Prove that h( f ) ≥
h(g).

Exercise 2.5.6. Let Y and Z be compact metric spaces, X = Y × Z, and
π be the projection to Y. Suppose f : X → X is an isometric extension
of a continuous map g: Y → Y, i.e., π ◦ f = g ◦ π and d( f (x1), f (x2)) =
d((x1), (x2)) for all x1, x2 ∈ Y with π(x1) = π(x2). Prove that h( f ) = h(g).

Exercise 2.5.7. Prove that the topological entropy of a continuously differ-
entiable map of a compact manifold is finite.

2.6 Topological Entropy for Some Examples

In this section, we compute the topological entropy for some of the examples
from Chapter 1.

PROPOSITION 2.6.1. Let Ã be a 2 × 2 integer matrix with determinant 1
and eigenvalues λ, λ−1, with |λ| > 1; and let A: T2 → T2 be the associated
hyperbolic toral automorphism. Then h(A) = log |λ|.
Proof. The natural projection π : R2 → R2/Z2 = T2 is a local homeomor-
phism, and π Ã= Aπ . Any metric d̃ on R2 invariant under integer transla-
tions induces a metric d on T2, where d(x, y) is the d̃-distance between the
sets π−1(x) and π−1(y). For these metrics, π is a local isometry.

Let v1, v2 be eigenvectors of A with (Euclidean) length 1 correspond-
ing to the eigenvalues λ, λ−1. For x, y ∈ R2, write x − y = a1v1 + a2v2 and
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define d̃(x, y) = max(|a1|, |a2|). This is a translation-invariant metric on R2.
A d̃-ball of radius ε is a parallelogram whose sides are of (Euclidean) length
2ε and parallel to v1 and v2. In the metric d̃n (defined for Ã), a ball of radius
ε is a parallelogram with side length 2ε|λ|−n in the v1-direction and 2ε in the
v2-direction. In particular, the Euclidean area of a d̃n-ball of radius ε is not
greater than 4ε2|λ|−n. Since the induced metric d on T2 is locally isometric
to d̃, we conclude that for sufficiently small ε, the Euclidean area of a dn-ball
of radius ε in T2 is at most 4ε2|λ|−n. It follows that the minimal number of
balls of dn-radius ε needed to cover T2 is at least

area(T2)/4ε2|λ|−n = |λ|n/4ε2.

Since a set of diameter ε is contained in an open ball of radius ε, we conclude
that cov(n, ε, A) ≥ |λ|n/4ε2. Thus, h(A) ≥ log |λ|.

Conversely, since the closed d̃n-balls are parallelograms, there is a tiling
of the plane by ε-balls whose interiors are disjoint. The Euclidean area of
such a ball is Cε2|λ|−n, where C depends on the angle between v1 and v2.
For small enough ε, any ε-ball that intersects the unit square [0, 1] × [0, 1]
is entirely contained in the larger square [−1, 2] × [−1, 2]. Therefore the
number of the balls that intersect the unit square does not exceed the area
of the larger square divided by the area of a d̃n-ball of radius ε. Thus, the
torus can be covered by 9λn/Cε2 closed dn-balls of radius ε. It follows that
cov(n, 2ε, A) ≤ 9λn/Cε2, so h(A) ≤ log |λ|. &'

To establish the corresponding result in higher dimensions, we need some
results from linear algebra. Let B be a k × k complex matrix. If λ is an
eigenvalue of B, let

Vλ = {v ∈ Ck: (B − λI)iv = 0 for some i ∈ N}.

If B is real and γ is a real eigenvalue, let

VR
γ = Rk ∩ Vγ = {v ∈ Rk: (B − γ I)iv = 0 for some i ∈ N}.

If B is real and λ, λ̄ is a pair of complex eigenvalues, let

VR
λ,λ̄ = Rk ∩ (Vλ ⊕ Vλ̄).

These spaces are called generalized eigenspaces.

LEMMA 2.6.2. Let B be a k × k complex matrix, and λ be an eigenvalue of
B. Then for every δ > 0 there is C(δ) > 0 such that

C(δ)−1(|λ| − δ)n‖v‖ ≤ ‖Bnv‖ ≤ C(δ)(|λ| + δ)n‖v‖

for every n ∈ N and every v ∈ Vλ.
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Proof. It suffices to prove the lemma for a Jordan block. Thus without loss
of generality, we assume that B has λs on the diagonal, ones above and zeros
elsewhere. In this setting, Vλ = Ck and in the standard basis e1, . . . , ek, we
have Be1 = λe1 and Bei = λei + ei−1, for i = 2, . . . , k. For δ > 0, consider the
basis e1, δe2, δ

2e3, . . . , δ
k−1ek. In this basis, the linear map B is represented by

the matrix

Bδ =















λ δ

λ δ
. . . . . .

λ δ

λ















.

Observe that Bδ = λI + δA with ‖A‖ ≤ 1, where ‖A‖ = supv *=0 ‖Av|/‖v‖.
Therefore

(|λ| − δ)n‖v‖ ≤
∥

∥Bn
δ v

∥

∥ ≤ (|λ| + δ)n‖v‖.

Since Bδ is conjugate to B, there is a constant C(δ) > 0 that bounds the
distortion of the change of basis. &'
LEMMA 2.6.3. Let B be a k × k real matrix and λ an eigenvalue of B. Then
for every δ > 0 there is C(δ) > 0 such that

C(δ)−1(|λ| − δ)n‖v‖ ≤ ‖Bnv‖ ≤ C(δ)(|λ| + δ)n‖v‖

for every n ∈ N and every v ∈ Vλ (if λ ∈ R) or every v ∈ Vλ,λ̄ (if λ /∈ R).

Proof. If λ is real, then the result follows from Lemma 2.6.2. If λ is complex,
then the estimates for Vλ and Vλ̄ from Lemma 2.6.2 imply a similar estimate
for Vλ, λ̄, with a new constant C(δ) depending on the angle between Vλ and
Vλ̄ and the constants in the estimates for Vλ and Vλ̄ (since |λ| = |λ̄|). &'
PROPOSITION 2.6.4. Let Ã be a k × k integer matrix with determinant 1
and with eigenvalues α1, . . . , αk, where

|α1| ≥ |α2| ≥ · · · ≥ |αm| > 1 > |αm+1| ≥ · · · ≥ |αk|.

Let A: Tk → Tk be the associated hyperbolic toral automorphism. Then

h(A) =
m

∑

i=1

log |αi |.

Proof. Let γ1, . . . , γ j be the distinct real eigenvalues of Ã, and λ1, λ1, . . . ,

λm, λm be the distinct complex eigenvalues of Ã. Then

Rk =
j

⊕

i=1

Vγi ⊕
m

⊕

i=1

Vλi ,λi
,
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any vector v ∈ Rk can be decomposed uniquely as v = v1 + · · · + v j+m with vi

in the corresponding generalized eigenspace. Given x, y ∈ Rk, let v = x − y,
and define d̃(x, y) = max(|v1|, . . . , |v j+m|). This is a translation-invariant
metric on Rk, and therefore descends to a metric on Tk. Now, using
Lemma 2.6.3, the proposition follows by an argument similar to the one
in the proof of Proposition 2.6.1 (Exercise 2.6.3). &'

The next example we consider is the solenoid from §1.9.

PROPOSITION 2.6.5. The topological entropy of the solenoid map F : S → S
is log 2.

Proof. Recall from §1.9 that F is topologically conjugate to the automor-
phism α: ( → (, where

( =
{

(φi )∞
i=0: φi ∈ [0, 1), φi = 2φi+1 mod 1

}

,

and α is coordinatewise multiplication by 2 (mod 1). Thus, h(F) = h(α). Let
|x − y| denote the distance on S1 = [0, 1] mod 1. The distance function

d(φ, φ′) =
∞

∑

n=0

1
2n |φn − φ′

n|

generates the topology in ( introduced in §1.9.
The mapπ : ( → S1, (φi )∞

i=0 1→ φ0, is a semiconjugacy fromα to E2. Hence,
h(α) ≥ h(E2) = log 2 (Exercise 2.6.1). We will establish the inequality h(α) ≤
log 2 by constructing an (n, ε)-spanning set.

Fix ε > 0 and choose k ∈ N such that 2−k < ε/2. For n ∈ N, let An ⊂ ( con-
sist of the 2n+2k sequences ψ j = (ψ j

i ), where ψ
j

i = j · 2−(n+k+i) mod 1, j =
0, . . . , 2n+2k − 1. We claim that An is (n, ε)-spanning. Let φ = (φi ) be a point
in (. Choose j ∈ {0, . . . , 2n+2k − 1} so that |φk − j · 2−(n+2k)| ≤ 2−(n+2k+1).
Then |φi − ψ

j
i | ≤ 2k−i 2−(n+2k+1), for 0 ≤ i ≤ k. It follows that for 0 ≤ m ≤ n,

d(αmφ, αmψ j ) =
∞

∑

i=0

∣

∣2mφi − 2mψ
j

i

∣

∣

2i <
k

∑

i=0

2m
∣

∣φi − ψ
j

i

∣

∣

2i + 1
2k

< 2m
k

∑

i=0

2k−i 2−(n+2k+1)

2i + 1
2k <

1
2k−1 < ε.

Thus dn(φ, ψ j ) < ε, so An is (n, ε)-spanning. Hence,

h(α) ≤ lim
n→∞

1
n

log cardAn = log 2. &'
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Note that α: ( → ( is expansive with expansiveness constant 1/3
(Exercise 2.6.4), so by Proposition 2.5.7, hε(α) = h(α) for any ε < 1/3.

Exercise 2.6.1. Compute the topological entropy of an expanding endo-
morphism Em: S1 → S1.

Exercise 2.6.2. Compute the topological entropy of the full one- and two-
sided m-shifts.

Exercise 2.6.3. Finish the proof of Proposition 2.6.4.

Exercise 2.6.4. Prove that the solenoid map (§1.9) is expansive.

2.7 Equicontinuity, Distality, and Proximality1

In this section, we describe a number of properties related to the asymptotic
behavior of the distance between corresponding points on pairs of orbits.

Let f : X → X be a homeomorphism of a compact Hausdorff space. Points
x, y ∈ X are called proximal if the closure O((x, y)) of the orbit of (x, y)
under f × f intersects the diagonal* = {(z, z) ∈ X × X: z ∈ X}. Every point
is proximal to itself. If two points x and y are not proximal, i.e., if O((x, y)) ∩
* = ∅, they are called distal. A homeomorphism f : X → X is distal if
every pair of distinct points x, y ∈ X is distal. If (X, d) is a compact met-
ric space, then x, y ∈ X are proximal if there is a sequence nk ∈ Z such that
d( f nk(x), f nk(y)) → 0 as k → ∞; points x, y ∈ X are distal if there is ε > 0
such that d( f n(x), f n(y)) > ε for all n ∈ Z (Exercise 2.7.2)

A homeomorphism f of a compact metric space (X, d) is said to be
equicontinuous if the family of all iterates of f is an equicontinuous fam-
ily, i.e., for any ε > 0, there exists δ > 0 such that d(x, y) < δ implies that
d( f n(x), f n(y)) < ε for all n ∈ Z. An isometry preserves distances and is
therefore equicontinuous. Equicontinuous maps share many of the dynam-
ical properties of isometries. The only examples from Chapter 1 that are
equicontinuous are the group translations, including circle rotations.

We denote by f × f the induced action of f in X × X, defined by
f × f (x, y) = ( f (x), f (y)).

PROPOSITION 2.7.1. An expansive homeomorphism of an infinite compact
metric space is not distal.

Proof. Exercise 2.7.1. &'

1 Several arguments in this section were conveyed to us by J. Auslander.


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Introduction
	CHAPTER ONE Examples and Basic Concepts
	1.1 The Notion of a Dynamical System
	1.2 Circle Rotations
	1.3 Expanding Endomorphisms of the Circle
	1.4 Shifts and Subshifts
	1.5 Quadratic Maps
	1.6 The Gauss Transformation
	1.7 Hyperbolic Toral Automorphisms
	1.8 The Horseshoe
	1.9 The Solenoid
	1.10 Flows and Differential Equations
	1.11 Suspension and Cross-Section
	1.12 Chaos and Lyapunov Exponents
	1.13 Attractors

	CHAPTER TWO Topological Dynamics
	2.1 Limit Sets and Recurrence
	2.2 Topological Transitivity
	2.3 Topological Mixing
	2.4 Expansiveness
	2.5 Topological Entropy
	2.6 Topological Entropy for Some Examples
	2.7 Equicontinuity, Distality, and Proximality
	2.8 Applications of Topological Recurrence to Ramsey Theory

	CHAPTER THREE Symbolic Dynamics
	3.1 Subshifts and Codes
	3.2 Subshifts of Finite Type
	3.3 The Perron–Frobenius Theorem
	3.4 Topological Entropy and the Zeta Function of an SFT
	3.5 Strong Shift Equivalence and Shift Equivalence
	3.6 Substitutions
	3.7 Sofic Shifts
	3.8 Data Storage

	CHAPTER FOUR Ergodic Theory
	4.1 Measure-Theory Preliminaries
	4.2 Recurrence
	4.3 Ergodicity and Mixing
	4.4 Examples
	4.5 Ergodic Theorems
	4.6 Invariant Measures for Continuous Maps
	4.7 Unique Ergodicity and Weyl’s Theorem
	4.8 The Gauss Transformation Revisited
	4.9 Discrete Spectrum
	4.10 Weak Mixing
	4.11 Applications of Measure-Theoretic Recurrence to Number Theory
	4.12 Internet Search

	CHAPTER FIVE Hyperbolic Dynamics
	5.1 Expanding Endomorphisms Revisited
	5.2 Hyperbolic Sets
	5.3 -Orbits
	5.4 Invariant Cones
	5.5 Stability of Hyperbolic Sets
	5.6 Stable and Unstable Manifolds
	5.7 Inclination Lemma
	5.8 Horseshoes and Transverse Homoclinic Points
	5.9 Local Product Structure and Locally Maximal Hyperbolic Sets
	5.10 Anosov Diffeomorphisms
	5.11 Axiom A and Structural Stability
	5.12 Markov Partitions
	5.13 Appendix: Differentiable Manifolds

	CHAPTER SIX Ergodicity of Anosov Diffeomorphisms
	6.1 Hölder Continuity of the Stable and Unstable Distributions
	6.2 Absolute Continuity of the Stable and Unstable Foliations
	6.3 Proof of Ergodicity

	CHAPTER SEVEN Low-Dimensional Dynamics
	7.1 Circle Homeomorphisms
	7.2 Circle Diffeomorphisms
	7.3 The Sharkovsky Theorem
	7.4 Combinatorial Theory of Piecewise-Monotone Mappings
	7.5 The Schwarzian Derivative
	7.6 Real Quadratic Maps
	7.7 Bifurcations of Periodic Points
	7.8 The Feigenbaum Phenomenon

	CHAPTER EIGHT Complex Dynamics
	8.1 Complex Analysis on the Riemann Sphere
	8.2 Examples
	8.3 Normal Families
	8.4 Periodic Points
	8.5 The Julia Set
	8.6 The Mandelbrot Set

	CHAPTER NINE Measure-Theoretic Entropy
	9.1 Entropy of a Partition
	9.2 Conditional Entropy
	9.3 Entropy of a Measure-Preserving Transformation
	9.4 Examples of Entropy Calculation
	9.5 Variational Principle

	Bibliography
	Index

