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Abstract

The Ore Conjecture, now established, states that every element of
every finite simple group is a commutator. We prove that the same
result holds for all the finite quasisimple groups, with a short explicit
list of exceptions. In particular, the only quasisimple groups with non-
central elements which are not commutators are covers of A6, A7, L3(4)
and U4(3).

1 Introduction

The Ore conjecture, that every element of every finite (non-abelian) simple
group is a commutator, was proved in [17]. In other words, the commutator
width of every finite simple group is 1. One might expect that the same
is true for every finite quasisimple group (i.e., perfect group G such that
G/Z(G) is simple). But this is not the case, as was shown by Blau [2]; he lists
all quasisimple groups having central elements which are not commutators.
On the other hand, Gow [10] has shown that if G is a quasisimple group
of Lie type in characteristic p with Z(G) a p′-group, then every semisimple
element of G is a commutator.
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It is interesting to ask precisely which quasisimple groups possess non-
commutators and what they are, and in this paper we answer this question
completely. As a consequence, we show that the commutator width of every
quasisimple group is at most 2.

Theorem 1 Let G be a finite quasisimple group. Then every element of G
is a commutator, with the exceptions listed in Table 1.

In particular, the only quasisimple groups having non-central elements
which are not commutators are 3.A6, 6.A6, 6.A7, Z.L3(4) with Z ≥ Z2×Z4,
and Z.U4(3) with Z ≥ Z3 × Z6.

Table 1: Non-commutators x in quasisimple groups

G/Z(G) Z(G) o(x), x ∈ Z(G) o(x), x 6∈ Z(G)
A6 Z3 − 12
A6 Z6 6 15, 24
A7 Z6 6 15
L3(4), U4(3), M22, F i22 Z6 6 −
L3(4), U4(3), M22 Z12 6, 12 −
U6(2),

2E6(2) ≥ Z6 6 −
L3(4) Z2 × Z4 2 6

Z4 × Z4 4 12
Z2 × Z12 2, 6, 12 6, 42
Z4 × Z12 4, 6, 12 12, 84

U4(3) Z3 × Z6 6 6
Z3 × Z12 6, 12 6, 12

Corollary 2 Every element of every finite quasisimple group is a product
of two commutators.

We provide two ways to deduce this corollary from Theorem 1. The first
is based on the proportion of commutators in quasisimple groups. Using Ta-
ble 1, one can check that this proportion is at least 151/216, with equality
for 6.A6. In particular, if C is the set of commutators in a finite quasisimple
group G, then |C| > |G|/2, and this immediately implies C2 = G. The
second method is based on the claim that a finite group G satisfying the in-
equality

∑
χ∈Irr(G) χ(1)

−2 < 2 has commutator width at most 2 (see Lemma
2.2), and this is verified in Lemma 2.3 for the groups in Table 1.

We note that the sum
∑
χ∈Irr(G) χ(1)

−2 has other applications. In [9,
1.6] it is shown that the commutator map f : G×G→ G is almost measure
preserving on finite simple groups G – namely, for any X ⊆ G we have
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||f−1(X)|/|G|2 − |X|/|G|| = o(1) as |G| → ∞. That proof works for every
collection of finite groups in which

∑
χ∈Irr(G) χ(1)

−2 → 1 as |G| → ∞. As
shown in [16], this is true for finite quasisimple groups, so we obtain the
following.

Proposition 3 The commutator map on finite quasisimple groups is almost
measure preserving.

In [17] we proved that every element of each of the following quasisim-
ple classical groups is a commutator: SLn(q), SUn(q), Spn(q), Ω

±
n (q). The

Schur multipliers of the finite simple groups can be found in [14, 5.1.4]. To
prove Theorem 1 it therefore remains to consider the following cases:

(i) double covers of alternating groups;

(ii) spin groups;

(iii) simply connected groups of exceptional Lie type with nontrivial centres
(these are types Eε6 and E7);

(iv) nontrivial covers of sporadic groups;

(v) covers of the simple groups with exceptional Schur multipliers: A6, A7
and the groups in Table 5.1.D of [14].

We consider cases (iv) and (v) in Section 2, and cases (i)–(iii) in Sections
3, 4, and 5 respectively.

2 Preliminaries

As in [17], we use the following well known character-theoretic criterion of
Frobenius to prove that elements are commutators.

Lemma 2.1 If G is a finite group and g ∈ G, then g is a commutator if
and only if

∑

χ∈Irr(G)

χ(g)

χ(1)
6= 0.

Lemma 2.2 Let G be a finite group G satisfying the inequality

∑

χ∈Irr(G)

χ(1)−2 < 2.

Then G has commutator width at most 2.
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Proof. It is well known (see for example [22, Section 9]) that the num-
ber N(g) of ways to express g ∈ G as a product of two commutators is
|G|3

∑
χ∈Irr(G) χ(g)/χ(1)

3. Using the fact that |χ(g)| ≤ χ(1) for the non-
trivial characters, we obtain

|
∑

χ∈Irr(G)

χ(g)/χ(1)3 − 1| ≤
∑

1 6=χ∈Irr(G)

χ(1)−2.

Hence if the sum on the right hand side is less than 1, then N(g) 6= 0 for all
g ∈ G, so G has commutator width at most 2.

Lemma 2.3 Theorem 1 and Corollary 2 hold for the following quasisimple
groups:

(a) nontrivial covers of sporadic groups,

(b) covers of A6 and A7,

(c) covers of the simple groups with exceptional Schur multipliers listed in
Table 5.1.D of [14].

Proof. The character tables of these groups are available in the Character
Table Library of GAP [8] or from [20]. From these one checks using Lemma
2.1 that every element is a commutator, with the exceptions in Table 1, and
that the exceptions satisfy the inequality of Lemma 2.2.

Our proof of Theorem 1 for cases (i)-(iii) listed at the end of Section 1
will be inductive, and the following lemma addresses the base cases needed
for the induction.

Lemma 2.4 Every element of each of the following groups is a commutator:

(a) 2An, 5 ≤ n ≤ 13,

(b) Spin2n+1(3) with 2 ≤ n ≤ 5,

(c) Spin2n+1(5) with 1 ≤ n ≤ 3,

(d) Spin+2n(3) with 3 ≤ n ≤ 5,

(e) Spin−2n(3) with 2 ≤ n ≤ 5, and

(f) Spin−2n(5) with 2 ≤ n ≤ 4.

Proof. Many of the character tables of these groups are available in the
Character Table Library of GAP [8] or from [20]; the remainder were con-
structed directly using the Magma [3] implementation of the algorithm of
Unger [24]. From the character tables one checks using Lemma 2.1 that
every element is a commutator.
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3 Double covers of alternating groups

Denote by 2An (n ≥ 5) the (quasisimple) double cover of the alternating
group An. In this section we prove that every element of 2An is a commu-
tator.

Definition 3.1 Let G = 2An with n ≥ 5, acting naturally on {1, 2, . . . , n}.
An element x of G is breakable if it lies in a central product 2Ar ∗ 2An−r of
natural subgroups (which stabilize an r-subset of {1, 2, . . . , n}), and one of
the following holds:

(1) 5 ≤ r ≤ n− 5;

(2) r ≥ 5, g = xy with x ∈ 2Ar and y ∈ 2An−r, and y is a commutator in
2An−r.

Otherwise, x is unbreakable.

By the argument of [17, 2.9], Theorem 1 for G = 2An will follow imme-
diately if we prove that every unbreakable element in G with n ≥ 14 and
every element in G with 5 ≤ n ≤ 13 is a commutator in G.

First we mention the following obvious observation.

Lemma 3.2 Every 2-element g in G = 2A4 is a commutator in G.

For x ∈ 2Sn, denote its image in Sn by x̄.

Lemma 3.3 Assume n ≥ 13 and g ∈ 2An is unbreakable. Then ḡ is Sn-
conjugate to one of the following permutations:

(i) (1, 2, . . . , a)(a+ 1, a+ 2, . . . , a+ b)(n− 2, n− 1, n), with a+ b = n− 3
and a, b ≥ 2 are even;

(ii) (1, 2, . . . , a)(a + 1, a + 2, . . . , a + b), with a + b = n and a, b ≥ 2 are
even;

(iii) (1, 2, . . . , n− 3)(n− 2, n− 1, n) and n is even;

(iv) (1, 2, . . . , n) and n is odd.

In particular, |CAn(ḡ)| ≤ (3/4) ∙ (n− 3)
2.

Proof. Decompose ḡ = x̄1x̄2 . . . x̄sȳ1ȳ2 . . . ȳt into a product of disjoint cy-
cles, where the x̄i have odd lengths a1 ≤ . . . ≤ as, and the ȳj have even
lengths b1 ≤ . . . ≤ bt. Note that a1 ≥ 3 (if s ≥ 1), otherwise ḡ ∈ 2An−1 is
breakable.
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1) First we assume that t ≥ 2. We choose

x̄ = x̄1x̄2 . . . x̄sȳ3 . . . ȳt, ȳ = ȳ1ȳ2.

In this case, x̄ ∈ Ar with r =
∑s
i=1 ai +

∑t
j=3 bj and ȳ ∈ An−r with n− r =

b1 + b2 ≥ 4. Next we choose y ∈ 2An−r which projects onto ȳ. Then gy−1

projects onto x̄, so g = xy for some x ∈ 2Ar which projects onto x̄. If
n− r = 4, then b1 = b2 = 2, whence y is a 2-element so it is a commutator
in 2An−r by Lemma 3.2. Hence, the unbreakability of g implies that r ≤ 4.
If s = 1, then a1 = 3 and we arrive at (i). If s = 0, then we arrive at (ii).

2) Now we assume that t ≤ 1, which implies t = 0 as ḡ ∈ An. Assume s ≥ 3.
Choosing

x̄ = x̄1x̄2, ȳ = x̄3 . . . x̄s,

we see that g = xy, where x ∈ 2Ar with r = a1 + a2 ≥ 6 and y ∈ 2An−r
with n− r =

∑s
i=3 ai ≥ 3. Since g is unbreakable, we must have n− r ≤ 4,

which implies that s = 3, a3 = 3 so n = 9, contrary to our assumption. If
s = 2 but a1 ≥ 5, then choosing x̄ = x̄1 and ȳ = x̄2 we see that g = xy is
breakable. Hence we arrive at (iii) or (iv).

The bound on centralizer order follows immediately.

We now embark on our proof that unbreakable elements of 2An are com-
mutators; it is based on Lemma 2.1. In what follows, let z denote the central
involution of 2An. First we estimate the character ratios coming from the
spin characters of 2An.

Lemma 3.4 Let n ≥ 14 and let g ∈ G = 2An be unbreakable. Then

E1(g) :=
∑

χ∈Irr(G), z /∈Ker(χ)

∣
∣
∣
∣
χ(g)

χ(1)

∣
∣
∣
∣ < 0.484.

Proof. Consider one of the two double covers H of Sn and embed G inH. It
is well known, see for instance [11], that the spin characters of H are labelled
by the set D(n) = D+(n)∪D−(n) of partitions of n into distinct parts. Here,
each λ ∈ D+(n) has an even number of even (positive) parts and gives rise
to a unique spin character of H which splits into two irreducible constituents
over G. On the other hand, each λ ∈ D−(n) has an odd number of even
(positive) parts and gives rise to two spin characters of H which restrict to
the same irreducible character of G. It follows that the number N of spin
characters of G is

2|D+(n)|+ |D−(n)| ≤ 2p2(n) ≤ 2p(n),

where p(n) is the number of partitions of n and p2(n) = |D(n)|. It is also

well known [1, Th. 14.5] that p(n) < eπ
√
2n/3. Furthermore, the degree of
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every spin character of G is at least d1 := 2
b(n−2)/2c, cf. [15]. Since g is

unbreakable, by Lemma 3.3

∑

χ∈Irr(G), z /∈Ker(χ)

|χ(g)|2 =
∑

χ∈Irr(G)

|χ(g)|2 −
∑

χ∈Irr(G/Z(G))

|χ(g)|2

= |CG(g)| − |CAn(ḡ)|

≤ |CAn(ḡ)|

≤ (3/4) ∙ (n− 3)2.

By the Cauchy-Schwarz inequality,

E1(g) ≤ f1(n) :=
√
2p2(n)∙(3/4)∙(n−3)2

2b(n−2)/2c

< n−3
2b(n−2)/2c

∙
√
3
2 ∙ e

π
√
2n/3 =: f2(n).

Direct computation shows that f2(n) < 0.462 when n ≥ 40. If 30 ≤ n ≤ 39,
then p2(n) ≤ p(n) ≤ p(39) = 31185, so f1(n) < 0.357. Similarly, if 26 ≤
n ≤ 29, then p2(n) ≤ p(n) ≤ p(29) = 4565, so f1(n) < 0.465. Another well
known fact is that p2(n) is the number of partitions of n into odd parts.
Using GAP and this observation to compute p2(n), we obtain f1(n) ≤ 0.376
for 20 ≤ n ≤ 25.

For 14 ≤ n ≤ 19, we must refine these estimates. By [15], G has one
or two basic spin characters, i.e. spin characters of degree d1, and all other
spin characters have degree at least d2 ≥ 2d1. We claim that for n = 15 or
17, d2 ≥ 4d1. Indeed, assume that n = 15 and that χ ∈ Irr(G) is a spin
character of degree < 4d1 = 256. Embedding K := 2A13 naturally in G, we
see that every irreducible constituent θ of χ|K is faithful at Z(K) = Z(G)
but of degree < 256. Inspecting [5], we conclude that θ must be a basic spin
character of K, so θ(t) = −θ(1)/2, where t ∈ K projects onto a 3-cycle in
A13. It follows that χ(t) = −χ(1)/2. By the main result of [25], this implies
that χ is a basic spin character. In the case n = 17 and χ ∈ Irr(G) is a
spin character of degree < 4d1 = 512, we can argue as before, embedding a
double cover L of S14 in G and using the character table of L as supplied in
GAP. Applying the Cauchy-Schwarz inequality separately to the basic spin
and non-basic spin characters of G, we deduce that

E1(g) ≤ f3(n) :=
(n− 3)

√
3/2

d1
+
(n− 3)

√
(3/2)p2(n)

d2
.

Direct computation shows that f3(n) < 0.484 for 14 ≤ n ≤ 19.

Recall that the irreducible characters of Sn are labelled by partitions
of n: λ ` n corresponds to χλ ∈ Irr(Sn). For instance, χ(n) = 1Sn , the
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permutation character of Sn (acting on {1, 2, . . . , n}) is ρ = χ(n) + χ(n−1,1);
furthermore,

χ(n−2,2) = Sym2(ρ)− 2ρ, χ(n−2,1
2) = ∧2(ρ)− ρ+ 1Sn . (1)

We will need the following result on low-degree irreducible characters of An.

Lemma 3.5 Let n ≥ 14 and let θ ∈ Irr(An) be an irreducible character of
degree χ(1) < n(n− 1)(n− 5)/6. Then θ is the restriction to An of χλ for

λ ∈ {(n), (n− 1, 1), (n− 2, 2), (n− 2, 12)}.

Proof. The statement can be checked directly for n = 14 using [8]. Assume
n ≥ 15 and let χ be an irreducible constituent of IndSnAn(θ). Since χ(1) <
n(n− 2)(n− 4)/3, by [21, Result 3], χ(1) must be one of

1, n−1, n(n−3)/2, (n−1)(n−2)/2, n(n−1)(n−5)/6, (n−1)(n−2)(n−3)/6.

Using [12] for instance, it is not hard to show that χ = χλ, where λ or its
associated partition λ′ is (n), (n− 1, 1), (n− 2, 2), (n− 2, 12), (n− 3, 3), or
(n − 3, 13), respectively. In all these cases, λ 6= λ′, whence χ is irreducible
over An so θ(1) = χ(1). The statement follows.

Lemma 3.6 Let n ≥ 14 and let g ∈ G = 2An be unbreakable. Then

E2(g) :=
∑

χ∈Irr(G), χ 6=1G, z∈Ker(χ)

∣
∣
∣
∣
χ(g)

χ(1)

∣
∣
∣
∣ < 0.392.

Proof. Without loss of generality, we may identify G with An and g with
ḡ. Observe that g is Sn-conjugate to one of the four permutations listed in
Lemma 3.3.

1) Consider case (i) of Lemma 3.3. Assume that g = (1, 2, . . . , a)(a +
1, . . . , a+ b)(n− 2, n− 1, n), with a, b ≥ 2 being even and a+ b = n− 3 (so
n ≥ 15). Observe that χ(g) ∈ Z for χ ∈ Irr(An); in particular, |χ(g)| ≥ 1 if
χ(g) 6= 0. (Indeed, it suffices to consider the case χ does not extend to Sn.
In this case, there is some ϕ ∈ Irr(Sn) such that ϕ(g) = χ(g) + χ(xgx−1)
for x := (1, 2, . . . , a) (recall that 2|a). But x and g commute, hence χ(g) =
ϕ(g)/2 so the claim follows.) Hence the total number N of irreducible char-
acters of An which do not vanish at g is at most |CAn(g)| ≤ (3/4) ∙ (n− 3)

2.
Among these, one is the principal character, another is (the restriction to
An of) χ

(n−1,1) which takes value −1 at g. Next, (1) implies that

{χ(n−2,2)(g), χ(n−2,1
2)(g)} = {0, 1}.
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Lemma 3.5 and the Cauchy-Schwarz inequality imply that

E2(g) ≤
1

n− 1
+

2

n(n− 3)
+

√
N ∙ |CAn(g)|

n(n− 1)(n− 5)/6

≤
1

n− 1
+

2

n(n− 3)
+

9(n− 3)2

2n(n− 1)(n− 5)
≤ 0.392

since n ≥ 15.

The same argument applies to case (ii) of Lemma 3.3. Here we use the
bound N ≤ |CAn(g)| ≤ n

2/4, so

E2(g) ≤
1

n− 1
+

2

n(n− 3)
+

√
N ∙ |CAn(g)|

n(n− 1)(n− 5)/6

≤
1

n− 1
+

2

n(n− 3)
+

3n

2(n− 1)(n− 5)
≤ 0.308

since n ≥ 14.

2) Consider case (iii) of Lemma 3.3. Assume that g = (1, 2, . . . , n − 3)(n−
2, n−1, n). We claim that |χ(g)| ≥ 1 for χ ∈ Irr(An) with χ(g) 6= 0. Indeed,
it suffices to prove the claim when χ(g) /∈ Q, in particular when χ does not
extend to Sn. Now [13, Theorem 2.5.13] implies that χ is an irreducible
constituent of the restriction of χα to An, where

α =

(
n− 2
2

, 3, 2, 1
n
2
−4
)

.

Moreover,

χ(g) =
1

2

(

(−1)
n
2
−1 ±

√
(−1)

n
2
−1 ∙ 3(n− 3)

)

,

so the claim follows.

As in 1), we conclude that the total number N of irreducible characters
of An which do not vanish at g is at most |CAn(g)| = 3(n − 3). Using (1)
one checks that χ(n−2,2)(g) = 0 and χ(n−2,1

2)(g) = 1. Lemma 3.5 and the
Cauchy-Schwarz inequality imply that

E2(g) ≤
1

n− 1
+

2

(n− 1)(n− 2)
+

√
N ∙ |CAn(g)|

n(n− 1)(n− 5)/6

≤
1

n− 1
+

2

(n− 1)(n− 2)
+

18(n− 3)
n(n− 1)(n− 5)

≤ 0.211
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since n ≥ 14.

The same argument applies to case (iv) of Lemma 3.3. Here N ≤
|CAn(g)| = n, and

α =

(
n+ 1

2
, 1
n−1
2

)

, χ(g) =
1

2

(

(−1)
n−1
2 ±

√
(−1)

n−1
2 ∙ n

)

for those χ ∈ Irr(An) that are irrational at g. It follows that

E2(g) ≤
1

n− 1
+

2

(n− 1)(n− 2)
+

√
N ∙ |CAn(g)|

n(n− 1)(n− 5)/6

≤
1

n− 1
+

2

(n− 1)(n− 2)
+

6

(n− 1)(n− 5)
≤ 0.126

since n ≥ 15.

Proposition 3.7 Every unbreakable g ∈ 2An with n ≥ 14 is a commutator.

Proof. By Lemmas 3.4 and 3.6,

∣
∣
∣
∣
∣
∣

∑

1G 6=χ∈Irr(G)

χ(g)

χ(1)

∣
∣
∣
∣
∣
∣
≤ E1(g) + E2(g) < 0.484 + 0.392 = 0.876,

whence the statement follows from Lemma 2.1.

Together with Lemma 2.4, Proposition 3.7 completes the proof of The-
orem 1 for the double covers of alternating groups.

4 Spin groups

In this section we prove Theorem 1 for spin groups in odd characteristic.
We recall some basic facts from spinor theory, cf. [4]. Let q be odd, and
let V = Fmq be endowed with a non-degenerate quadratic form Q. The
Clifford algebra C(V ) is the quotient of the tensor algebra T (V ) by the ideal
I(V ) generated by v ⊗ v − Q(v), v ∈ V (here we adopt the convention
that Q(v) = (v, v) if (∙, ∙) is the corresponding bilinear form on V ). The
natural grading on T (V ) passes over to C(V ) and allows us to write C(V )
as the direct sum of its even part C+(V ) and odd part C−(V ). We denote
the identity element of C(V ) by e. The algebra C(V ) admits a canonical
anti-automorphism α, which is defined via

α(v1v2 . . . vr) = vrvr−1 . . . v1
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for vi ∈ V . The Clifford group Γ(V ) is the group of all invertible s ∈ C(V )
such that sV s−1 ⊆ V . The action of s ∈ Γ(V ) on V defines a surjective
homomorphism φ : Γ(V )→ GO(V ) if m is even, and φ : Γ(V )→ SO(V )
if m is odd, with Ker(φ) ≥ F×q e. If v ∈ V is nonsingular, then −φ(v) =
ρv, the reflection corresponding to v. The special Clifford group Γ

+(V ) is
Γ(V ) ∩ C+(V ). Let Γ0(V ) := {s ∈ Γ(V ) | α(s)s = e}. The reduced Clifford
group, or the spin group, is Spin(V ) = Γ+(V ) ∩ Γ0(V ). The sequences

1 −→ F×q e −→ Γ
+(V )

φ
−→ SO(V ) −→ 1,

1 −→ 〈−e〉 −→ Spin(V )
φ
−→ Ω(V ) −→ 1

are exact.

If A is a non-degenerate subspace of V , then we denote by CA the sub-
algebra of C(V ) generated by all a ∈ A. We now clarify the relationship
between CA and the Clifford algebra C(A) of the quadratic space (A,Q|A).
Decompose V = A⊕A⊥.

Lemma 4.1 Let (V,Q) be a non-degenerate quadratic space over a field Fq
of odd characteristic. Suppose A is a non-degenerate subspace of dimension
≥ 2 of V , and let CA be the subalgebra of C(V ) generated by all a ∈ A.
Then there is a (canonical) algebra isomorphism ψ : C(A) ∼= CA which
induces a group isomorphism Spin(A) ∼= CA ∩ Spin(V ). Furthermore, φ
projects CA ∩ Spin(V ) onto the subgroup

{h ∈ Ω(V ) | h|A⊥ = 1A⊥} ∼= Ω(A),

with kernel 〈−e〉.

Proof. 1) Since dimA ≥ 2, for λ ∈ F×q we can find w ∈ A with Q(w) = λ so
w ∙w = λe. Thus CA ⊇ F×q e. Consider the natural embedding f : A→ C(V )
that sends u ∈ A to u+I(V ). The universal property of C(A) (cf. [4, II.1.1])
implies that f extends to an algebra homomorphism ψ : C(A) → C(V )
which maps C(A) onto CA. Now fix a basis (v1, . . . , vm) of the Fq-space A
and extend it to a basis (v1, . . . , vn) of the Fq-space V . Then C(V ) has a
basis

(vj1vj2 . . . vjr | 0 ≤ r ≤ n, 1 ≤ j1 < j2 < . . . < jr ≤ n),

where we interpret vj1vj2 . . . vjr with r = 0 as the identity element e. In
particular, dimCA ≥ 2m = dim C(A), so ψ is an isomorphism, and

(vj1vj2 . . . vjr | 0 ≤ r ≤ m, 1 ≤ j1 < j2 < . . . < jr ≤ m)

is a basis of CA. Also, ψ maps even elements of C(A) to elements in CA ∩
C+(V ) so it maps C+(A) into CA ∩ C+(V ). Observe that CA ∩ C+(V ) is
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spanned by vj1vj2 . . . vjr with even r and 1 ≤ j1 < . . . < jr ≤ m, whence
dimCA ∩ C+(V ) = 2m−1 = dim C+(A). Thus ψ induces an isomorphism
C+(A) ∼= CA ∩ C+(V ).

2) Abusing notation, we also denote by e the identity element of C(A),
and by α the anti-isomorphism of C(A) that sends y1y2 . . . yr to yryr−1 . . . y1
for yi ∈ A. Then ψ sends e to e and commutes with α. Now consider
h ∈ CA ∩ Spin(V ). Then h ∈ C+(V ), h is invertible, hV h−1 ⊆ V , and
α(h)h = e. Since ψ maps C+(A) onto CA ∩ C+(V ), there is some g ∈ C+(A)
such that ψ(g) = h. Notice that α preserves CA. Hence h

−1 = α(h) ∈
CA ∩ Spin(V ). Thus we can also find g′ ∈ C+(A) such that ψ(g′) = h−1,
so g′ is the inverse of g in C(A). Also, ψ(e) = e = α(h)h = ψ(α(g)g) which
implies that α(g)g = e. Using the aforementioned basis of C(V ), we see that
CA ∩ V = A. Hence,

ψ(gAg−1) = hAh−1 = hAα(h) ∩ hV h−1 ⊆ CA ∩ V = A = ψ(A),

so gAg−1 ⊆ A. Thus g ∈ Γ(A)∩C+(A)∩Γ0(A) = Spin(A), i.e. ψ(Spin(A))
contains CA ∩ Spin(V ). In particular,

|Spin(A)| ≥ |CA ∩ Spin(V )|. (2)

3) Consider a non-singular v ∈ A. Then −φ(v) = ρv acts trivially on
A⊥ and it acts on A as the reflection ρ′v in SO(A). Recall that SO(A) is
generated by the products ρ′xρ

′
y where x and y run over all non-singular

vectors of A. It follows that φ(CA∩Γ+(V )) contains the subgroup SO(A)×
〈1A⊥〉 of SO(V ). Similarly, Ω(A) consists of all the products

∏N
i=1 ρ

′
xi
where

2|N , xi ∈ A is a non-singular vector, and
∏N
i=1Q(xi) is a square in F

×
q , cf.

[14, pp. 29–30]. Hence φ(CA∩Spin(V )) contains the subgroup Ω(A)×〈1A⊥〉
of Ω(V ). As mentioned in 1) we can find u ∈ A with Q(u) = −1. Hence
−e = u2 ∈ CA ∩ C+(V ). Also, α(−e)(−e) = e and (−e)V (−e)−1 = V , so in
fact −e ∈ CA ∩ Spin(V ) and φ(−e) = 1V . Thus we have shown that

|CA ∩ Spin(V )| ≥ 2 ∙ |Ω(A)| = |Spin(A)|.

Together with (2), this implies that |CA∩Spin(V )| = |Spin(A)| so ψ induces
a group isomorphism Spin(A) ∼= CA ∩ Spin(V ). Also, |CA ∩ Spin(V )| =
2 ∙ |Ω(A)|, whence φ maps CA ∩ Spin(V ) onto Ω(A) × 〈1A⊥〉, with kernel
〈−e〉.

We recall (and extend) the following definition from [17, §2.4].

Definition 4.2 Let q be an odd prime power and V be a finite-dimensional
vector space over Fq with a non-degenerate quadratic form.

(i) An element x of Ω(V ) is breakable if there is a proper, nonzero, non-
degenerate subspace W of V such that x = (x1, x2) ∈ Ω(W )×Ω(W⊥),
and one of the following holds:
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(a) both factors Ω(W ) and Ω(W⊥) are perfect groups;

(b) Ω(W ) is perfect, and x2 is a commutator in Ω(W
⊥).

Otherwise, x is unbreakable.

(ii) Let φ be the projection Spin(V )→ Ω(V ). Then g ∈ Spin(V ) is break-
able (unbreakable) if its image φ(g) in Ω(V ) is breakable (unbreakable).

Our treatment of spin groups relies on the following.

Lemma 4.3 Let V = Fnq be a vector space over Fq with a non-degenerate
quadratic form, where q is odd and n ≥ 5. Suppose that, for every proper
non-degenerate subspace U of V , if Ω(U) is perfect, then every element
x ∈ Spin(U) is a commutator in Spin(U). Then every breakable element in
Spin(V ) is a commutator in Spin(V ).

Proof. Let g ∈ Spin(V ) be breakable and consider the corresponding
decompositions φ(g) = (ḡ1, ḡ2) and V = W ⊕W⊥ as in Definition 4.2(i).
Since Ω(W ) is perfect, dimW ≥ 3. We claim that either dimW⊥ ≥ 3, or
ḡ2 = 1. For, suppose that dimW

⊥ ≤ 2. Then Ω(W⊥) is not perfect and in
fact it is a cyclic group, cf. [14, Prop. 2.9.1]. Hence ḡ2 is a commutator in
Ω(W⊥) so it is 1.

Applying Lemma 4.1 to the subspace W of V , there is some x ∈ CW ∩
Spin(V ) such that φ(x) = ḡ1. If ḡ2 = 1, set s = t = e, where e is the
identity element in Spin(V ) as above. Assume ḡ2 6= 1. Then dimW⊥ ≥ 3,
so Lemma 4.1 is applicable to the subspace W⊥ of V ; in particular, CW⊥ ∩
Spin(V ) ∼= Spin(W⊥). Hence in case (a) of Definition 4.2(i), we can find
y, s, t ∈ CW⊥∩Spin(V ) such that y = [s, t] and φ(y) = ḡ2. Assume we are in
case (b) of Definition 4.2(i). Then ḡ2 = [s̄, t̄] for some s̄, t̄ ∈ Ω(W⊥). Again
applying Lemma 4.1 to W⊥, we can find s, t ∈ CW⊥ ∩ Spin(V ) such that
φ(s) = s̄ and φ(t) = t̄. Thus in all cases we have found s, t ∈ CW⊥∩Spin(V )
such that φ([s, t]) = ḡ2.

Now φ(x ∙ [s, t]) = ḡ1ḡ2 = φ(g). Recall that φ projects Spin(V ) onto
Ω(V ), with kernel Z := 〈−e〉. It follows that there is some z ∈ Z such
that g = zx ∙ [s, t]. In case 3) of the proof of Lemma 4.1 we showed that
Z ≤ CW ∩Spin(V ). Hence zx ∈ CW ∩Spin(V ) ∼= Spin(W ) is a commutator
in CW ∩ Spin(V ), i.e. zx = [u, v] for some u, v ∈ CW ∩ Spin(V ). Observe
that CW ∩ Spin(V ) is contained in CW ∩ C+(V ) so it commutes with CW⊥
by [23, Lemma 6.1]. Consequently, g = zx ∙ [s, t] = [u, v] ∙ [s, t] = [us, vt] is a
commutator in Spin(V ).

By the main results of [2] and [6], we need to consider the non-central
elements in spin groups over Fq only for q = 3, 5.
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Proposition 4.4 Let G be one of the spin groups Spinεn(q) with q = 3, 5.
Assume that n ≥ 12 for q = 3, n ≥ 9 for q = 5, and that q = 3 if 2|n and
ε = +. Then every unbreakable element in G is a commutator.

Proof. Let Z = 〈−e〉 and S = Ωεn(q) = G/Z for G = Spin(V ) = Spin
ε
n(q),

and φ(g) = ḡ. Then
|CG(g)| ≤ 2|CS(ḡ)|. (3)

Upper bounds for |CS(ḡ)| are given in [17, Prop. 5.15] for n > 12, and in
[17, Prop. 5.16] for n = 12 (note that in the exceptional case ḡ = ±(J62 )
of [17, 5.16(ii)], g is a commutator as it lies in a subgroup Spin+4 (3

3) =
SL2(27)× SL2(27)).

We follow the proof of [17, Lemma 5.17] using this bound for CG(g). As
usual, we will show that |E(g)| < 1 for E(g) := E1(g) + E2(g), and

E1(g) :=
∑

χ∈Irr(G), 1<χ(1)≤d(G)

χ(g)

χ(1)
, E2(g) :=

∑

χ∈Irr(G), χ(1)>d(G)

χ(g)

χ(1)
,

where d(G) is chosen suitably. We use the better bounds of [7] for the
number, k(G), of conjugacy classes of G.

Case 1a: G = Spin−2n(5) with n ≥ 6.

By [7, Cor. 5.1], k(G) ≤ 5n + 40 ∙ 5n−1 = 9 ∙ 5n, whereas in the proof
of [17, Lemma 5.17] we used the weaker bound k(S) ≤ 116 ∙ 5n. Hence, in
view of (3), the same arguments as in the proof of [17, Lemma 5.17] yields
|E2(g)| < 0.09 for d(G) := 54n−10. By [17, Cor. 5.8], all the characters χ in
E1(g) are trivial at Z. Hence there is no change for E1(g) so |E1(g)| ≤ 0.432
and |E(g)| < 0.522.

Case 1b: G = Spin−10(5).

As mentioned in the proof of [17, Lemma 5.17], k(S) = 2633 so k(G) ≤
5266; furthermore, |CG(g)| ≤ 510 ∙ 576. Hence, if we choose d(G) := 16 ∙ 59,
then the same arguments as in the proof of [17, Lemma 5.17] yields |E2(g)| <
0.35. We break E1(g) into two sub-sums:

E11(g) :=
∑

χ∈Irr(G), 1<χ(1)≤4∙59

χ(g)

χ(1)
, E12(g) :=

∑

χ∈Irr(G), 4∙59<χ(1)≤d(G)

χ(g)

χ(1)
.

By [17, Prop. 5.3, 5.7], all 9 characters χ in E11(g) are trivial at Z. Hence,
as in the proof of [17, Lemma 5.17], |E11(g)| ≤ 0.432. Using [20] one checks
that E12 involves exactly 6 characters. By the Cauchy-Schwarz inequality,

|E12(g)| ≤
√
6 ∙ 510 ∙ 576/(4 ∙ 59) < 0.024.

It follows that |E(g)| < 0.806.
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Case 2a: G = Spin2n+1(5) with n ≥ 5.

By [7, Cor. 5.1], k(G) ≤ 5n + 40 ∙ 5n−1 = 9 ∙ 5n, whereas in the proof of
[17, Lemma 5.17] we used the weaker bound k(S) ≤ (14.76) ∙ 5n. Hence, in
view of (3), the same arguments as in the proof of [17, Lemma 5.17] yields
|E2(g)| < 0.02 for d(G) := 54n−8. By [17, Cor. 5.8], all the characters χ in
E1(g) are trivial at Z. Hence there is no change for E1(g), so |E1(g)| ≤ 0.432
and |E(g)| < 0.452.

Case 2b: G = Spin9(5).

By [7, Cor. 5.1], k(S) ≤ 9 ∙ 54; furthermore, |CG(g)| ≤ 2 ∙ 55 by (3).
Hence, if we choose d(G) := 410, then the same arguments as in the proof
of [17, Lemma 5.17] yields |E2(g)| < 0.01. Using [20] one checks that E1
involves exactly 13 characters and each has degree at least 16276. By the
Cauchy-Schwarz inequality,

|E1(g)| ≤
√
13 ∙ 2 ∙ 55/16276 < 0.02.

It follows that |E(g)| < 0.03.

Case 3: G = Spin2n+1(3) with n ≥ 6.

By [7, Cor. 5.1], k(G) ≤ 3n + 40 ∙ 3n−1 < (14.34) ∙ 3n, whereas in the
proof of [17, Lemma 5.17] we used the weaker bound k(S) ≤ (14.76) ∙ 3n.
Hence, in view of (3), the same arguments as in the proof of [17, Lemma
5.17] yields |E2(g)| < 0.06 for d(G) := 34n−8. As above, there is no change
for E1(g), so |E1(g)| ≤ 0.35 and |E(g)| < 0.41.

Case 4a: G = Spinε2n(3) with n > 6.

By [7, Cor. 5.1], k(G) ≤ 3n+40 ∙3n−1 < (14.34) ∙3n, whereas in the proof
of [17, Lemma 5.17] we used the weaker bound k(S) ≤ 28 ∙ 3n. Hence, in
view of (3), the same arguments as in the proof of [17, Lemma 5.17] yields
|E2(g)| < 0.42 for d(G) := 34n−10. As above, there is no change for E1(g),
so |E1(g)| ≤ 0.35 and |E(g)| < 0.77.

Case 4b: G = Spinε12(3).

By [7, Cor. 5.1], k(S) < 14.34 ∙ 36; furthermore, |CG(g)| ≤ 316 ∙ 27 by (3).
We will now break up E(g) into four sub-sums

Ei(g) =
∑

χ∈Irr(G), di−1<χ(1)≤di

χ(g)

χ(1)
,

where 1 ≤ i ≤ 4, d0 = 1, d1 = 314, d2 = 11∙106, d3 = 78∙106, and d4 =
√
|G|.

Using the data of [20], we see that E1(g) involves exactly 7 characters listed
in [17, Prop. 5.7], E2(g) involves at most 5 characters, and E3(g) involves
at most 15 characters. As in the proof of [17, Lemma 5.17], |E1(g)| ≤ 0.35.
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By the Cauchy-Schwarz inequality,

|E2(g)| ≤

√
5 ∙ 317 ∙ 29

314
< 0.035, |E3(g)| ≤

√
15 ∙ 317 ∙ 29

11 ∙ 106
< 0.027,

and

|E4(g)| ≤

√
14.34 ∙ 36 ∙ 317 ∙ 29

78 ∙ 106
< 0.098.

Consequently, |E(g)| < 0.574.

In view of Lemma 2.4, this completes the proof of Theorem 1 for the
spin groups.

5 Simply connected groups of exceptional Lie type

In this section we prove Theorem 1 for simply connected groups of ex-
ceptional Lie type. Let G be such a group. By [17] we can assume that
Z(G) 6= 1, so G is E7(q) with q odd or Eε6(q) with 3|q − ε, and |Z(G)| = 2
or 3 respectively.

By [2], every element of Z(G) is a commutator; and by [6], the same
holds for all non-central elements provided q ≥ 5 (for E7(q)), q ≥ 7 (for
E6(q)) and q ≥ 8 (for 2E6(q)). Thus it remains to consider the groups
E7(3), E6(4),

2E6(2) and
2E6(5). In fact

2E6(2) is covered by [17, 3.1]; so
the proof of Theorem 1 is completed by the following result.

Lemma 5.1 Every element of each of the simply connected groups E7(3),
E6(4) and

2E6(5) is a commutator.

Proof. The proof is similar to that in [17, Section 7], so we give just
a sketch. Let G be one of the groups in the statement. We claim that
G possesses semisimple subgroups M containing Z(G), as in the following
table.

G M

E7(3) D6(3), A
δ
2(3)A

δ
5(3) (δ = ±)

Eε6(q) Aε5(q), A
ε
2(q)

3, A2(q
2)A−ε2 (q)

The existence of these subgroups is given by [18]; that they contain Z(G) can
be seen by considering their actions on the minimal modules of dimensions
56 (for E7) and 27 (for E6) on which Z(G) acts faithfully – see [19, 2.3].

By results in [17] (for groups of type SL, SU) and the previous section
(for simply connected D6), every element of each of the subgroups M is the
above table is a commutator in M .

Recall [17, Lemma 7.2]: the group G = E7(q) (resp. E
ε
6(q)) has one

irreducible character of degree q(q14 − 1)(q6 + 1)/(q4 − 1) (resp. q(q4 +
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1)(q6 + εq3 +1)), and all other nontrivial irreducible characters have degree
at least q26 (resp. q16/2); moreover k(G) ≤ (2.5)q7 (resp. (1.5)q6).

First consider G = E7(q) with q = 3. Let 〈z〉 = Z(G) and let x ∈ G.
Define

E(x) =
∑

1 6=χ∈Irr(G)

χ(x)

χ(1)
.

We are done if we show that |E(x)| < 1.

Suppose that x or zx is a non-identity unipotent element. As in the first
step of the proof of [17, Theorem 7.1] for E7(q),

|E(x)| ≤
3

4
+
|CG(x)|1/2k(G)1/2

q26
.

Hence |E(x)| < 1 if |CG(x)| ≤ q45/40, so we can assume that |CG(x)| >
q45/40. As in [17], this implies that the unipotent element x or zx is in one
of the classes labelled (A3+A1)

′, (A3+A1)
′′, A3, 2A2+A1, 2A2, A2+3A1,

A2 + 2A1, A2 +A1, A2, 4A1, (3A1)
′, (3A1)

′′, 2A1, A1. In all cases we argue
as in [17] that x lies in a subgroup Aδ5(q)A

δ
2(q) for some δ. This is one of

the subgroups M in the table above, and it contains z; hence x and zx are
commutators in M .

Now suppose x = su has unipotent part u and semisimple part s 6∈ Z.
As above, using the 19/20 bound for |χ(x)/χ(1)| in [17, 7.2(ii)],

|E(x)| ≤
19

20
+
|CG(x)|1/2k(G)1/2

q26
.

Hence we may assume that |CG(x)| > q45/1000, so CG(s) has a quasisimple
normal subgroup C = Aεr(q) (r = 5, 6 or 7), D

ε
5(q), D6(q) or E

ε
6(q).

If C = Aε5(q), D
ε
5(q) or E

ε
6(q), then we argue as in the proof of [17, The-

orem 7.1] that x lies in a subgroup M = Aδ5(q)A
δ
2(q), giving the conclusion

as before. If C = Aε6(q) then either ε = + and |s| = 2, or ε = − and |s|
divides 4; neither of these is possible, since if |s| = 2 then s = z ∈ Z(G),
and if |s| = 4 then CG(s) . A

−
7 (3). If C = A

ε
7(q) then the bound on |CG(x)|

forces the Jordan form of u on the 8-dimensional space for C to have at
least 2 trivial blocks; hence x = su centralizes a subgroup A1 = SL2(q)
in C corresponding to these 2 blocks, so x ∈ CG(A1) = M = D6(q), so is
a commutator in M . Finally, consider the case where C = D6(q). Here
CG(s) = D6(q)A1(q) (with |s| = 2 and s ∈ Z(D6(q))) or D6(q) ◦ 4 (with
|s| = 4). In the latter case, u ∈ D6(q) and x = su is a commutator in
D6(q)A1(q) (as s is a commutator in A1(3)). In the former case, we argue
as in [17] that x lies in either D6(q) or A

δ
5(q)A

δ
2(q), giving the conclusion as

before. This completes the proof for G = E7(q).
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We briefly consider G = Eε6(q). Recall that (q, ε) = (4,+) or (5,−). As
in the Eε6 proof of [17, Theorem 7.1], we argue that x ∈ G lies in one of the
subgroups M in the above table, and hence x is a commutator in M .

This completes the proof of Theorem 1.
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