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Abstract

We prove that for any finite group G such that |G/R(G)| > 120
(where R(G) is the soluble radical of G), and any finite-dimensional
vector space V on which G acts, there is a non-identity element of G
with fixed point space of dimension at least 16 dimV . This bound is
best possible.

1 Introduction

Let G be a finite group, K a field and V a finite-dimensional KG-module.
For g ∈ G, let CV (g) denote the space of fixed points of g on V . The
dimensions of these fixed point spaces have been studied in several papers.
Upper bounds in the case where V is irreducible were obtained in [4, 5],
culminating in [2, 1.3], where it is shown that dimCV (g) ≤ 1

3 dimV for
some g ∈ G. In this paper we prove a counterpart concerning lower bounds.
In our result the module V is arbitrary (not necessarily irreducible), but we
make some necessary assumptions on the structure of G. Denote by R(G)
the soluble radical of G – that is, the largest soluble normal subgroup of G.

Theorem 1 Let G be a finite group satisfying |G/R(G)| > 120. Then for
any field K and any KG-module V , there exists a non-identity element
g ∈ G such that

dimCV (g) ≥
1

6
dimV.

This result is best possible in several ways. First, the assumption that
|G/R(G)| > 120 is necessary. Indeed, if G is a Frobenius complement then

The authors acknowledge the support of an EPSRC grant. The second author holds
the Miriam and Julius Vinik Chair in Mathematics, and is also supported by a grant from
the Israel Science Foundation.
2000 Mathematics Subject Classification: 20C20

1



it has a module V such that CV (g) = 0 for all non-identity elements g ∈ G,
and there are Frobenius complements G satisfying |G/R(G)| = 120 (e.g.
SL2(5).2). Also, the constant

1
6 in the theorem is best possible, as will be

shown below (see the Remark after Proposition 2.2).

Note that the assumption |G/R(G)| > 120 simply asserts that G is not
soluble and |G/R(G)| is not A5 or S5.

Theorem 1 can be viewed in the context of fixity. For a KG-module V ,
define the fixity fix(V ) to be the maximal dimension of CV (g) for 1 6= g ∈ G.
Thus Theorem 1 asserts that fix(V ) ≥ 1

6 dimV under the given hypotheses.
This concept was introduced in [6], where the structure of finite groups
having a module of bounded fixity in characteristic 0 is studied. Further
results were obtained in [7, 8]; in [7, 2.1], the conclusion of Theorem 1 is
obtained in the case where K = C, and the non-modular case (i.e. the
case where char(K) is 0 or coprime to |G|) follows from this. Thus our
contribution here is to deal with modular representations.

2 Proof of Theorem 1

For the proof of Theorem 1 we need several preliminary results.

Throughout, let G be a finite group and K a field of characteristic l.
Since the theorem has been proved in [7] in the non-modular case, we assume
that l is a prime dividing |G|. Also, extending the field does not affect the
fixity of a module, so we assume that K is algebraically closed.

Lemma 2.1 We have fix(V ) ≥ 1
l dimV for any KG-module V .

Proof. Let g ∈ G be an element of order l. Then (g−1)lV = (gl−1)V =
0, which implies the conclusion.

Proposition 2.2 Let G = SL2(p), where p ≥ 7 is prime, and assume that
l ≥ 7. Then fix(V ) ≥ 1

6 dimV for any KG-module V .

Proof. First suppose that l divides p2 − 1. Let g ∈ G have order
3. It is shown in [8, 5.5(ii)] that for any irreducible KG-module V we
have dimV ≤ 3 dimCV (g) + 2r, where r ∈ {1, 2} and p ≡ r mod 3. Write
f = dimCV (g) and assume by contradiction that dim V > 6f . As dimV ≤
3f + 2r this implies that 2r > 3f , so dimV < 4r ≤ 8. It is well known that
dimV ≥ (p−1)/2, so this forces p = 7, 11 or 13 and r = 1, 2 or 1 respectively.
The only possibility is p = 11, f = 1 and dimV = 7; but SL2(11) has no
irreducible module of dimension 7. This proves that dimCV (g) ≥ 1

6 dimV
for irreducible KG-modules V .
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Now let V be an arbitrary KG-module, and let Vi (i = 1, . . . , k) be its
composition factors (possibly with repetitions). Since the characteristic l is
not 3, V and ⊕ki=1Vi are isomorphic as K〈g〉-modules, so

dimCV (g) =
k∑

i=1

dimCVi(g) ≥
k∑

i=1

1

6
dimVi =

1

6
dimV.

Now suppose that l = p. Here we use the structure of the irreducible and
indecomposable KG-modules, which can be found for example in [1]. For
each 1 ≤ i ≤ p there is an irreducible KG-module Vi of dimension i. Here
V2 is the natural SL2(p)-module, and Vi = S

i−1(V2), the i− 1th symmetric
power of V2. Note that for i odd, the central involution z of G acts trivially
on Vi and so fix(Vi) = dimVi.

Let g ∈ G be an element of order 3. Then g acts as the diagonal matrix
diag(ωi−1, ωi−3, . . . , ω−(i−3), ω−(i−1)), where ω is a cube root of 1. It follows
that

dimCVi(g) ≥ i/4 for i 6= 2, 5, (1)

while dimCV2(g) = 0 and dimCV5(g) = 1.

For a ∈ F∗p, b ∈ Fp, define

ga,b =

(
a b

0 a−1

)

∈ G,

and let N be the set of all such elements ga,b. Then N = NG(P ) with
P ∈ Sylp(G). For an integer j, let Sj be the 1-dimensional KN -module
in which ga,b acts as multiplication by a

j . The Sj are the irreducible
KN -modules. Every indecomposable KN -module U is uniserial and has a
composition series with successive factors Sj , Sj−2, Sj−4, . . . for some j, the
length depending only on dimU , which is at most p. Those of dimension p
are the projective indecomposable KN -modules.

Now let W be an indecomposable KG-module. Then W ↓ N = U ⊕
Q, where U is an indecomposable and Q a projective KN -module (see [1,
Theorem 1, p.71]). We have dimW = k + mp, where k = dimU and
dimQ = mp. Let u ∈ P be an element of order p. Then dimCW (u) = 1+m.
Also the multiplicity of any Sj as a composition factor of W ↓ N is at most
1 +m. It follows that dimCW (u) is at least the multiplicity of any Vi as a
composition factor of W . We shall use this lower bound for i = 2 and 5.

Now consider an arbitrary KG-module V . Let A (resp. B) be the
sum of all indecomposable summands of V which have V2 (resp. V5) as a
composition factor, and let C be the sum of all the other indecomposable
summands. Observe that V2, V5 cannot both occur in an indecomposable
W , since CW (z) is a direct summand involving just the composition factors
Vi of W with i odd. Hence A ∩ B = 0 and we have V = A ⊕ B ⊕ C.
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Let a = dimA, b = dimB, c = dimC, and write n2 (resp. n5) for the
multiplicity of V2 (resp. V5) as a composition factor of V .

By (1) we have

dimCV (g) ≥
1

4
(a− 2n2) + n5 +

1

4
(b− 5n5) +

1

4
c. (2)

Clearly dimCW (u) ≥ 1
p dimW for any KG-module W (as (g − 1)pW =

0). Combining this with the previous lower bound on dimCW (u) for W
indecomposable we obtain

dimCV (u) ≥ n2 + n5 + c/p. (3)

Let f = fix(V ), so that f ≥ dimCV (g), dimCV (u). Assume that f ≤
1
6 dimV =

1
6(a+ b+ c). Then (2) gives

a+ b+ c ≤ 6n2 + 3n5,

while (3) gives
a+ b+ c(1− 6/p) ≥ 6n2 + 6n5.

Thus 6n2 + 3n5 ≥ a + b + c ≥ a + b + c(1 − 6/p) ≥ 6n2 + 6n5. It follows
that equality holds throughout, and that c = n5 = 0, hence also b = 0
and f = 1

6 dimV . This proves the result (and also helps identifying all
possibilities where fix(V ) = 1

6 dimV – see the Remark below).

Remark Pursuing the final remark in the proof, we claim that the equality
fix(V ) = 1

6 dimV holds in the l = p case if and only if p = 11 and V =
(V2⊕W )d, whereW is an indecomposable of dimension 10 with composition
factors V2 and V8. Indeed, if f =

1
6 dimV the above proof shows that V = A,

dimV = a = 6n2 and dimCV (g) = dimCV (u) = n2 =
1
4(a− 2n2). The only

Vi satisfying dimCV (g) = i/4 is V8, and there is an indecomposable with
composition factors V2 and V8 if and only if p = 11 (see [1, pp.48-49]). Hence
V = (V2+W )

d as claimed, and for this module we have dimCV (x) ≤ 1
6 dimV

for all x ∈ G = SL2(11), with equality holding for x = g or u.

Lemma 2.3 Let L be an l-group, and suppose L has an automorphism u of
order 3. Let H be the semidirect product L〈u〉. Then fix(V ) ≥ 1

3 dimV for
any KH-module V .

Proof. Recall that l 6= 3, so we can triangularise H and write

u = diag(Ir, ωIs, ω
2It),

where ω ∈ K is a cube root of unity and dim V = r+ s+ t. Pick v ∈ L with
vu 6= v, and write

v =




A D E

0 B F

0 0 C




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where A is r × r, B is s× s and C is t× t. Then

v−1vu =




Ir ∗ ∗
0 Is ∗
0 0 It



 ,

and so dimCV (v
−1vu) ≥ max(r, s, t) ≥ 1

3 dimV .

Proof of Theorem 1

We now complete the proof of the theorem. Let G be a finite group such
that |G/R(G)| > 120, let K be a field of characteristic l, and let V be a
KG-module. As the non-modular case is covered by [7, 2.1], we assume that
l is a prime dividing |G|. We also assume that l ≥ 7 in view of Lemma 2.1.

By [7, 2.3], the assumption |G/R(G)| > 120 implies that G has a sub-
group H which is isomorphic to one of the following groups:

(1) C2 × C2
(2) C3 × C3
(3) SL2(q), where q is a power of a prime p and q ≥ 7, p ≥ 5

(4) P 〈u〉, a semidirect product of a nontrivial p-group P by a group 〈u〉
of order 3 acting nontrivially on P , where p is a prime.

We shall show, for each group H as above, that the fixity of V as a
KH-module is at least 16 dimV , and this implies the required conclusion for
G.

If |H| is coprime to l, this is obtained in [7, 2.1], so assume that l divides
|H|. This rules out cases (1) and (2).

Now consider case (3). If p ≥ 7 then H has a subgroup SL2(p) to which
we can apply Proposition 2.2. And if p = 5 then q ≥ 25, soH has a subgroup
C5 × C5, for which fix(V ) ≥ 1

6 dimV (see [6], Lemma 2.1).

Finally, in case (4) our assumption that l divides |H| implies that p = l,
and so the result follows from Lemma 2.3.

This completes the proof.

Variations and applications of our main result will be discussed in a
subsequent paper [3].
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