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Abstract

We propose a general conjecture on decompositions of finite simple
groups as products of conjugates of an arbitrary subset. We prove
this conjecture for bounded subsets of arbitrary finite simple groups,
and for large subsets of groups of Lie type of bounded rank. Some
of our arguments apply recent advances in the theory of growth in
finite simple groups of Lie type, and provide a variety of new product
decompositions of these groups.

In this paper we propose the following conjecture:

Conjecture There exists an absolute constant c such that if G is a finite
simple group and A is any subset of G of size at least two, then G is a
product of N conjugates of A for some N ≤ c log |G|/ log |A|.

Note that we must have N ≥ log |G|/ log |A| by order considerations,
and so the bound above is tight up to a multiplicative constant.

The above conjecture is a stronger version of a recent conjecture we
posed in [6], where A was assumed to be a subgroup of G. Positive evidence
for the latter conjecture is provided by [7] (when A is a Sylow subgroup) and
[5, 9, 10] (when A is of type SLn), with applications to bounded generation
and expanders. Further results were proved in [6] in various cases where A
is a maximal subgroup of G, but the general case is still open.

In this paper we provide positive evidence for the stronger conjecture
stated above, regarding subsets. One important case where the conjecture
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is known to be true (and widely applied) is when the subset A is a conjugacy
class, or more generally, a normal subset of G; indeed, this is the main result
of [8]. Note also that if G is a group of Lie type of bounded rank, and A is
a bounded subset of G, then the conjecture holds, as shown in [6, 2.3].

The following easy reductions will sometimes be useful. We first claim
that, in proving the conjecture for a subset A, we may assume that 1 ∈ A.
Indeed, let a ∈ A and B = a−1A. Then 1 ∈ B, and if G is a product of N
conjugates of B then it is also a product of N conjugates of A.

Secondly, we claim we may assume there exists x 6= 1 such that 1, x, x−1 ∈
A. Indeed, suppose 1 ∈ A and let x ∈ A be a non-identity element
(whose existence follows from the assumption |A| ≥ 2). Then 1, x, x2 ∈ A2,
hence x−1, 1, x ∈ x−1A2. Assuming the conjecture holds for sets containing
x−1, 1, x we deduce that G is a product of say N ≤ c log |G|/ log |A2| ≤
c log |G|/ log |A| conjugates of x−1A2, hence it is a product of N conjugates
of A2, so G is a product of 2N ≤ 2c log |G|/ log |A| conjugates of A.

Our first result here concerns arbitrary subsets of groups of Lie type of
bounded rank, but provides a slightly weaker bound.

Theorem 1 Let G be a finite simple group of Lie type of rank r, and let
A be any subset of G of size at least 2. Then there is a constant c = c(r)

depending only on r, and a positive integer N ≤ max(3, ( log |G|log |A| )
c), such that

G is a product of N conjugates of A.

Proof. The proof is short but relies on strong tools, most importantly
the recent results on growth of Cayley graphs in [1, 3, 12]. Let G and A be
as in the hypothesis.

By [4, 5.3.9] there exists δ > 0 depending only on r such that every
nontrivial ordinary representation of G has dimension at least |G|δ. Hence
[11, Corollary 1] shows that if |A| > |G|1−δ/3, then A3 = G. Consequently
we may assume that |A| ≤ |G|1−δ/3.

Assume (as we may) that 1, x ∈ A, where x 6= 1.

By [2, Theorem 2], there are l = 8(2r + 1) conjugates xg1 , . . . , xgl of x
which generate G, and hence G = 〈Ag1 , . . . , Agl〉. Define X = Ag1 ∙ ∙ ∙Agl .
Then X contains Agi for all i, and so X generates G. By [12, Theorem 4] or
in an equivalent formulation [1, Theorem 2.3], for any generating set Y of G,
either Y 3 = G or |Y 3| > |Y |1+ε, where ε > 0 depends only on r. (Note that
the statements there only say that |Y 3| > γ|Y |1+ε for a positive constant γ,
but as justified at the beginning of [3, Section 6], we can assume γ = 1 by
taking a smaller value of ε.) Applying this repeatedly to X,X3, X9, . . ., we
obtain

|X3
n

| ≥ min(|G|, |X|(1+ε)
n

) ≥ min(|G|, |A|(1+ε)
n

).

Now choose n minimal such that (1 + ε)n ≥ log |G|
log |A| and let k = 3

n. Then
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Xk = G, and k ≤ ( log |G|log |A| )
b where b = 1 + (log 3/ log(1 + ε)), hence depends

only on r. As X is a product of l conjugates of A, we see that G is a
product of kl conjugates of A. Set N = kl. Then N ≤ 8(2r + 1)( log |G|log |A| )

b.

Since |A| ≤ |G|1−δ/3, it follows that N ≤ ( log |G|log |A| )
c for some c > b depending

only on r. This completes the proof.

Notice that Theorem 1 implies that if A is a subset of G of size at
least |G|α for some fixed α > 0, and r is bounded, then G is a product of
boundedly many conjugates of A, so our conjecture holds in this case (cf.
[6, Theorem 2], which includes an analogous result for maximal subgroups).

In particular, this leads to a host of new product decompositions, as
follows.

Corollary 2 Let Ḡ be a simple adjoint algebraic group of rank r over the
algebraic closure of Fp, where p is a prime, and let σ be a Frobenius mor-
phism of Ḡ such that G(q) = (Ḡσ)

′ is a finite simple group of Lie type over
Fq. Suppose H̄ is a σ-stable subgroup of Ḡ of positive dimension such that
H(q) = H̄σ ∩ G(q) is nontrivial. Then G(q) is equal to a product of f(r)
conjugates of H(q), for a suitable function f .

Proof. It is well known that |H(q)| is at least γq (or γq1/2 for Suzuki and
Ree groups), where γ = γ(r) > 0. As |H(q)| > 1 by hypothesis, it follows
that |H(q)| > qδ with δ = δ(r) > 0. Since |G(q)| < q8r

2
, the conclusion

follows from Theorem 1.

Various particular cases of this are of special interest. For example, it
follows that a simple group G(q) of rank r (not a Suzuki group) is a product
of f(r) conjugate subgroups isomorphic to SL2(q) or PSL2(q). This was
proved in [5, 9] without the conjugacy part of the conclusion, and was one
of the last steps in showing that all families of finite simple groups can be
made into expanders with respect to bounded generating sets.

Moreover, various new product decompositions now follow in a similar
manner. For example, G(q) is a product of f(r) conjugates of any nontrivial
torus T , or of any centralizer CG(q)(g), and so on.

In the second part of this paper we prove our conjecture for finite simple
groups in general, provided the subset A has bounded size. This follows
from the theorem below.

Theorem 3 There exists an absolute constant c such that if G is a finite
simple group, and A is any subset of G of size at least 2, then G is a product
of N conjugates of A for some N ≤ c log |G|.
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Proof. Since the case when G is of Lie type and bounded rank follows
from [6], it suffices to prove the theorem for alternating groups and classical
groups of unbounded rank.

We assume (as we may) that 1, x, x−1 ∈ A for some x 6= 1.

We start with the alternating case G = An. It is easy to choose a 3-cycle
y ∈ An such that [x, y] 6= 1 has support of size at most 5. Let C = xAn ,
the conjugacy class of x. Since [x, y] = x−1xy ∈ C−1C, we see that C−1C
contains either a 3-cycle, a 5-cycle or a double transposition. In all cases we
deduce that (C−1C)2 contains all double transpositions in An.

Since x, x−1 ∈ A, some product of 4 conjugates of A contains {1, t} for
a double transposition t ∈ An. Denote by τ a fixed transposition of Sn, say
(1, 2). We now use our result that Sn−2 (and therefore An−2) is contained in
a product Sg12 ∙ ∙ ∙S

gk
2 of k ≤ 320n log n conjugates of S2 = {1, τ}, by Lemma

3.7 with m = 2 in [6].

By adding the transposition (n−1, n) to the transpositions τ gi we obtain
a conjugate of t for any copy of Sgi2 and in this way we see that An−2 is a
product of at most 320n log n conjugates of the set {1, t}. (We only get
even powers of the transposition (n− 1, n) on the last two points since the
elements of An−2 always end up as products of even number of conjugates
of τ).

Finally An is a product of 3 conjugates of An−1 (since a product of 2
distinct conjugates of An−1 can move 1 to any point in 1, . . . , n). Therefore
An is a product of 9 conjugates of An−2. Thus, setting c = 9 × 320 × 4 =
11520, we obtain An as a product of at most cn log n conjugates of A. This
concludes the proof for alternating groups.

Now let G = PCln(q), a projective classical group of (unbounded) di-
mension n over Fq. Let x be as above. By the proof of [2, 2.2], there are
elements y1, . . . yk ∈ G with k ≤ 3 such that the element u = [x, y1, . . . , yk]
is a non-identity long root element of G. Now u is equal to a product of
2k ≤ 8 conjugates of x±1, hence lies in a product of at most 8 conjugates of
A.

Replacing u by a conjugate, we may write u = uα(1) for a long root α.
Consider the subgroup H = 〈u±α(t) : t ∈ Fq〉 ∼= SL2(q) of G. As in [6, 2.3],
we see that H is equal to a product of at most c1 log q conjugates of the set
{1, u}, hence it is contained in a product of at most c2 log q conjugates of A.

By [10], there is a Levi subgroup X of G of type SLm such that G is a
product of boundedly many conjugates of X; and by [5, 1.1], X is a product
of at most c3n

2 conjugates of H. Hence G is equal to a product of c4n
2

conjugates of H. We conclude from the above that G is equal to a product
of at most c5n

2 log q conjugates of A, completing the proof of the theorem.
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