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Abstract

The Ore Conjecture, proved in [18], states that every element of
every finite (non-abelian) simple group is a commutator. In this paper
we use similar methods to prove that every element of every finite
simple group is a product of two squares. This can be viewed as a
non-commutative analogue of Lagrange’s four squares theorem.

1 Introduction

In recent years there has been considerable interest in word maps on finite
(non-abelian) simple groups G: namely, maps of the form (g1, . . . , gd) 7→
w(g1, . . . , gd), where w is a non-identity element of the free group Fd of
rank d and gi ∈ G. Let w(G) denote the image of this map and let w(G)k

be the set of all products of k elements of w(G). In [23] it is shown that
w(G)3 = G provided |G| > Nw, where Nw depends only on w, and this
has recently been improved to w(G)2 = G in [15, 16, 17]. Clearly there are
words w for which w(G) 6= G; for example w = x2 is not surjective on any
finite non-abelian simple group. More generally, any word which is a proper
power is non-surjective on infinitely many simple groups: indeed, if w = vk

and |G| is not coprime to k, then the map g 7→ gk is not injective on G,
so w(G) 6= G. However, some word maps are surjective, and it is a major
challenge to determine which.

Trivially, any primitive word – that is, any word that is part of a free
generating set of Fd – is surjective on all groups. The same is true for any
word of the form

∏d
i=1 x

ei
i f with f ∈ F

′
d, where e1, . . . , ed are integers with

greatest common divisor 1 (see [22, 3.1.1]). The first nontrivial example of
a word map which is surjective on all finite non-abelian simple groups is
the commutator map [x, y]; indeed, this is the content of the well known
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Ore conjecture that every element of a finite non-abelian simple group is
a commutator, recently proved in [18]. Its long proof combines character
theory and computational methods. In this paper we use these and other
ideas to prove another surjectivity result, this time for the word x2y2.

Theorem 1 Every element of every finite non-abelian simple group G is a
product of two squares. In other words, if w(x, y) is the word x2y2, then
w(G) = G.

The word x2y2 is of interest for a number of reasons. Firstly, one can
think of the theorem as a non-commutative analogue of Lagrange’s four
squares theorem. Secondly, it was shown in [8] that the word x2y2 is almost
measure-preserving on finite simple groups – namely, the inverse image of a
subset S of G of proportion p = |S|/|G| has proportion p + o(1) in G × G
as |G| → ∞; but its surjectivity remained open. Note also that by the
general result of [17], every element of a sufficiently large finite simple group
is a product of two squares; however, it is intriguing that no single exception
exists. Thirdly, as for commutators, there is a character theoretic connection
essentially going back to Hurwitz (see Lemma 2.2). This paves the way to
character theoretic methods which are used in our proof of the theorem.

Our proof for alternating groups and groups of Lie type in odd charac-
teristic is short, using results in [1, 5, 12], and sporadic groups are handled
computationally. This leaves the groups G(q) of Lie type in characteristic
2. Using [9] and other tools, we reduce to consideration of classical groups
with q = 2 or 4. The proof for these groups occupies most of the paper, and
uses a similar approach to that in [18], involving character theory, induction
on the dimension, and computation to establish base cases.

2 Preliminaries

We begin with a couple of trivial observations.

Lemma 2.1 Let G be a finite group.

(i) If x ∈ G is an element of odd order, then x is a square.

(ii) Suppose the number of squares in G is greater than 12 |G|. Then every
element of G is a product of two squares.

Lemma 2.2 Let G be a finite group. For g ∈ G, the number of pairs
(x, y) ∈ G×G such that g = x2y2 is

|G| ∙
∑

χ∈Irr(G), χ real

χ(g)

χ(1)
.

Proof This is a special case of [13, Satz 1].

Proposition 2.3 (i) Theorem 1 holds for alternating groups.

(ii) Theorem 1 holds for simple groups of Lie type over fields of odd
characteristic.

(iii) Theorem 1 holds for sporadic simple groups.
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Proof (i) Let G = An. If n is odd (resp. even), then every element of G is
a product of two n-cycles (resp. (n−1)-cycles), by [12] and [1]. Hence every
element is a product of two elements of odd order, giving the conclusion by
Lemma 2.1(i).

(ii) Let G = G(q) be a simple group of Lie type over a field Fq with
q odd. By a result of Ellers and Gordeev [5, Theorem 3, Corollary], every
element of G is a product of two unipotent elements. Since these have odd
order, the conclusion follows.

(iii) This follows by a routine check of the character tables of the sporadic
groups, using Lemma 2.2.

It follows from the proposition that the only remaining groups to handle
are simple groups of Lie type over fields Fq with q = 2k.

Lemma 2.4 Let G = G(q), q = 2k. The proportion of elements of G that
are of odd order is greater than 12 unless one of the following holds:

(i) q = 2;

(ii) G = SL4(4), Sp2n(4) or Ω
±
2n(4).

Proof We use the results of [9], which give estimates for the proportion
s(G) of elements of even order in G. Theorem 1.1 of [9] says that

s(G) <
3

q − 1
+

2

(q − 1)2
.

For q ≥ 8 this is less than 12 , giving the result.

Assume now that q = 4. If G = Ln(4) (n 6= 4), the proof of [9, 2.3] (see
p. 5) gives s(G) < 1

q−1 +
1

(q−1)2 <
1
2 . If G = Un(4) then counting a little

more carefully in the proof of [9, 2.3] also gives s(G) < 1
2 . The same holds

for exceptional groups over F4 apart from G2(4) and F4(4), by [9, 3.1]. For
the latter groups, the precise numbers of semisimple elements are listed in
[20], and the proportion of them is more than 12 .

Lemma 2.5 The conclusion of Theorem 1 holds for the following groups:

(i) SLn(2) (3 ≤ n ≤ 6);

(ii) SUn(2) (4 ≤ n ≤ 9);

(iii) Sp2n(2) (3 ≤ n ≤ 6);

(iv) Sp2n(4) (n = 2, 3);

(v) Ω±2n(2) (4 ≤ n ≤ 6);

(vi) Ω±8 (4);

(vii) 3D4(2),
2F4(2)

′,F4(2), E
±
6 (2), E7(2).

Proof For all of these groups except E7(2), we applied 2.2 to the character
table. Some of the tables are available in the Character Table Library of
GAP [7]; the remainder were constructed directly using the Magma [2] im-
plementation of the algorithm of Unger [26]. For E7(2) one finds using [20]
that the proportion of semisimple elements in the group is just over 12 .
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3 Completion of the proof

It remains to prove Theorem 1 for the following groups:

SLn(2) (n ≥ 7),
SUn(2) (n ≥ 10),
Sp2n(2) (n ≥ 7), Sp2n(4) (n ≥ 4),
Ω±2n(2) (n ≥ 7), Ω

±
2n(4) (n ≥ 5),

E8(2).

For these groups, the proof follows closely that given in [18]: there we proved
that certain key elements g ∈ G were commutators by using the character
theoretic criterion that g is a commutator if

∑
χ∈Irr(G)

χ(g)
χ(1) 6= 0. In many

cases we established this by simply showing that

∑

1G 6=χ∈Irr(G)

|χ(g)|
χ(1)

< 1. (1)

Of course (1) is sufficient to prove that the sum in Lemma 2.2 is nonzero,
and hence that g is equal to x2y2 for some x, y ∈ G.

Before proceeding, we eliminate the one exceptional group in the above
list.

Lemma 3.1 Every element of E8(2) is a product of two squares.

Proof The proof of the Ore conjecture for G = E8(2) in [18, §7] was
achieved by establishing that for every g ∈ G, either (1) holds or g lies in
a subsystem subgroup of G which is a central product of perfect groups of
Lie type of rank at most 4 over F2. By Lemma 2.5, we know that Theorem
1 holds for such subgroups. Hence it holds for G.

3.1 Some generic cases

It remains to prove the theorem for the classical groups over F2 and F4 listed
above. As in [18] we study a key subset of elements of these groups, defined
as follows.

Definition Let G = Cln(q) = SLn(q), SUn(q), Spn(q) or Ωn(q). An el-
ement x ∈ G is breakable if it lies in a natural proper subgroup Clr(q) ×
Cln−r(q) (stabilizing a non-degenerate r-space if G 6= SLn(q)), and one of
the following holds:

(1) both factors Clr(q) and Cln−r(q) are perfect groups;

(2) Clr(q) is perfect, and the projection of x to Cln−r(q) is a product of
two squares in Cln−r(q).

Otherwise, x is unbreakable.

A simple induction argument shows that Theorem 1 for G = Cln(q)
follows immediately if we prove that every unbreakable element in G is a
product of two squares. Indeed, let x ∈ G and suppose that x is breakable, so
x = (x1, x2) ∈ Clr(q)× Cln−r(q) satisfies (1) or (2) in the above definition.
In either case, by induction x1, x2 are products of two squares in Clr(q),
Cln−r(q) respectively, say xi = y

2
i z
2
i for i = 1, 2; then x = (y1, y2)

2(z1, z2)
2.
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Lemma 3.2 Theorem 1 holds for G = Sp2n(2) (n ≥ 7), Ω
±
2n(2) (n ≥ 7), or

Ω±2n(4) (n ≥ 5).

Proof This follows almost immediately from the proofs of the Ore con-
jecture for these groups in [18], as follows. Consider first G = Sp2n(2). By
[10, 6.2], there is a set W of five Weil characters such that every nontrivial
irreducible character of G not in W has degree at least (22n − 1)(2n−1 −
1)(2n−1 − 4)/30. Moreover the characters in W have distinct degrees (see
[10, §3]), so in particular they are all real. For x ∈ G let

F1(x) =
∑

χ∈W

χ(x)

χ(1)
, F2(x) =

∑

1G 6=χ∈Irr(G)\W

|χ(x)|
χ(1)

.

By Lemma 2.2 it is sufficient to show that |F1(x)| + F2(x) < 1 for all un-
breakable x ∈ G. This is established in Lemmas 4.4–4.7 of [18].

An entirely similar discussion applies when G is an orthogonal group.

The remaining groups SLn(2), SUn(2), Sp2n(4) were not handled in the
above way in [18], so require detailed arguments here.

3.2 Special linear and symplectic groups

Lemma 3.3 Theorem 1 holds for G = SLn(2) (n ≥ 7).

Proof Let x ∈ G be unbreakable. We claim first that

|CG(x)| ≤ 2
n ∙ 32. (2)

The proof is similar to analogous proofs in [18], for example [18, 4.7]. If x
is unipotent and unbreakable, then it has only Jordan blocks of size 2 or
at least n − 2 (size 2 is allowed as SL2(2) is non-perfect); it follows easily
that x = Jn or (Jn−2, J2) where Ji denotes a Jordan block of size i. These
have centralizers of order 2n or 2n+2 respectively, so (2) holds. If x is not
unipotent, write x = su with s, u commuting semisimple and unipotent
elements. As x is unbreakable, one of the following holds:

(i) CG(s) = GLn/k(2
k) for some k dividing n, and u = Jn/k ∈ GLn/k(2

k);

(ii) n = 2m, CG(s) = GLm(4) and u = (Jm−1, J1) ∈ GLm(4);

(iii) n = 2m + 2, CG(s) = GLm(4) × GL1(4) or GLm(4) × GL2(2) and
u = (Jm, J1) or Jm, J2) respectively.

The centralizer orders |CG(x)| are given by [19, §2], and the largest is that
in case (ii), where |CG(x)| = 4m|GL1(4)|2. Hence (2) is proved.

Next, define D = (2n − 1)(2n−1 − 4)/3. By [24, Theorem 3.1], G has
exactly one nontrivial irreducible character χ0 of degree less than D, and χ0
is the nontrivial constituent of the permutation character of G on 1-spaces,
of degree 2n − 2. We saw above that dimCV (x) ≤ 2 (where V = Vn(2)), so

|χ0(x)|
χ0(1)

≤
3

2n − 2
.

The number k(G) of conjugacy classes of G satisfies k(G) ≤ (2.5) ∙ 2n−1 by
[6, 3.6]. Hence by [18, 2.6],

∑

χ∈Irr(G), χ(1)≥D

|χ(x)|
χ(1)

≤
k(G)1/2|CG(x)|1/2

D
≤

√
2.5 ∙ 2(n−1)/2 ∙ 2n/2 ∙ 3

D
< 0.2.
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It follows that
∑

1G 6=χ∈Irr(G)

|χ(x)|
χ(1)

<
3

2n − 2
+ 0.2 < 1,

and so by Lemma 2.2 the conclusion follows.

Lemma 3.4 Theorem 1 holds for G = Sp2n(4) (n ≥ 4).

Proof Let x ∈ G be unbreakable. As Sp2(4) is perfect, x cannot stabilize
a proper non-degenerate subspace. It follows that if x is unipotent then
x = J2n or J

2
n (V (2n) or W (n) in the notation of [19, §3]); and if x = su is

not unipotent, then CG(s) = GL
±
n/k
(4k) and u = Jn/k ∈ GL

±
n/k
(4k), for some

k dividing n. The centralizer orders are given in [19], and the largest is for
x = J2n, which has centralizer order 4

2n−1 ∙ |Sp2(4)| if n is even, 42n ∙ |O
±
2 (4)|

if n is odd. Hence
|CG(x)| < 4

2n+2.

Now we consider characters of G. By [10, 6.2], there is a collection W of 7
irreducible characters such that every nontrivial irreducible character not in
W has degree at least

D =
(42n − 1)(4n−1 − 1)(4n−1 − 42)

2(44 − 1)
.

The 7 characters in W are labelled αn, βn, ρ1n, ρ
2
n, τ

1
n, ζ

1
n, ζ

2
n, and all are real.

The values of αn+βn, ρ
1
n+ρ

2
n, τ

1
n, ζ

1
n, and ζ

2
n are described explicitly in [10,

§3], and we see easily as in the proof of [18, Lemma 4.5] that

|F1(x)| =

∣
∣
∣
∣
∣
∣

∑

χ∈W

χ(x)

χ(1)

∣
∣
∣
∣
∣
∣
< 0.2.

Also k(G) ≤ (15.2) ∙ 4n by [6, 3.13], so as in the previous proof

F2(x) =
∑

χ∈Irr(G), χ(1)≥D

|χ(x)|
χ(1)

≤

√
15.2 ∙ 2n ∙ 4n+1

D
< 0.2.

Hence |F1(x)|+ F2(x) < 1 and the conclusion follows.

3.3 Unitary groups

The proof for SUn(2) with n ≥ 10 is similar to the previous ones, but we
give more detail as unitary groups were handled by a different method in
[18].

Lemma 3.5 If x ∈ G = SUn(2) is unbreakable, then |CG(x)| ≤ 23n−6 ∙ 34.
Moreover, if n = 10 then |CG(x)| ≤ 215 ∙ 34.

Proof The non-perfect special unitary groups are SUr(2) with r ≤ 3, so
x does not lie in a subgroup SUr(2) × SUn−r(2) with r ∈ {1, 2, 3}. If x is
unipotent then it is Jn, (Jn−2, J2) or (Jn−3, J3), all of which have centralizer
order smaller than the bound in the conclusion (see [19, §2]). Otherwise
x = su with s a nontrivial semisimple element, and the largest possible
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centralizer is achieved when n is a multiple of 3, CG(s) = G ∩ GU3m(2k)
(n = 3mk, k odd), and u = (J3m) ∈ GU3m(2

k). Writing q = 2k we have

|CG(x)| ≤ CGU3m(q)(u) = q
9m−9|GU3(q)|

= 23n. (q
3+1)(q2−1)(q+1)

q6
.

The right hand side attains a maximum when k = 1 and q = 2; it achieves
the bound in the conclusion. The stronger bound for n = 10 was established
computationally – it occurs for the element x = (ωJ2, ωJ2, ωJ3, x0) where ω
is a cube root of 1 in F4 and x0 is an element of order 9 in GU3(2).

Consider the natural module V = Fn4 for G := GUn(2). Any g ∈ G is
indecomposable if V cannot be decomposed into a direct sum of pairwise
orthogonal g-invariant nonzero non-degenerate subspaces. A nonzero non-
degenerate subspace U of V is a λ-block for g if U is g-invariant, g|U is
indecomposable, and det(g|U ) = λ. A block for g is a λ-block for some
λ ∈ F×4 = {1, ω, ω

2}.

Lemma 3.6 Assume g ∈ SUn(2) is unbreakable and n ≥ 10. Then V is a
direct sum of at most 6 blocks.

Proof Write

V = A1 ⊕A2 ⊕ . . .⊕Ar ⊕B1 ⊕B2 ⊕ . . .⊕Bs ⊕ C1 ⊕ C2 ⊕ . . .⊕ Ct

as a direct sum of r + s+ t blocks for g, where Ai is a 1-block of dimension
ai, Bj is an ω-block of dimension bj , Ck is an ω

2-block of dimension ck,
r, s, t ≥ 0, and

1 ≤ a1 ≤ . . . ≤ ar, 1 ≤ b1 ≤ . . . ≤ bs, 1 ≤ c1 ≤ . . . ≤ ct.

Arguing by contradiction, we assume that r + s+ t ≥ 7.

1) First we claim that V cannot be written as an orthogonal sum of three
g-invariant non-degenerate subspaces A⊕B⊕C with dimA, dimB, dimC ≥
2 and det(g|A) = det(g|B) = det(g|C) = 1. Indeed, assume the contrary and
(without loss) that a := dimA ≤ b := dimB ≤ c := dimC. Then c ≥ 4 as
n ≥ 10, and a+ b ≥ 4. Now observe that g ∈ SUc(2) × SUa+b(2), and so g
is breakable.

2) Here we show that min(s, t) ≤ 1. For, assuming that s, t ≥ 2 we can
define

A := B1 ⊕ C1, B := B2 ⊕ C2, C := (A⊕B)
⊥.

Then dimA, dimB ≥ 2 and dimC ≥ r + s + t − 4 ≥ 3. Furthermore, the
choices of A,B,C ensure that g|A, g|B , and g|C all have determinant 1.
Hence g is breakable by 1).

3) Next we consider the case r ≥ 2. If s, t ≥ 1, then we can define

A := A1 ⊕A2, B := B1 ⊕ C1, C := (A⊕B)
⊥

and conclude that g is breakable by 1). Furthermore, if s ≥ 3 for instance,
then we define

A := A1 ⊕A2, B := B1 ⊕B2 ⊕B3, C := (A⊕B)
⊥
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and again conclude that g is breakable by 1). So we must have that min(s, t) =
0 and max(s, t) ≤ 2. Replacing g by g−1 if necessary, we may assume that
t = 0 and s ≤ 2. In this case, 1 = det(g) = ωs, hence s = 0 and r ≥ 7. Now
if d := a1 + a2 + a3 ≥ 4 then

g ∈ SU(A1 ⊕A2 ⊕A3)× SU((A1 ⊕A2 ⊕A3)
⊥) = SUd(2)× SUn−d(2)

with n − d ≥ 4, and so g is breakable. So a1 = a2 = a3 = 1. If in addition
3 + a4 ≤ n− 4, then

g ∈ SU(A1⊕ . . .⊕A4)×SU((A1⊕ . . .⊕A4)
⊥) = SU3+a4(2)×SUn−3−a4(2)

and again g is breakable. Thus 3 + a4 ≥ n− 3 and so a4 ≥ n− 6 ≥ 4. This
is impossible, since n− 3− a4 > a5 + a6 ≥ 2a4 ≥ 8.

4) We have shown that r ≤ 1. By 2) we may assume t ≤ 1, whence
s = n− r − t ≥ 5. Since 1 = det(g) = ωs+2t, we must have 3|(s− t), and so
s ≥ 6. Defining

A := B1 ⊕B2 ⊕B3, B := B4 ⊕B5 ⊕B6, C := (A⊕B)
⊥,

by 1) we see that the unbreakability of g implies that dimC ≤ 1. But
dimC ≥ (r + s + t) − 6, so we must have that r + s + t = 7, and either
r = t = 0 and s = 7, or r + t = 1 and s = 6. The former is impossible as
3|(s− t). Similarly, in the latter case we have t = 0 and r = 1, and moreover
C = A1 has dimension 1. Recalling that A1 is a 1-block, we see g|A1 = 1
and so g ∈ SUn−1(2), again a contradiction.

For λ ∈ F×
q2
and g ∈ GUn(q), define e(g, λ) to be the dimension (over

Fq2) of Ker(g − λ ∙ 1V ). If f ∈ Fq2 [t] is a monic irreducible polynomial with
a root α ∈ Fq2 , define f̌ to be the unique monic irreducible polynomial over
Fq2 such that f̌(α

−q) = 0.

Corollary 3.7 If n ≥ 10 and g ∈ SUn(2) is unbreakable, then

∑

λ∈F×4

e(g, λ) ≤ 6.

Proof Consider an α-block U of g for α ∈ F×4 . Since g|U is indecomposable,
the semisimple part s of g|U must have characteristic polynomial f(t)k,
where f ∈ F4[t] is irreducible and f = f̌ , or (f(t)f̌(t))k, where f ∈ F4[t]
is irreducible and f 6= f̌ . In both cases, if deg(f) ≥ 2, then f(λ) 6= 0 for
λ ∈ F×4 and so dimKer(g|U − λ ∙ 1U ) = 0. On the other hand, if deg(f) = 1,
then f(t) = t− β for some β ∈ F×4 , whence f = f̌ (i.e. we are in the former
case) and s = β ∙ 1U . Then the indecomposability of g|U implies that the
unipotent part of g acts on U as a single Jordan block of size k. Thus
dimKer(g|U − λ ∙ 1U ) equals 1 if λ = β and 0 otherwise. Now the statement
follows immediately from Lemma 3.6.

Lemma 3.8 Let p be a prime, q a power of p, and let s ∈ G := GUn(q) be
a semisimple element such that s and αs are conjugate, where 1 = αq+1 6=
α ∈ F×

q2
. Then

N(s) := (G : CG(s))p′ > q
n2/4−2.
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Proof 1) As usual, we may decompose V into an orthogonal sum V1 ⊕
. . . ⊕ Vm of s-invariant non-degenerate subspaces, with the characteristic
polynomial of s|Vi being either fi(t)

k, where fi ∈ Fq2 [t] is irreducible and
fi = f̌i, or (fi(t)f̌i(t))

k, where fi ∈ Fq2 [t] is irreducible and fi 6= f̌i, and
moreover fi 6= fj , f̌j whenever i 6= j. Since s and αs are conjugate, the the
map J : x 7→ αx on F̄q preserves the set of all eigenvalues of s. As α = αq

2
,

J induces an action on the set of irreducible factors fi of the characteristic
polynomial of s. Moreover, since α = α−q, this action of J commutes with
the map fi 7→ f̌i. Thus J induces an action (which we also denote by J)
on the set of summands V1, . . . , Vm, with say l orbits. We consider the
decomposition

V =W1 ⊕W2 ⊕ . . .⊕Wl,

where each Wj is the sum of all Vi belonging to one orbit of J .

2) Observe that, by our construction, sj := s|Wj and αsj are conjugate
in GU(Wj). (Indeed, if xsx

−1 = αs for some x ∈ GU(V ), then s|x(Wj) has
characteristic polynomial equal to the image under J of the characteristic
polynomial of s|Wj . It follows that x(Wj) = Wj and x|Wj conjugates sj to
αsj .) In particular, dimWj > 1 (as α 6= 1). Furthermore, CG(s) preserves
each Wj (since it fixes each Vi).

3) The desired bound is obvious when n ≤ 5. We proceed by induction
on n ≥ 6. First we consider the case l ≥ 2. The observations in 2) allow
us to apply the induction hypothesis to s1 = s|W1 and s

′
1 := s|W ′1 with

W ′1 := (W1)
⊥. Hence

N(s1) =
(
GU(W1) : CGU(W1)(s1)

)
p′
> qa

2/4−2,

N(s′1) =
(
GU(W ′1) : CGU(W ′1)(s

′
1)
)

p′
> qb

2/4−2,

where a := dimW1 ≥ 2 and b := dimW ′1 ≥ 2. Observe that

qk(k+1)/2 < f(q, k) :=
k∏

i=1

(qi − (−1)i) ≤
q + 1

q
∙ qk(k+1)/2 (3)

for any k ≥ 1. It follows that

|GU(V )|p′

|(GU(W1)×GU(W ′1))|p′
=

f(q, n)

f(q, a)f(q, b)
>

q
n(n+1)
2

(
q+1
q

)2
∙ q
a(a+1)+b(b+1)

2

> qab−2.

Since n = a+ b ≥ 6 and a, b ≥ 2, we have ab ≥ 8. Consequently,

N(s) > N(s1)N(s
′
1) ∙

f(q, n)

f(q, a)f(q, b)
> q

a2+b2

4
−4 ∙ qab−2 ≥ q

n2

4
−2,

as stated.

4) Now we may assume that l = 1. First we consider the case where
fi = f̌i. The characteristic polynomial of s is (f1f2 . . . fm)

k, and deg fi = r
is odd. Then CG(s) ∼= GUk(qr)m and n = krm. Applying (3) we get

N(s) =
f(q, n)

f(qr, k)m
>

q
n(n+1)
2

(
qr+1
qr

)m
∙ qmr

k(k+1)
2

> q
n2

4
+n
4
(mkr−2k)− 3m

5
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(since (qr+1)/qr ≤ 3/2 < q3/5). If mr ≥ 3 and n ≥ 8, then mkr−2k ≥ n/3
and n2/12 > 3m/5, yielding N(s) > qn

2/4. The same holds if mr ≥ 3 and
n = 6, 7. Assume mr ≤ 2. Since r is odd, we have r = 1. If in addition
m = 1 then s is scalar and so s and αs cannot be conjugate. Thus m ≥ 2
and so N(s) > qn

2/4−2.

Finally we consider the case where fi 6= f̌i. The characteristic polyno-
mial of s is (f1f2 . . . fmf̌1f̌2 . . . f̌m)

k, and deg fi = r ≥ 1. Then CG(s) ∼=
GLk(q

2r)m and n = 2krm. Applying (3), we get

N(s) >
f(q, n)

qrmk(k+1)
>
q
n(n+1)
2

qmrk(k+1)
> q

n2

2
−n
2
k ≥ q

n2

4 ,

and so we are done with the inductive step.

Now we prove the following theorem which is of independent interest:

Theorem 3.9 Let q be a power of a prime p and let ` = 0 or a prime
coprime to gcd(n, q + 1). Assume V is an `-modular absolutely irreducible
representation of GUn(q) which is reducible on restriction to SUn(q). Then

dimV > q
n2

4
−2.

Proof 1) Let G := GUn(q), S := SUn(q), Z := Z(G). Consider the
subgroups A,B of G which contain S and such that A/S = O`(G/S) and
B/S = O`′(G/S). Since (G : ZS) = gcd(n, q + 1) is coprime to `, we have
A ≤ ZS. For X CG, let κGX(V ) denote the total number of irreducible con-
stituents of the X-module V |X . Similarly, we choose U to be an irreducible
constituent of the A-module V |A, and let κAY (U) denote the total number
of irreducible constituents of the Y -module U |Y for Y C A. Since A ≤ ZS,
every S-irreducible constituent W of U |S is A-invariant. But A/S is cyclic,
hence W extends to A. In other words, κAS (U) = 1. By our assumptions,
κGS (V ) > 1, and by [14, Lemma 3.3],

κGS (V ) = κ
G
A(V ) ∙ κ

A
S (U).

Hence κGA(V ) > 1.

Recall that G/A is a cyclic `′-group. The latter inequality implies by
[14, Lemma 3.2] that there is some nontrivial irreducible `-modular repre-
sentation L of G which is trivial on A such that V ' V ⊗ L.

2) Observe that the dual group G∗ of G = GUn(q) can be identified with
G. Hence, Irr(G) is the disjoint union of the rational series E(G, (x)), where
(x) runs over the set of conjugacy classes (x) of semisimple elements x ∈ G,
cf. [4, 21]. Furthermore, according to the main result of [3], Irr(G) can
be partitioned into the disjoint union of E`(G, (y)), where each E`(G, (y)),
labelled by the conjugacy class (y) of semisimple `′-elements y ∈ G, and
defined by

E`(G, (y)) =
⋃

t∈CG(y), t is an `−element

E(G, (yt)),

is a union of `-blocks.

Assume that V belongs to the union E`(G, (s)) of blocks labelled by the
conjugacy class of a semisimple `′-element s ∈ G. Since S acts trivially on
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L but L is nontrivial, we can also find a nontrivial `′-element z ∈ Z such
that the Brauer character of L is just the restriction to `′-elements in G
of the semisimple character χz labelled by z. According to [4, Proposition
13.30] and its proof, the tensor product with χz defines a bijection between
the series E(G, (x)) and E(G, (xz)), hence also between the unions of blocks
E`(G, (s)) and E`(G, (sz)). Since V ' V ⊗ L, we conclude that (s) = (sz),
i.e. s and sz are conjugate in G. By Lemma 3.8, N(s) = (G : CG(s))p′ >

qn
2/4−2. Finally, by [11, Proposition 1], dim V is divisible by N(s), whence
the statement follows.

Lemma 3.10 Let S = SUn(2) with n ≥ 10 and let

D =

{
(2n−1)(2n−1+1)(2n−2−1)

34
, n even.

(2n+1)(2n−1−1)(2n−2−23)
34

, n odd

If 1S 6= χ ∈ Irr(S) and χ(1) < D, then χ is either one of three Weil
characters, or one of the characters D◦α defined in [18, Proposition 6.3].

Proof Let G = GUn(2) and let θ ∈ Irr(G) be such that χ is an irreducible
constituent of θ|S . Clearly, θ(1) ≤ 3χ(1) < 3D < 2n

2/4−2. It then follows
by Theorem 3.9 that θ|S is irreducible, whence χ = θ|S . In particular,
θ(1) = χ(1) < D. Now the statement follows from [18, Proposition 6.6].

Lemma 3.11 If g ∈ S = SUn(2) is unbreakable, n ≥ 10, and D is as in
the previous lemma, then

F1(g) =
∑

1<χ(1)<D, χ real

|χ(g)|
χ(1)

<

{
0.09, if n ≥ 11,
0.28, if n = 10.

Proof 1) It is well known that among the three Weil characters ζin,2 of

S, only the unipotent character ζ := ζ0n,2 is real. Next we show that the
character D◦α is real if and only if α ∈ Irr(GU2(2)) is real. The characters
D◦α are constructed in [18, §6.1] by embedding a central product H ∗ S in
GU2n(2) for H := GU2(2) and restricting the reducible Weil character

ϕ(g) = (−2)dimF4 Ker(g−1)

of GU2n(2) to H ∗ S. In particular,

ϕ|H∗G =
∑

α∈Irr(H)

α⊗Dα.

By [18, Proposition 6.3], D◦α = Dα − κα ∙ 1S with κα ∈ {0, 1}; in particular,
D◦α is real if and only if Dα is real. Since ϕ is real,

∑

α∈Irr(H)

ᾱ⊗ D̄α = ϕ̄|H∗G = ϕ|H∗G =
∑

α∈Irr(H)

ᾱ⊗Dᾱ,

whence D̄α = Dᾱ. Also by [18, Proposition 6.3], for α, β ∈ Irr(H), Dα = Dβ
precisely when α = β. We conclude that D◦α is real precisely when α is real.

2) Observe that H = GU2(2) has exactly three real irreducible charac-
ters: α1 = 1H , α2 the Steinberg character (of degree 2), and one more, α3,
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of degree 1 (which is χ
(1,2)
q−1 in the notation of Table III of [18]). Thus the

summation in F1(g) involves 4 characters: ζ, and χi = D
◦
αi
for 1 ≤ i ≤ 3.

First by [25, Lemma 4.1] we have

ζ(g) =
(−1)n

3

∑

λ∈F×4

(−2)e(g,λ).

By Corollary 3.7,
∑
λ∈F×4

e(g, λ) ≤ 6. It follows that |ζ(g)| ≤ (26+2)/3 = 22.
Next,

Dα(g) =
1

|H|

∑

x∈H

α(x)ϕ(xg)

for α ∈ Irr(H). The computations in the proof of [18, Proposition 6.9] and
Corollary 3.7 show that, for every x ∈ H, |ϕ(xg)| ≤ 212. Since |α(x)| ≤ α(1),
it follows that |Dα(g)| ≤ 212α(1) and so |D◦α(g)| ≤ 2

12α(1) + 1. Now for
i = 1, 3 we have αi(1) = 1 and χi(1) ≥ (2n − 2)(2n−1 − 4)/9, whereas for
i = 2 we have αi(1) = 2 and χi(1) > 2(2

n − 2)(2n−1 − 4)/9, cf. [18, Table
III]. Also, ζ(1) ≥ (2n − 2)/3. It follows that

F1(g) <
66

2n − 2
+ 2 ∙

212 + 1

(2n − 2)(2n−1 − 4)/9
+

213 + 1

2(2n − 2)(2n−1 − 4)/9

which is less than 0.09 if n ≥ 11 and 0.28 if n = 10.

Now we prove the main result of this subsection, which also completes
the proof of Theorem 1:

Proposition 3.12 Theorem 1 holds for G = SUn(2) with n ≥ 10.

Proof It suffices to show that every unbreakable g ∈ G is a product of two
squares. We have k(G) < (8.26) ∙ 2n−1 by [6, 3.10], so in the usual fashion
we see that

F2(g) =
∑

χ(1)≥D

|χ(g)|
χ(1)

≤

√
8.26 ∙ 2(n−1)/2 ∙ 2(3n−6)/2 ∙ 32

D
,

where D is as defined in Lemma 3.10. For n ≥ 11 this yields F2(g) < 0.74.
For n = 10 we use the stronger bound for |CG(x)| in Lemma 3.5 to obtain
F2(x) ≤

√
8.26 ∙ 29/2 ∙ 215/2 ∙ 32/D, which is less than 0.07. On the other

hand, F1(g) < 0.09 for n ≥ 11 and F1(g) < 0.28 for n = 10 by Lemma 3.11.
Thus F1(g) + F2(g) < 0.83 for all unbreakable g ∈ G, and so the statement
follows.
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