Regular subgroups of primitive permutation groups

Martin W. Liebeck
Department of Mathematics
Imperial College
London SW7 2BZ, UK
Cheryl E. Praeger
School of Mathematics and Statistics
University of Western Australia
Crawley, WA 6009, Australia
Jan Saxl
DPMMS
CMS, Wilberforce Road
Cambridge CB3 0WB, UK

Contents

1. Introduction 1
2. Preliminaries 9
3. Transitive and antiflag transitive linear groups 12
4. Subgroups of classical groups transitive on subspaces 17
5. Proof of Theorem 1.1: linear groups 28
6. Proof of Theorem 1.1: unitary groups 32
7. Proof of Theorem 1.1: orthogonal groups in odd dimension 36
8. Proof of Theorem 1.1: orthogonal groups of minus type 39
9. Proof of Theorem 1.1: some special actions 41
10. Proof of Theorem 1.1: remaining symplectic cases 50
11. Proof of Theorem 1.1: orthogonal groups of plus type 57
12. Proof of Theorem 1.1: exceptional groups of Lie type 62
13. Proof of Theorem 1.1: alternating groups 62
14. Proof of Theorem 1.1: sporadic groups 65
15. Proof of Theorem 1.4 and Corollary 1.3 70
16. The tables in Theorem 1.1 74
References 77

Abstract

We address the classical problem of determining finite primitive permutation groups G with a regular subgroup B. The main theorem solves the problem completely under the assumption that G is almost simple. While there are many examples of regular subgroups of small degrees, the list is rather short (just four infinite families) if the degree is assumed to be large enough, for example at least 30 !. Another result determines all primitive groups having a regular subgroup which is almost simple. This has an application to the theory of Cayley graphs of simple groups.

[^0]
1 Introduction

The problem of investigating finite primitive permutation groups containing a regular subgroup goes back more than one hundred years. Burnside investigated first the groups of prime degree, and later showed that primitive groups containing a cycle of prime-power degree p^{a} are 2 -transitive, except in the case $a=1$. (A minor error in his proof was noticed and corrected independently by Peter Neumann and Wolfgang Knapp (see [27]).) Schur generalized this to primitive groups containing a regular cycle of any composite order. Burnside suggested that perhaps the existence of a regular p-subgroup B forced the primitive group to be 2 -transitive, except in the case where B is elementary abelian. However, examples had already existed, due to W. Manning, of simply primitive groups in product action, with regular subgroups which are direct products of cyclic subgroups of equal orders (not necessarily prime - see [44, Theorem 25.7]). Wielandt investigated the problem extensively. Section 25 of his book [44] is devoted to the problem. To mark the contribution of Burnside, he coined the term B-group for any group B whose presence as a regular subgroup in a primitive group G forces G to be 2-transitive. He gave a number of classes of examples of groups which are B-groups [44, Section 25], some due to Bercov and Nagai. Wielandt also gave the first examples of non-abelian B-groups, proving that all dihedral groups are B-groups [44, Theorem 25.6].

With the classification of finite simple groups, one can make much further progress. By a result of Cameron, Neumann and Teague [8], if S denotes the set of natural numbers n for which there exists a primitive group of degree n other than A_{n} and S_{n}, then S has zero density in \mathbb{N}. Hence, for almost all integers n, all groups of order n are B-groups. Moreover, the 2 -transitive permutation groups are known. It is natural to extend the problem and ask also for a list of all pairs (G, B) with G a primitive permutation group on a finite set Ω and B a regular subgroup. This is the problem we are considering here.

Our main method of analysis is to view this situation as a group factorization: for a pair (G, B) as above and a point α in the set Ω, the transitivity of B implies that $G=B G_{\alpha}$, and since B is regular on Ω we have in addition that $B \cap G_{\alpha}=1$. The study of such factorizations was proposed by B. H. Neumann in his 1935 paper [38]. He called a factorization $G=A B$, where A, B are subgroups such that $A \cap B=1$, a general product, and viewed it as a generalization of a direct product (without the requirement that A and B be normal). In [38], among other things, the equivalence was pointed out
between general products $G=A B$ and transitive actions of G with point stabiliser A and regular subgroup B. According to Neumann [39, p. 65], general products were later called Zappa-Rédei-Szép products (see [41, 46]), and moreover they had already occurred in the book of de Séguier [10] in 1904. Independently of [38] and in the same year, G.A. Miller wrote about group factorizations in [37]. In particular he gave several examples of general products in which G is a finite alternating group A_{n} and A is a Mathieu group M_{n} with $8 \leq n \leq 12$, and noted that A_{6} has no nontrivial expression as a general product.

In the more recent literature, general products have come to be better known as exact factorizations, and that is what we shall call them. Attempts to construct them synthetically have been made by P. W. Michor [36], both for groups and in the broader context of graded Lie algebras. (We thank Rudolph Zlabinger for drawing this work to our attention.) In contrast to this, our focus is analytical. We work from a given transitive (or primitive) permutation group G with point stabiliser A, and determine the existence or otherwise of a regular subgroup B.

Thus in our context the exact factorization $G=G_{\alpha} B$ is such that the subgroup G_{α} is maximal and core-free in G, since G acts primitively and faithfully on the set Ω. An outline reduction theorem for such exact factorizations, based on the Aschbacher-O'Nan-Scott theorem, was obtained in [35, Corollary 3]. The main cases left outstanding there were the case where G is almost simple and the case of G in product action. The former is addressed here and solved completely. The latter remains open and we hope to return to it in the future.

It should be mentioned that even for the types of primitive groups in [35, Corollary 3] where regular subgroups always exist (namely, diagonal, twisted wreath and affine types), the problem of determining all regular subgroups remains open; some interesting examples of regular subgroups exist, very different from the obvious ones (see, for example, [17] in the case of affine groups).

Our main result is a classification theorem for almost simple primitive permutation groups with a regular subgroup:

Theorem 1.1 Let G be an almost simple primitive permutation group on a set Ω, with socle L. Suppose that G has a subgroup B which is regular on Ω. Then the possibilities for $G, G_{\alpha}(\alpha \in \Omega)$ and B are given in Tables 16.1-16.3 at the end of the paper.

Remarks (1) All entries in the tables give examples of regular subgroups, and this is verified for each entry as it arises in the proof. The fourth column of each table gives the number of possibilities for B up to conjugacy (except for Table 16.2, where this information is rather clear). Some of the details concerning these numbers were verified by Michael Giudici, using Magma [6]. More information about the sporadic group examples in Table 16.3 can be found in [15].
(2) Some related results on regular subgroups have been obtained independently by other researchers. Wiegold and Williamson [43] found all exact factorizations of alternating and symmetric groups. Recent papers of Jones and Li classify primitive permutation groups with regular cyclic subgroups [21], regular abelian subgroups [28], and regular dihedral subgroups [29]. Li and Seress [30, Theorem 1.2] handle the special case where the degree $|\Omega|$ is square-free and the regular subgroup B lies in L. Regular subgroups of two sporadic groups (HS.2 and $J_{2} .2$) have been found in [18, 22], and all factorizations of sporadic groups are determined in [15]. Finally, some families of almost simple primitive groups have been dealt with independently by Baumeister in $[4,5]$. In particular she handles unitary groups and 8 dimensional orthogonal groups of plus-type; however, for completeness we include our own proofs for these groups.

We remark also on a couple of features of our proof of Theorem 1.1, which may be of independent interest. The first involves the classification of antiflag transitive linear groups, presented in Section 3; this updates and slightly generalizes the famous work of Cameron and Kantor [7] on such groups. The second is the work in Section 4, which contains some detailed results determining the subgroups of classical groups which are transitive on various types of subspaces.

Despite the fairly long lists of regular subgroups in Tables 16.1-16.3, there are essentially only four infinite families:

Corollary 1.2 Let G be an almost simple primitive permutation group of degree n, with $G \nsupseteq A_{n}$ and $n>3 \cdot 29$!, and suppose that G has a regular subgroup B. Then one of the following holds:
(i) B is metacyclic, of order $\left(q^{m}-1\right) /(q-1)$ for some prime power q;
(ii) B is a subgroup of odd order $q(q-1) / 2$ in $A \Gamma L_{1}(q)$ for some prime power $q \equiv 3 \bmod 4$;
(iii) $B=A_{p-2}, S_{p-2}\left(p\right.$ prime), or $A_{p-2} \times 2(p$ prime, $p \equiv 1 \bmod 4)$;
(iv) $B=A_{p^{2}-2}(p$ prime, $p \equiv 3 \bmod 4)$.

Table 1: Almost simple primitive groups sharing a common regular subgroup

inclusions $\operatorname{soc}(G)<\operatorname{soc}(H)$	common regular subgroup B
$A_{p}<A_{p+1}(p$ prime $)$	S_{p-2} or $A_{p-2} \times 2$
$A_{10}<A_{11}<A_{12}$	A_{7}
$L_{2}(11)<M_{11}<A_{11}$	11 or 11.5
$L_{2}(11)<M_{12}$	$[12]$
$L_{2}(23)<M_{24}$	$[24]$
$M_{23}<A_{23}$	23.11
$M_{23}<M_{24}$	$L_{3}(4) .2$ or $2^{4} . A_{7}$
$A_{7}<A_{8}<\left\{A_{9}, S p_{6}(2)\right\}<\Omega_{8}^{+}(2)<S p_{8}(2)$	S_{5}
$S p_{4}(4) .2<S p_{8}(2)$	S_{5}
$S p_{6}(2)<\Omega_{8}^{+}(2)$	$2^{4} \cdot A_{5}$
$S p_{6}(4) \cdot 2<\Omega_{8}^{+}(4) .2$	$L_{2}(16) .4$

Corollary 1.2 is an immediate consequence of Theorem 1.1.
Theorem 1.1 throws up some interesting containments between primitive subgroups of S_{n} which share a common regular subgroup. In the next result we classify all such containments for which the smaller group is almost simple. The proof can be found at the end of Section 15.

Corollary 1.3 Let G be an almost simple primitive permutation group of degree n, not containing A_{n}, such that G contains a regular subgroup B. Then one of the following holds:
(i) $N_{S_{n}}(G)$ is maximal in A_{n} or S_{n};
(ii) $n=8, G=L_{2}(7)<A G L_{3}(2)$, sharing a regular subgroup $B=D_{8}$;
(iii) there is an almost simple group H such that $G<H<S_{n}$ and $\operatorname{soc}(G)<\operatorname{soc}(H)$; the inclusion $\operatorname{soc}(G)<\operatorname{soc}(H)$ and the common regular subgroup B are as in one of the lines of Table 1, and the actions of G, H can be read off from the tables in Section 16.

It can be seen from Table 1 that there are no fewer than seven primitive groups of degree 120 sharing a common regular subgroup (namely S_{5}). Figure 1 gives the lattice of containments among these groups.

Figure 1: Groups of degree 120 sharing a regular subgroup S_{5}

Some of the work discussed above was concerned with deciding whether certain classes of groups are B-groups. In particular, the papers [21, 28, 29] of Jones and Li deal with the cases of cyclic and dihedral regular subgroups. At the opposite end, we classify in Theorem 1.4 below the primitive permutation groups with regular almost simple subgroups. Burnside already knew examples of simply primitive permutation groups with regular simple subgroups. We discuss these next.

Any group T induces a regular permutation group acting on itself by right multiplication; $x \in T$ maps $y \mapsto y x(y \in T)$. Identifying T with this regular subgroup of $\operatorname{Sym}(T)$, we define the holomorph of T as the normalizer of T in $\operatorname{Sym}(T)$, denoted $\operatorname{Hol}(T)$. This group contains the centraliser $C=$ $C_{\operatorname{Sym}(T)}(T)$ which is isomorphic to T, where each $x \in T$ corresponds to the element c_{x} of C that maps $y \mapsto x^{-1} y(y \in T)$. In general the holomorph is the semidirect product $\operatorname{Hol}(T)=T \cdot \operatorname{Aut}(T)$ with $\operatorname{Aut}(T)$ acting naturally, both T and C are regular normal subgroups, and $C \cap T=Z(T)$. Moreover the permutation $\sigma: y \mapsto y^{-1}(y \in T)$ normalizes $\operatorname{Hol}(T)$, interchanges T and $C\left(\sigma: x \leftrightarrow c_{x}\right.$ for each $\left.x \in T\right)$, and centralizes $\operatorname{Aut}(T)$. In the case where T is a non-abelian simple group, the permutation group $\langle\operatorname{Hol}(T), \sigma\rangle \leq \operatorname{Sym}(T)$ is denoted by $D(2, T)$. This is a primitive permutation group of diagonal type, and $C \times T$ is its unique minimal normal subgroup.

The groups $D(2, T)$ form an important family of finite primitive groups having simple regular subgroups, as demonstrated by the following theorem. This theorem also shows that there are infinitely many finite primitive groups with an almost simple regular subgroup that is not simple.

Theorem 1.4 Let G be a primitive permutation group on a finite set Ω of size n, and suppose that G has a subgroup B which is almost simple and acts regularly on Ω. Then one of the following holds:
(i) $G=A_{n}$ or S_{n}, and $|B|=n$;
(ii) there is a non-abelian simple group T such that $G \leq D(2, T)$ with $\operatorname{soc}(G)=T^{2}$, and $B \cong T$;
(iii) G is almost simple, and B and G are as in Table 2 below.

In particular, if B is not simple, then G is almost simple, and either G contains A_{n}, or B, G are as in the lower part of Table 2.

The proof of this theorem appears in Section 15. An immediate consequence is the classification of the almost simple B-groups, recorded in Corollary 1.5 below. In contrast with the situation for simple groups, the non-simple almost simple groups are usually B-groups:

Corollary 1.5 If G is an almost simple group, then G is a B-group if and only if both the following conditions hold:
(i) G is not simple;
(ii) $G \neq S_{p-2}$ (p prime), $L_{2}(16) .4$, or $L_{3}(4) .2$.

Theorem 1.4 has another immediate consequence, concerning the structure of Cayley graphs of finite simple groups. For any group G and subset $S \subseteq G \backslash\{1\}$, the Cayley digraph $\operatorname{Cay}(G, S)$ for G relative to S is the digraph with vertex set G and with an edge from x to y whenever $x y^{-1} \in S$. If $S^{-1}:=\left\{x^{-1} \mid x \in S\right\}$ is equal to S, then the adjacency relation is symmetric, so the Cayley digraph can be regarded as an undirected graph, called a Cayley graph. In particular, if $S=G \backslash\{1\}$, then $\operatorname{Cay}(G, S)$ is a complete graph on $n=|G|$ vertices with automorphism group S_{n}. In all cases the group G, acting by right multiplication, is admitted as a subgroup of automorphisms which is regular on the set of vertices. Moreover, $\operatorname{Cay}(G, S)$ is connected if and only if S generates G.

A general analysis was made in [13] of the possible structures of the automorphism groups of $\operatorname{Cay}(T, S)$ for finite nonabelian simple groups T. As a consequence of [13, Theorem 1.1], for generating sets S with $S=S^{-1}$ and $S \neq T \backslash\{1\}$, one does not expect the automorphism group of $\operatorname{Cay}(T, S)$ to be vertex-primitive, a notable exceptional case being that in which S is a union of T-conjugacy classes; in the latter case the automorphism group has socle T^{2}, and is a primitive subgroup of $D(2, T)$. Restating Theorem 1.4 in the language of Cayley graphs, in the case where $B=T$ is simple, gives a classification of all vertex-primitive Cayley digraphs of finite nonabelian simple groups. If the automorphism group contains A_{n}, where $|T|=n$, or contains $L_{2}(59)$ with $T=A_{5}$, then the automorphism group is 2-transitive

Table 2: Almost simple regular subgroups

B	$\operatorname{soc}(G)$	$(\operatorname{soc}(G))_{\alpha}(\alpha \in \Omega)$	Remark
$\begin{aligned} & A_{5} \\ & A_{7} \\ & A_{p^{2}-2} \\ & (\text { prime } \equiv 3 \bmod 4) \end{aligned}$	$\begin{aligned} & L_{2}(59) \\ & A_{11}, A_{12} \\ & A_{p^{2}+1} \end{aligned}$	$\begin{aligned} & 59 \cdot 29 \\ & M_{11}, M_{12} \text { (resp.) } \\ & L_{2}\left(p^{2}\right) .2 \end{aligned}$	
$\begin{aligned} & S_{p-2} \\ & (p \geq 7 \text { prime }) \end{aligned}$	A_{p}, A_{p+1}	$p \cdot \frac{p-1}{2}, L_{2}(p)$ (resp.)	
S_{5}	A_{9} $S p_{4}(4)$ $S p_{6}(2)$ $\Omega_{8}^{+}(2)$ $S p_{8}(2)$	$\begin{aligned} & L_{2}(8) .3 \\ & L_{2}(16) \cdot 2 \\ & G_{2}(2) \\ & \Omega_{7}(2) \\ & O_{8}^{-}(2) \end{aligned}$	$G=L .2$
$L_{2}(16) .4$	$S p_{6}(4), \Omega_{8}^{+}(4)$	$G_{2}(4), \Omega_{7}(4)$ (resp.)	$G \geq L .2$
$L_{3}(4) .2$	M_{23}, M_{24}	23.11, $L_{2}(23)$ (resp.)	

on vertices, implying that the generating set $S=T \backslash\{1\}$. If we assume this is not so, then these cases of Theorem 1.4 do not arise in the Cayley graph setting. Thus we obtain Theorem 1.6 below as a consequence of Theorem 1.4. This completes the results of [13] for vertex-primitive Cayley digraphs.

Theorem 1.6 Let T be a simple group, and suppose that T has a generating set $S=S^{-1}$ such that the Cayley graph Cay (T, S) has automorphism group acting primitively on vertices, and is not a complete graph. Then one of the following holds:
(i) S is a union of conjugacy classes of T;
(ii) $T=A_{p^{2}-2}$, with p prime, $p \equiv 3 \bmod 4$.

Remark In both (i) and (ii) there are examples of vertex primitive, noncomplete Cayley graphs. This was discussed in the preamble to the theorem for case (i). For case (ii), observe from Table 16.2 that the group $A_{p^{2}+1}$ acting primitively on the cosets of a maximal subgroup $L_{2}\left(p^{2}\right) .2$ possesses a regular subgroup $A_{p^{2}-2}$; hence any orbital graph for this $A_{p^{2}+1}$ is necessarily a Cayley graph for the regular subgroup $A_{p^{2}-2}$. The smallest case is $p=3$, $T=A_{7}$.

Cayley graphs for these groups have arisen also as exceptional examples in a different context. In [45] a study of cubic, s-arc transitive, Cayley graphs for finite non-abelian simple groups revealed that there are exactly two such graphs for which $s>2$, and these are both 5 -arc transitive Cayley graphs for A_{47} with automorphism group A_{48}. However, neither of these graphs is vertex-primitive.

There is one further application that we should mention. Exact factorizations of finite groups can be used to obtain semisimple Hopf algebras. The construction, using bicrossproducts, goes back to Kac and Takeuchi, and is outlined in the paper [12]. In that paper, the exact factorization $M_{24}=L_{2}(23)\left(2^{4} A_{7}\right)$ is used to construct a biperfect Hopf algebra of dimension $\left|M_{24}\right|$. (A Hopf algebra H is biperfect if neither H nor H^{*} has any non-trivial 1-dimensional representations.) It is not known whether there exist biperfect Hopf algebras of smaller dimension. For the bicrossproduct construction, one needs an exact factorization of a group G with both factors perfect and self-normalizing in G, see [12].

The layout is as follows. After some preliminaries in Section 2, we present in Section 3 the classification of antiflag transitive linear groups, remarked
upon earlier. Section 4 contains some detailed results determining the subgroups of classical groups which are transitive on various types of subspaces. Sections 5-11 contain the proof of Theorem 1.1 for the classical groups, which is by far the bulk of the proof; the proofs for the exceptional groups of Lie type, the alternating groups and the sporadic groups are given in the following much shorter Sections $12-14$. Section 15 contains the proofs of Theorem 1.3 and Corollary 1.2, and finally Section 16 comprises Tables 16.1 -16.3 , referred to in the statement of Theorem 1.1.

2 Preliminaries

In this section we collect various results from the literature which will be needed in our proofs.

Notation First we introduce some notation for certain types of subgroups in classical groups. Let G be a finite almost simple classical group with socle L and associated vector space V. As usual, denote by P_{i} the parabolic subgroup of G obtained by deleting the i th node of the standard Dynkin diagram; so P_{i} is the stabilizer of a totally singular i-dimensional subspace of V, except when $L=P \Omega_{2 m}^{+}(q)$ and $i=m-1$. In this last case there are two L-orbits on totally singular m-spaces, P_{m-1} and P_{m} being the stabilizers of representatives of the different orbits. Also $P_{i j}$ denotes the intersection of two parabolic subgroups P_{i} and P_{j} sharing a common Borel subgroup.

When $L=L_{n}(q)$, denote by $N_{1, n-1}$ the stabilizer of a pair of complementary subspaces of V of dimensions $1, n-1$.

When $L=S p_{n}(q)$ with q even, write O^{ϵ} for the normalizer in G of the natural subgroup $O_{n}^{\epsilon}(q)$ of L.

Now assume G is unitary, symplectic or orthogonal, and let W be a nonsingular subspace of V of dimension i. We denote the stabilizer G_{W} of W in G by N_{i}, N_{i}^{+}or N_{i}^{-}as follows:
$G_{W}=N_{i}$, if G is unitary or symplectic, or if $L=P \Omega_{2 m}^{ \pm}(q)$ and i is odd;
$G_{W}=N_{i}^{\epsilon}(\epsilon= \pm)$, if i is even, G is orthogonal and W has type O^{ϵ};
$G_{W}=N_{i}^{\epsilon}(\epsilon= \pm)$, if i is odd, $L=P \Omega_{2 m+1}(q)\left(q\right.$ odd) and W^{\perp} has type O^{ϵ}.

For a classical subgroup H of G, we will sometimes write $P_{i}(H), N_{i}(H)$, etc. for the relevant parabolic subgroup P_{i} or nonsingular subspace stabiliser N_{i} in H. Also q will always denote a power $q=p^{a}$ of a prime p, and when
we write $\log q$ we will mean $\log _{p} q=a$. Finally for such a $q=p^{a}$, we denote by q_{n} a primitive prime divisor of $q^{n}-1$, that is, a prime which divides $p^{a n}-1$ but not $p^{i}-1$ for $1 \leq i<a n$. By [47], such a prime exists except in the cases where $(p, a n)=(2,6)$ or $a n=2, p+1=2^{b}$.

The first two lemmas of this section concern the classification of involution classes in symplectic and orthogonal groups in characteristic 2, and are taken from [2, Sections 7,8].

Let V be a vector space of even dimension $2 m$ over a finite field of characteristic 2 , and let (,) be a non-degenerate symplectic form on V with corresponding symplectic group $S p(V)$. For an involution $t \in S p(V)$, define

$$
V(t)=\{v \in V:(v, t(v))=0\} .
$$

The Jordan form of t is $\left(J_{2}^{l}, J_{1}^{2 m-2 l}\right)$ for some l, where J_{i} denotes a Jordan block of size i.

Lemma 2.1 Let V be a vector space of dimension $2 m$ over a field of characteristic 2. The conjugacy classes of involutions in $S p(V)$ have representatives

$$
\begin{aligned}
& a_{l}(l \text { even }, 2 \leq l \leq m), \\
& b_{l}(l \text { odd }, 1 \leq l \leq m), \\
& c_{l}(l \text { even }, 2 \leq l \leq m),
\end{aligned}
$$

where a_{l}, b_{l}, c_{l} all have Jordan form $\left(J_{2}^{l}, J_{1}^{2 m-2 l}\right)$, and

$$
V\left(a_{l}\right)=V, V\left(b_{l}\right) \neq V, V\left(c_{l}\right) \neq V
$$

Now assume $m \geq 2$ and let $O^{\epsilon}(V)$ be an orthogonal group on V of type $\epsilon \in\{+,-\}$ lying in $S p(V)$, with commutator subgroup $\Omega^{\epsilon}(V)$.

Lemma 2.2 (i) Involutions in $O^{\epsilon}(V)$ are conjugate in $O^{\epsilon}(V)$ if and only if they are conjugate in $S p(V)$.
(ii) a_{l} lies in $\Omega^{+}(V)$ for all l, and in $\Omega^{-}(V)$ for all l except for $l=m$ (m even); for m even, a_{m} does not lie in $O^{-}(V)$.
(iii) b_{l} lies in $O^{+}(V)$ and in $O^{-}(V)$, but not in $\Omega^{\epsilon}(V)$.
(iv) c_{l} lies in $\Omega^{+}(V)$ and in $\Omega^{-}(V)$.

Corollary 2.3 If $\epsilon=+$, or if $\epsilon=-$ and m is odd, then every involution class representative a_{l}, b_{l}, c_{l} lies in $O^{\epsilon}(V)$. If $\epsilon=-$ and m is even, then every involution class representative except a_{m} lies in $O^{\epsilon}(V)$.

We shall also need some information about unipotent elements of symplectic and orthogonal groups in odd characteristic, taken from [42, pp.3639].

Lemma 2.4 Let q be a power of an odd prime, and let u be a unipotent element of $G L_{n}(q)$ with Jordan form $\left(J_{1}^{n_{1}}, J_{2}^{n_{2}}, \ldots\right)$. Then the following hold.
(i) u is similar to an element of $S p_{n}(q)$ if and only if n_{i} is even for each odd i.
(ii) u is similar to an element of some orthogonal group $O_{n}(q)$ if and only if n_{i} is even for each even i.
(iii) Assume that n is even, and also that n_{i} is even for each even i. If $n_{j}>0$ for some odd j, then u is similar to elements of both $O_{n}^{+}(q)$ and $O_{n}^{-}(q)$. Otherwise, u is similar to an element of $O_{n}^{+}(q)$ but not of $O_{n}^{-}(q)$.

The next lemma gives some basic information on the representations of $G=S L_{2}(q)(q$ even $)$ in characteristic 2. If V is an $\mathbb{F}_{q} G$-module, denote by $V^{\left(2^{i}\right)}$ the $\mathbb{F}_{q} G$-module V with G-action twisted by a Frobenius 2^{i}-power automorphism (i.e. with action $v * g=v g^{\left(2^{i}\right)}$ for $v \in V, g \in G$).

Lemma 2.5 Let $G=S L_{2}\left(2^{e}\right)$ with $e \geq 2$, and let $W=V_{2}\left(2^{e}\right)$ be the natural 2 -dimensional module for G. Write $F=\mathbb{F}_{2^{e}}$, and let V be an irreducible $F G$-module.
(i) Then $V \cong W^{\left(2^{i_{1}}\right)} \otimes \cdots \otimes W^{\left(2^{i_{k}}\right)}$ for some i_{1}, \ldots, i_{k} satisfying $0 \leq i_{1}<$ $\cdots<i_{k}<e$.
(ii) If $H^{1}(G, V) \neq 0$ then $V \cong W^{\left(2^{i}\right)}$ for some i, in which case $H^{1}(G, V)$ has dimension 1 .

Proof Part (i) is immediate from Steinberg's tensor product theorem, and (ii) follows from [1, 4.5].

We conclude this section with a lemma (essentially the main theorem of [34]) that relates our exact factorization $G=B G_{\alpha}$, with G almost simple and G_{α} maximal, with a maximal factorization of G or a closely related subgroup. For an almost simple group G with socle L, and a subgroup A of G, we write $A \max ^{-} G$ to mean that A is maximal among core-free subgroups of G (so that all overgroups of A in G contain L), and we write $A \max ^{+} G$ to mean that A is both core-free and maximal in G. Note that, for any subgroup B of G it is always possible to choose an overgroup B^{*}
of B such that $B^{*} \max ^{-} G$. An expression $G=A B$ is called a maximal factorization if both $A \max ^{+} G$ and $B \max ^{+} G$, and a $\max ^{-}$factorization if both $A \max ^{-} G$ and $B \max ^{-} G$.

In the next result, notation in the table is as defined at the beginning of this section.

Lemma 2.6 Let G be a finite almost simple group with socle L, and let $G=A B$, where $A \max ^{+} G$. Let B^{*} satisfy $B \leq B^{*} \leq G$ and $B^{*} \max ^{-} G$, and set $G^{*}:=B^{*} L, A^{*}=A \cap G^{*}$.

Then $G^{*}=A^{*} B^{*}$, and either this is a maximal factorization (determined by [33]), or $L, A \cap L, B^{*} \cap L$ are as in one of the lines of the following table.

L	$A \cap L$	$B^{*} \cap L$
$L_{2 m}(q)($ with $(q-1, m) \neq 1)$	$N_{1,2 m-1}$	$N_{L}\left(P S p_{2 m}(q)\right)$
$P \Omega_{2 m}^{+}(q)(q$ odd,m odd $)$	$N_{L}\left(G L_{m}(q) /\langle-1\rangle\right)$	N_{1}
$P \Omega_{8}^{+}(3)$	$\Omega_{7}(3)$	$\Omega_{6}^{+}(3) .2$
$P \Omega_{8}^{+}(3)$	$\Omega_{8}^{+}(2)$	$P_{i j}(i, j \in\{1,3,4\})$
$P \Omega_{8}^{+}(3)$	$2^{6} . A_{8}$	$P_{i}(i \in\{1,3,4\})$
M_{12}	A_{5}	M_{11}

Proof Since $A \max ^{+} G$, we have $G=A L$. Moreover, $G=A B^{*}$ is a $\max ^{-}$ factorization. Now the result follows directly from [34, Theorem].

3 Transitive and antiflag transitive linear groups

Let $V=V_{n}(q)$ be a vector space of dimension n over \mathbb{F}_{q}. An antiflag of V is an unordered pair $\{\alpha, H\}$, where α is a 1 -space in V and H is a hyperplane not containing α. A subgroup of $\Gamma L_{n}(q)$ is antiflag transitive if it is transitive on the set of all antiflags. An important role in our proofs is played by the classification of all antiflag transitive subgroups of $\Gamma L_{n}(q)$, achieved by Cameron and Kantor in [7]. However, a few errors in their conclusion have come to light over the years (see for example [33, Proposition B, p.45]). The source of the error is [7, p.401, line 2], and it can presumably be easily corrected, though such a correction has not appeared in the literature. Moreover, for our purposes we require a slightly more general version of their result, allowing the possibility that the antiflag transitive subgroup contains an element in the coset of a graph automorphism ι of $L_{n}(q)$ (where ι is the inverse-transpose automorphism if $n \geq 3$, and is the identity if $n=2$). Here
we extend the definition of antiflag transitive groups to include subgroups of $\Gamma L_{n}(q) .\langle\iota\rangle$, which is justified since ι acts on the set of antiflags.

In view of all this, we include in this section a full proof of this slightly generalised form of the classification of antiflag transitive groups. Note however that our proof uses the classification of finite simple groups, whereas [7] does not.

We shall need the following well known result of Hering, classifying the subgroups of $\Gamma L_{n}(q)$ which are transitive on 1 -spaces - see [31, Appendix] for a short proof of this result.

Lemma 3.1 Let $H \leq \Gamma L_{n}(q)$ be transitive on the set of 1-spaces of $V_{n}(q)$. Then one of the following holds:
(i) $H \triangleright S L_{a}\left(q^{b}\right)(a b=n, a>1), S p_{a}\left(q^{b}\right)(a b=n, a$ even $)$ or $G_{2}\left(q^{b}\right)^{\prime}(6 b=$ n, q even);
(ii) $H \leq \Gamma L_{1}\left(q^{n}\right)$;
(iii) one of:

$$
\begin{aligned}
& n=2, q \in\{5,7,11,23\}: H \triangleright Q_{8} \\
& n=2, q \in\{9,11,19,29,59\}: H \triangleright S L_{2}(5) \\
& n=4, q=2: H=A_{6} \text { or } A_{7} \\
& n=4, q=3: 2^{1+4} \triangleleft H \leq 2^{1+4} . S_{5} \text { or } H \triangleright S L_{2}(5) \\
& n=6, q=3: H=S L_{2}(13) .
\end{aligned}
$$

Now we are ready to prove the main result of this section, classifying the antiflag transitive subgroups of $\operatorname{Aut}\left(L_{n}(q)\right)$.

Theorem 3.2 Suppose that $H \leq \Gamma L_{n}(q) .\langle\iota\rangle$ is antiflag transitive. Then one of the following holds:
(i) $H \triangleright S L_{n}(q), S p_{n}(q)(n$ even $)$ or $G_{2}(q)^{\prime}(n=6, q$ even $)$;
(ii) $q=2$ or $4, n \geq 4$ is even, and $H \triangleright S L_{n / 2}\left(q^{2}\right), S p_{n / 2}\left(q^{2}\right)$ or $G_{2}\left(q^{2}\right)(n=$ 12); moreover H contains a full group of field automorphisms in each case;
(iii) $n=4, q=2$ and $H=A_{6}$ or A_{7};
(iv) $n=2, q=4$ and $H=\Gamma L_{1}\left(q^{2}\right)=15.4$.

Conversely, each of the possibilities in (i)-(iv) does give rise to examples of antiflag transitive subgroups.

Proof Let $H^{0}=H \cap \Gamma L_{n}(q)$. Then H^{0} has t orbits $(t \leq 2)$ of equal size on the set of antiflags, which has size $q^{n-1} \cdot \frac{q^{n}-1}{q-1}$. If $t=2$ the two H_{0}-orbits are
interchanged by an element of the coset $\iota \Gamma L_{n}(q)$ normalizing H^{0} (where ι is as defined above); in particular we have $n \geq 3$ when $t=2$. By [33, 4.2.1], H^{0} is transitive on $P_{1}(V)$, the set of 1-spaces of $V=V_{n}(q)$.

Fix a point $\alpha=\langle v\rangle \in P_{1}(V)$. For a hyperplane W not containing α we have $H_{\alpha, W}=\left(H^{0}\right)_{\alpha, W}$. If $H_{\{\alpha, W\}}$ interchanges α and W then $t=1, H^{0}$ is transitive on antiflags, and $\left(H^{0}\right)_{\alpha}$ is transitive on the hyperplanes W not containing α. Alternatively if $H_{\{\alpha, W\}}=H_{\alpha, W}$, then $t=2$ and $\left(H^{0}\right)_{\alpha}$ has 2 orbits of equal size on the hyperplanes W not containing α, of which there are q^{n-1}. In particular it follows that if $t=2$ then q is even.

Being transitive on $P_{1}(V)$, the possibilities for H^{0} are given by Lemma 3.1. The groups $A_{6}, A_{7}<L_{4}(2)$ are listed in the conclusion. The other possibilities for H^{0} in 3.1(iii) have q odd; hence if H^{0} were one of them, then t would be 1 and $\left|H^{0}\right|$ would be divisible by q^{n-1}, which is not the case.

Hence we may assume that either $H^{0} \triangleright S L_{a}\left(q^{b}\right), S p_{a}\left(q^{b}\right)(a b=n, a \geq 2)$ or $G_{2}\left(q^{b}\right)^{\prime}(6 b=n)$, or $H^{0} \leq \Gamma L_{1}\left(q^{b}\right)(b=n)$.

Write $F=\mathbb{F}_{q}$ and $K=\mathbb{F}_{q^{b}}$, so that $\alpha=F v$. Clearly $H_{\alpha}^{0}=H_{F v}^{0}$ fixes $K v$, a 1-space over $\mathbb{F}_{q^{b}}$, and, writing $J=\left(H_{\alpha}^{0}\right)^{K v}$, we have $J \leq \Gamma L_{1}\left(q^{b}\right)$. Moreover, J fixes $\alpha=F v$, so cannot contain any scalars in $K^{*} \backslash F^{*}$, and therefore $\left|J \mathbb{F}_{q}^{*} / \mathbb{F}_{q}^{*}\right|$ divides $b \log _{p} q$.

Any F-hyperplane W not containing α intersects $K v$ in an F-space of dimension $b-1$. Consequently J has at most t orbits on such $(b-1)$-spaces, of which there are q^{b-1}. If $t=1$ this implies that q^{b-1} divides $b \log q$, hence either $b=1$ or $b=2, q=2$ or 4 . Both these possibilities are listed in the conclusion. (Note that $\Gamma L_{1}(4)=S L_{2}(2)$ and occurs in (i).)

Now assume that $t=2$. Then q is even, and we have

$$
\begin{equation*}
q^{b-1} \leq 2 b \log q . \tag{1}
\end{equation*}
$$

Hence the possibilities for b, q are

$$
\begin{aligned}
& b=1 \\
& b=2, q=2,4,8 \text { or } 16 \\
& b=3, q=2 \\
& b=4, q=2
\end{aligned}
$$

The cases $b=1$ and $b=2, q=2,4$ are listed in the conclusion. It remains to exclude the other cases.

Consider the case where $H^{0} \leq \Gamma L_{1}\left(q^{b}\right)(b=n)$. Since $t=2$ we must have $\iota \neq 1$, hence $n=b \geq 3$ and $q=2$. If $n=3$ then H^{0} has odd order so H cannot be transitive on the 28 antiflags. And if $n=4$ then
$\left|\Gamma L_{1}\left(2^{4}\right)\right|=2^{3} .3 .5$ is equal to the number of antiflags, so $H=3.2 \times 5.4<$ $L_{4}(2) .2 \cong S_{8}$; however H then contains a conjugate of an involution in the antiflag stabilizer $L_{3}(2) .2$, so cannot be antiflag transitive.

Assume from now on that $H^{0} \triangleright S L_{a}\left(q^{b}\right), S p_{a}\left(q^{b}\right)(a b=n, a \geq 2)$ or $G_{2}\left(q^{b}\right)^{\prime}(6 b=n)$. Consider first the case where $b=2, q=16$. Here equality holds in (1), so we must have

$$
H^{0}=\Gamma L_{a}\left(q^{2}\right), \Gamma S p_{a}\left(q^{2}\right) \text { or } \Gamma G_{2}\left(q^{2}\right)<\Gamma L_{2 a}(q)=\Gamma L_{n}(q)
$$

By assumption, H^{0} is normalized by an element in the coset $\iota \Gamma L_{2 a}(q)$. When $H^{0}=\Gamma L_{a}\left(q^{2}\right)$ or $\Gamma G_{2}\left(q^{2}\right)$, it is clear from the structure of $\operatorname{Aut}\left(H^{0}\right)$ that any group of the form $H^{0} .2$ contains an outer involution; and the same holds when $H^{0}=\Gamma S p_{a}\left(q^{2}\right)$, noting that for $a=4$, the graph automorphism of $\left(H^{0}\right)^{\prime}$ is not induced (indeed, $\left(H^{0}\right)^{\prime}$ is centralized by an element of $\left.\iota \Gamma L_{2 a}(q)\right)$.

We conclude that H^{0} is normalized by an involution $\tau \in \iota \Gamma L_{2 a}(q)$. By [2, 19.8], there are two $G L_{2 a}(q)$-classes of involutions in this coset, with representatives ι (the inverse-transpose map) and ιJ, where

$$
J=\left(\begin{array}{cc}
0 & I_{a} \\
I_{a} & 0
\end{array}\right)
$$

We have $C_{S L_{2 a}(q)}(\iota J)=S p_{2 a}(q)$, while $C_{S L_{2 a}(q)}(\iota)$ is the centralizer of a long root element in $S p_{2 a}(q)$, hence in particular lies in a parabolic subgroup of $S p_{2 a}(q)$.

Of the two involution class representatives above, ι clearly normalizes an antiflag stabilizer, while ιJ does not (it sends $G_{\langle v\rangle}$ to $G_{v^{\perp}}$, where $G=$ $G L_{2 a}(q)$ and the perp is relative to the symplectic form defined by $\left.J\right)$.

We aim to show that H^{0} is normalized by a conjugate of ι. This will give a contradiction, since by assumption, the 2 orbits of H^{0} on antiflags are interchanged by an element of the coset $\iota \Gamma L_{n}(q)$ normalizing H^{0}; this clearly cannot be the case for a conjugate of ι, since ι fixes an antiflag.

Consider the case where $\left(H^{0}\right)^{\prime}=S L_{a}\left(q^{2}\right)$. Write $L=\left(H^{0}\right)^{\prime}$. Suppose a is even. Then the coset $L \tau$ contains an involution, which we may as well label as τ, such that $C_{L}(\tau)=S p_{a}\left(q^{2}\right)$. This is not contained in the centralizer of ι, and hence τ must be $G L_{2 a}(q)$-conjugate to ιJ. Replacing H by a conjugate, we may take $\tau=\iota J$.

Now $C_{S L_{2 a}(q)}(\iota J)=S p_{2 a}(q)$, the symplectic group fixing the form (,) defined by J. Clearly J itself lies in this centralizer, has Jordan form J_{2}^{a}, and satsifies $(v, v J) \neq 0$ for some $v \in V$. By Lemma 2.1, the subgroup
$C_{L}(\tau)=S p_{a}\left(q^{2}\right)$ contains an involution t which is $S p_{2 a}(q)$-conjugate to J. (Recall that a is even.) Then $t \iota J$ is $S p_{2 a}(q)$-conjugate to $J \iota J=\iota$. Thus $t \iota J$ is a conjugate of ι normalizing H^{0}, giving a contradiction as explained above. For $\left(H^{0}\right)^{\prime}=S p_{a}\left(q^{2}\right)$ or $G_{2}\left(q^{2}\right)$, we apply the same argument, starting with an involution τ centralizing $\left(H^{0}\right)^{\prime}$.

To complete this case ($b=2, q=16$), suppose now that $\left(H^{0}\right)^{\prime}=S L_{a}\left(q^{2}\right)$ with a odd and $a \geq 3$. Here we have

$$
S L_{a}\left(q^{2}\right)\langle\phi, \tau\rangle<S L_{2 a}(q)\langle\tau\rangle
$$

where $\phi \in S L_{2 a}(q)$ is an involution inducing a field automorphism on $L=S L_{a}\left(q^{2}\right)$ and τ is an involutory graph automorphism of $G=S L_{2 a}(q)$ normalizing L and commuting with ϕ.

We shall show that τ is G-conjugate to ι. Observe that $C_{L}(\phi \tau)=S U_{a}(q)$, hence $C_{G}(\phi \tau)=S p_{2 a}(q)$. Hence as above we can take $\phi \tau=\iota J$. Now $J \in C_{G}(\iota J)$, and $\phi \in C_{G}(\phi \tau)=C_{G}(\iota J)$. Hence $J, \phi \in C_{G}(\iota J)=S p_{2 a}(q)$. Both J and ϕ have Jordan form J_{2}^{a} on V, and as a is odd they are conjugate in $C_{G}(\iota J)$ (see Lemma 2.1); say $\phi=J^{c}$ with $c \in C_{G}(\iota J)$. Then

$$
\iota^{c}=(\iota J J)^{c}=\iota J \phi=\phi \tau \phi=\tau .
$$

Therefore τ is conjugate to ι, as claimed. As before this gives a contradiction. This completes the proof for the case $b=2, q=16$.

The remaining cases $(b, q)=(2,8),(3,2),(4,2)$ are excluded in entirely the same fashion, and we leave this to the reader.

To complete the proof we justify the last sentence of the statement of the theorem, asserting the existence of antiflag transitive examples in each of conclusions (i)-(iv).

The examples in (i) are easy to justify. This is done in [7] but we give a different argument. Clearly $S L_{n}(q)$ is antiflag transitive. As for $S p_{n}(q)$, any antiflag is of the form $\left(\langle v\rangle, w^{\perp}\right)$ with $w \notin v^{\perp}$, and $S p_{n}(q)$ is transitive on such pairs (by Witt's lemma for example). Finally, for q even we have $G_{2}(q)<$ $S p_{6}(q)$. Since an antiflag $\left(\langle v\rangle, w^{\perp}\right)$ as above is stabilized by a subgroup $S p_{4}(q)$ fixing $\langle v, w\rangle$ pointwise, it is enough to demonstrate the factorization $S p_{6}(q)=G_{2}(q) S p_{4}(q)$. Now $G_{2}(q)$ has a subgroup $L_{2}(q) \times L_{2}(q)$ acting on the natural 6-dimensional module V_{6} as $V_{4} \perp V_{2}$ (it acts as $\Omega_{4}^{+}(q)$ on V_{4} and as $S p_{2}(q)$ on $\left.V_{2}\right)$. Hence, if we take our subgroup $S p_{4}(q)$ to fix V_{2} pointwise, we have $G_{2}(q) \cap S p_{4}(q) \cong L_{2}(q)$, and now arithmetic shows that $S p_{6}(q)=G_{2}(q) S p_{4}(q)$, as required. For completeness, we remark that when $q=2$, while $G_{2}(2)$ is antiflag transitive, in fact $G_{2}(2)^{\prime}$ is not; on the
other hand $G_{2}(2)^{\prime} \times\langle\tau\rangle$ is antiflag transitive, where τ is a suitable graph automorphism of $L_{6}(2)$ (all this can be seen using [9, p.14,46]).

Next we justify the examples in (ii) and (iv). First, [33, Prop. B, p.45] and its proof show that $\Gamma L_{m}\left(q^{2}\right)<\Gamma L_{2 m}(q)$ is antiflag transitive for $q=2$ or 4 (and also that the full group of field automorphisms must be present, as asserted in (ii)). Given this, the antiflag transitivity on $V_{2 m}(q)$ of $\Gamma S p_{m}\left(q^{2}\right)$ (m even) and $\Gamma G_{2}\left(q^{2}\right)(m=6)$ follows from the antiflag transitivity of these groups on $V_{m}\left(q^{2}\right)$.

Finally the examples $A_{6}, A_{7}<L_{4}(2) \cong A_{8}$ in (iii) are well known and follow immediately from the 2-transitivity (on 8 points) of the antiflag stabilizer $L_{3}(2)$.

4 Subgroups of classical groups transitive on subspaces

In this section we study subgroups of classical groups G which are transitive on a G-orbit of subspaces of the natural module for G. The basic starting point is [33], which determines all such maximal subgroups of G.

Our first lemma classifies those types of subspace which admit transitive proper subgroups of G. Recall the subgroup notations $P_{i}, N_{i}, O^{\epsilon}, N_{1, n-1}$ from Section 2.

Lemma 4.1 Let G be an almost simple classical group with socle G_{0}, and let M be one of the following maximal subgroups of G :

$$
P_{i}, N_{i}, O^{\epsilon}, N_{1, n-1}
$$

Suppose that G contains a subgroup H which is transitive on the coset space G / M and does not contain G_{0}. Then one of the following holds:
(i) $G_{0}=L_{n}(q): M=P_{1}, P_{n-1}$ or $N_{1, n-1}$;
(ii) $G_{0}=U_{2 m}(q): M=P_{m}$ or N_{1};
(iii) $G_{0}=P S p_{2 m}(q): M=P_{1}, P_{m}, N_{2}$ or O^{ϵ};
(iv) $G_{0}=\Omega_{2 m+1}(q)(q$ odd, $m \geq 3): M=P_{m}, N_{1}^{-}, N_{1}^{+}(m=3)$ or $N_{2}^{\epsilon}(m=3)$;
(v) $G_{0}=P \Omega_{2 m}^{-}(q)(m \geq 4): M=P_{1}, N_{1}$ or N_{2}^{+};
(vi) $G_{0}=P \Omega_{2 m}^{+}(q)(m \geq 4): M=P_{1}, P_{m-1}, P_{m}, N_{1}, N_{2}^{\epsilon}$ or $N_{3}(m=4)$;
(vii) exceptional cases:

$$
\begin{aligned}
G_{0} & =L_{5}(2): M=P_{2}, P_{3} \\
G_{0} & =U_{3}(q), q=3,5,8: M=P_{1} \\
G_{0} & =U_{4}(3): M=P_{1} \\
G_{0} & =U_{9}(2): M=P_{1}
\end{aligned}
$$

Proof By hypothesis we have $G=H M$. Hence the possibilities for M are given by the tables of maximal factorizations in [33, Tables 1-4], together with Lemma 2.6. The conclusion follows.

In the rest of the section we prove lemmas which give lists of possibilities for the transitive subgroups H such that $G=H M$ in the following cases:

G_{0}	M	reference
$P S p_{2 m}(q)$	N_{2}, O^{-}	Lemmas 4.2,4.6
$U_{n}(q)$	N_{1}	Lemma 4.3
$P \Omega_{2 m}^{\epsilon}(q)$	N_{1}	Lemmas 4.4,4.5

Note that the cases where $G_{0}=L_{n}(q)$ and $M=P_{1}$ or $N_{1, n-1}$ are covered by the results of the previous section, since in these cases the factorization $G=H M$ is equivalent to saying that H is transitive on 1-spaces or antiflags, respectively.

The results in the rest of this section are less precise than those in the previous one, since we make no claim that all subgroups listed in the conclusions are actually transitive on the relevant G-orbit of subspaces. We note also that the results of Lemmas 4.4 and 4.5 cover in addition possibilities for transitive subgroups for the G-action on nondegenerate quadratic forms of type $-\varepsilon$, where $G_{0}=\Omega_{2 m}^{\varepsilon}(q)$ and $\varepsilon= \pm$, since this action is equivalent to the G-action on cosets of N_{1}.

Lemma 4.2 Let B be a subgroup of $\Gamma \operatorname{Sp} p_{2 m}(q)(m \geq 2)$ not containing $S p_{2 m}(q)$, such that B is transitive on the cosets of N_{2}. Then one of the following holds:
(i) $B \triangleright S p_{m}\left(q^{2}\right)(m$ even, $q=2$ or 4$)$ or $S p_{m / 2}\left(q^{4}\right) \quad(m / 2$ even, $q=2)$;
(ii) $B \triangleright G_{2}(q)^{\prime}(m=3, q$ even $), G_{2}\left(q^{2}\right)(m=6, q=2$ or 4$)$, or $G_{2}\left(q^{4}\right)$ ($m=12, q=2$);
(iii) $B \triangleright S L_{2}\left(q^{2}\right)(m=2, q$ even $)$.

Proof We have a factorization $G=B N_{2}$, where G is a group with $S p_{2 m}(q) \leq G \leq \Gamma S p_{2 m}(q)$. Hence by [33] together with Lemma 2.6, one of the following holds:
(α) $B \leq \Gamma S p_{m}\left(q^{2}\right)(q=2$ or 4$)$
(β) $B \leq \Gamma G_{2}(q)(m=3, q$ even $)$
(γ) $m=2$.
Case (α) By [33], $N_{2} \cap S p_{m}\left(q^{2}\right)=S p_{2}(q) \times S p_{m-2}\left(q^{2}\right)$, which fixes an N_{2}-space in $V_{m}\left(q^{2}\right)$. Hence B is transitive on N_{2}-spaces in $V_{m}\left(q^{2}\right)$, and it follows inductively that either B is as in the conclusion, or one of:
(a) $B \triangleright S L_{2}\left(q^{4}\right)$ with $m=4$,
(b) $m=2$.

In (a), the full normalizer of $S L_{2}\left(q^{4}\right)$ in $\Gamma S p_{8}(q)$ is $S L_{2}\left(q^{4}\right)$.[4 $\left.\log q\right]$, while $\left|G: N_{2}\right|=q^{6} \cdot \frac{q^{8}-1}{q^{2}-1}$, hence q^{2} divides $4 \log q$, forcing $q=2$, as in conclusion (i). In (b) we have a factorization of type $S L_{2}\left(q^{2}\right)=B S L_{2}(q)$. By [33] this forces $|B| \leq 17.8$ for $q=4$, whereas $\left|G: N_{2}\right|=4^{2} \cdot 17$. And for $q=2$ we have $G=S p_{4}(2) \cong S_{6}, N_{2}=S_{3} \times S_{3}$ and $B=5.4$; but then $B \cap N_{2}$ contains an involution, so $G \neq B N_{2}$.

Case (β) In the factorization $S p_{6}(q)=G_{2}(q) N_{2}$, we have $G_{2}(q) \cap N_{2}=$ $L_{2}(q)^{2}$ by [33]. Hence if $B \nsupseteq G_{2}(q)^{\prime}$, then there must be a factorization of type $G_{2}(q)=B L_{2}(q)^{2}$. There is no such factorization for $q>2$, and for $q=2$ we get $U_{3}(3) \cdot 2=B\left(S_{3} \times S_{3}\right)$, forcing $B \leq L_{2}(7) \cdot 2$, again by [33]. However $|B|_{2}=2^{4}$ and $U_{3}(3)$ has only one class of involutions, so $B \cap\left(S_{3} \times S_{3}\right)$ contains an involution, showing the above factorization does not exist.

Case (γ) Here we have a factorization of type $S p_{4}(q)=B S p_{2}(q)^{2}$. Assume $q>2$. By [33], q is even and $B \leq N\left(S p_{2}\left(q^{2}\right)\right)$ or $N(S z(q))$. The latter is out, as from $[33,5.17 \mathrm{~b}]$ we see that $S z(q) \cap O_{4}^{+}(q) \leq \Omega_{4}^{+}(q)$, hence $S p_{4}(q) \neq$ $S z(q) \Omega_{4}^{+}(q)$. Consequently $B \leq N\left(S p_{2}\left(q^{2}\right)\right)$. The normalizer of $S p_{2}\left(q^{2}\right)$ in $\Gamma S p_{4}(q)$ is $S p_{2}\left(q^{2}\right) \cdot 2 \log q$, and $\left|G: N_{2}\right|=q^{2}\left(q^{2}+1\right)$. Hence either $B \triangleright S p_{2}\left(q^{2}\right)$, giving conclusion (iii), or q^{2} divides $4 \log q$, contrary to our assumption that $q>2$.

Finally, if $q=2$ then we have a factorization $S_{6}=B\left(S_{3} \times S_{3}\right)$. As above, $B=5.4$ does not work, so we must have $B \geq A_{5}=S L_{2}(4)$, again giving (iii).

This completes the proof of the lemma.

Remark As remarked earlier, the lemma by no means asserts that all subgroups B satisfying (i), (ii) or (iii) in the conclusion give examples which are transitive on N_{2}-spaces. Indeed, with a rather more delicate analysis it is possible to show that the $S p_{m / 2}\left(2^{4}\right)$ and $G_{2}\left(2^{4}\right)$ possibilities in (i) and (ii) do not yield transitive subgroups, but we shall not need this information.

In the next result we use the usual notation for $\Gamma U_{n}(q)$ as a subgroup of $\Gamma L_{n}\left(q^{2}\right)$.

Lemma 4.3 Let B be a subgroup of $\Gamma U_{n}(q)(n \geq 3)$ not containing $S U_{n}(q)$, such that B is transitive on the cosets of N_{1}. Then $n=2 m$ is even, and one of the following holds:
(i) $B \triangleright S p_{2 m}(q), S p_{m}\left(q^{2}\right)$ (m even, $q=2$ or 4) or $S p_{m / 2}\left(q^{4}\right)$ ($m / 2$ even, $q=2$);
(ii) $B \triangleright S L_{m}\left(q^{2}\right)\left(q=2\right.$ or 4) or $S L_{m / 2}\left(q^{4}\right)(m>2$ even, $q=2)$;
(iii) $B \triangleright G_{2}(q)^{\prime}(m=3, q$ even $), G_{2}\left(q^{2}\right)(m=6, q=2$ or 4$)$, or $G_{2}\left(q^{4}\right)$ ($m=12, q=2$);
(iv) one of:

$$
\begin{aligned}
& m=3, q=2: B \triangleright U_{4}(3) \text { or } M_{22} \\
& m=6, q=2: B \triangleright 3 . S u z
\end{aligned}
$$

(v) $B \leq P_{m}$, and modulo the unipotent radical of P_{m}, B induces a subgroup of $\Gamma L_{m}\left(q^{2}\right)$ which is transitive on 1 -spaces.

Proof There is a factorization $G=B N_{1}$, where $S U_{n}(q) \leq G \leq \Gamma U_{n}(q)$. If n is odd there are no such factorizations, so n is even, say $n=2 m$. By [33] together with Lemma 2.6, one of the following holds:
(α) $B \leq P_{m}$
(β) $B \leq N_{G}\left(S p_{2 m}(q)\right)$
(γ) $B \leq N_{G}\left(S L_{m}\left(q^{2}\right)\right)(q=2$ or 4$)$
(δ) one of:

$$
\begin{aligned}
& m=3, q=2: B \leq N\left(U_{4}(3)\right) \text { or } N\left(M_{22}\right) \\
& m=6, q=2: B \leq N(3 . S u z)
\end{aligned}
$$

Case (α) Write $P_{m}=G_{W}$, where W is a totally isotropic m-space. From [33, p.53], we see that $N_{1} \cap P_{m}$ fixes an ($m-1$)-subspace of W, and hence, modulo the unipotent radical of P_{m} we have a factorization $\Gamma L_{m}\left(q^{2}\right)=$ $\bar{B} P_{m-1}$. Hence conclusion (v) holds.

Case (β) Assume $B \nsupseteq S p_{2 m}(q)$. Then from [33, p.56] we see that $N_{1} \cap$ $S p_{2 m}(q)$ is contained in an N_{2}-subgroup of $S p_{2 m}(q)$, and hence B is given by Lemma 4.2. All these groups are in the conclusion, apart from the case

$$
B \triangleright S L_{2}\left(q^{2}\right)(m=2, q \text { even, } q>4) .
$$

We rule this out. Write S for the normal subgroup $S L_{2}\left(q^{2}\right)$ of B.
First observe that $\left|C_{S U_{4}(q)}(S)\right|_{2}=1$: for otherwise, if t is an involution in this centralizer then $\langle t\rangle \times S$ lies in a parabolic subgroup, which must be $q^{4} . G L_{2}\left(q^{2}\right)$; however a Levi subgroup acts irreducibly on the unipotent radical of this parabolic, so this is not possible.

It follows that $|B|_{2}$ divides $\left|S L_{2}\left(q^{2}\right)\right|_{2} \cdot 2 \log q$, and hence as $\left|G: N_{1}\right|_{2}=$ q^{3}, we have $q \mid 2 \log q$. This is impossible as $q>4$.

Case (γ) By [33, p.54], $N_{1} \cap S L_{m}\left(q^{2}\right)$ fixes an antiflag of the space $V_{m}\left(q^{2}\right)$. Hence B is antiflag transitive on this space, so is given by Theorem 3.2. All the possibilities for B are in the conclusion, except for

$$
B=5.4 \times 2<S L_{2}(4) .2 \times 2<G=U_{4}(2) .2 .
$$

We rule out this possible factorization $U_{4}(2) .2=B N_{1}$ with $B=5.4 \times 2$. Note that if such a factorization existed then $\left|B \cap N_{1}\right|$ would be odd, since $\left|G: N_{1}\right|_{2}=8$.

Observe that $B<S_{6} \times 2=S p_{4}(2) \times\langle\sigma\rangle<G$, where σ is an involutory field automorphism of $U_{4}(2)$ and $\sigma \in B$. We write the natural G-module $V=V_{4}\left(2^{2}\right)$ as the heart of the permutation module for S_{6} - that is, as

$$
V=\left\{\left(a_{1}, \ldots, a_{6}\right): \sum a_{i}=0\right\} / T,
$$

where $T=\langle(1,1, \ldots, 1)\rangle$. This space has standard $S p_{4}(2)$-basis

$$
\begin{array}{ll}
e_{1}=(1,1,0,0,0,0)+T, & e_{2}=(0,0,1,1,0,0)+T, \\
f_{1}=(1,0,0,0,0,1)+T, & f_{2}=(0,0,1,0,1,0)+T .
\end{array}
$$

Taking this also to be a standard $U_{4}(2)$-basis of V, we may take σ to be the field automorphism fixing $e_{1}, e_{2}, f_{1}, f_{2}$.

We may take $t=(12)(34) \in B \cap S_{6}$. Then t sends

$$
e_{1} \rightarrow e_{1}, e_{2} \rightarrow e_{2}, f_{1} \rightarrow f_{1}+e_{1}, f_{2} \rightarrow f_{2}+e_{2} .
$$

Now taking ω to be an element of $\mathbb{F}_{4} \backslash \mathbb{F}_{2}$, we check that $t \sigma$ fixes the vector $v=\omega e_{1}+f_{1}$. This vector is nonsingular with respect to the unitary form
on V, so $t \sigma \in B \cap N_{1}$. Thus $B \cap N_{1}$ has even order, and it follows that $G \neq B N_{1}$.

Case (δ) First suppose $m=3, q=2$. If $B \leq N\left(U_{4}(3)\right)$, then since by [33] we have $N_{1} \cap U_{4}(3) \cdot 2^{2}=3^{4} \cdot S_{5}$, we get a factorization $U_{4}(3) \cdot 2^{2}=B P_{2}$, and hence (again by [33]), either $B \triangleright U_{4}(3)$ or $B \leq L_{3}(4) .2^{2}$. In the latter case we get $L_{3}(4) .2^{2}=B\left(A_{5} \cdot 2\right)$, hence either $B \triangleright L_{3}(4)$ or $B \leq L_{3}(2) .2 \times 2$. Any A_{5} in $L_{3}(4)$ is reducible, so B is transitive on 1 -spaces or antiflags in $L_{3}(4)$, so the $L_{3}(2) .2^{2}$ possibility does not occur. We conclude that in this case, $B \triangleright U_{4}(3)$ or $L_{3}(4)$, as in the conclusion.

Likewise, when $B \leq N\left(M_{22}\right)=M_{22} \cdot 2$, we get a factorization $M_{22} \cdot 2=$ $B\left(L_{2}(11) .2\right)$, giving either $B \triangleright M_{22}$ or $B \leq L_{3}(4) .2$. In the latter case we have $\left(L_{2}(11) .2\right) \cap\left(L_{3}(4) .2\right)=A_{5}$ and we see as above that B must contain $L_{3}(4)$.

Finally, consider the case where $m=6, q=2$ and $B \leq N(3 . S u z)=$ 3.Suz.2. Here we get a factorization $S u z .2=B\left(3^{5} . L_{2}(11) .2\right)$, hence either $B \geq S u z$ or $B \leq G_{2}(4) .2$ with $G_{2}(4) \cap 3^{5} . M_{11}=3 . A_{6}$. In the latter case $G_{2}(4) .2=B\left(3 \cdot A_{6} \cdot 2\right)$, and this forces $B \geq G_{2}(4)$. This completes the proof.

Lemma 4.4 Let B be a subgroup of $\Gamma O_{2 m}^{-}(q)(m \geq 2)$ not containing $\Omega_{2 m}^{-}(q)$, such that B is transitive on an orbit of N_{1}-spaces. Then one of the following holds:
(i) $B \triangleright S U_{m}(q)(m$ odd $), S U_{m / 2}\left(q^{2}\right)(m / 2 \geq 3$ odd, $q=2$ or 4$)$ or $S U_{m / 4}\left(q^{4}\right) \quad(m / 4 \geq 3$ odd, $q=2)$;
(ii) $B \triangleright \Omega_{m}^{-}\left(q^{2}\right)(m$ even, $q=2$ or 4$)$ or $\Omega_{m / 2}^{-}\left(q^{4}\right)(m / 2$ even, $q=2)$;
(iii) one of:

$$
\begin{aligned}
& m=2, q=3: \quad B \triangleright A_{5} \\
& m=3, q=3: B \triangleright L_{3}(4) \\
& m=3, q=2 .
\end{aligned}
$$

Proof Assume first that $m \geq 4$. By [33] (and Lemma 2.6), either $B \leq$ $N\left(S U_{m}(q)\right)$ with m odd, or $B \leq N\left(\Omega_{m}^{-}\left(q^{2}\right)\right)$ with m even, $q=2$ or 4 . In the first case there is a factorization of type $\Gamma U_{m}(q)=B N_{1}$, which forces $B \geq S U_{m}(q)$, as in (i). In the second case we get $N\left(\Omega_{m}^{-}\left(q^{2}\right)\right)=B N_{1}$, and then inductively, B satisfies (i) or (ii).

It remains to handle $m<4$. If $m=2$ then $\Gamma O_{2 m}^{-}(q)=\Gamma L_{2}\left(q^{2}\right)$ and $N_{1}=N\left(S L_{2}(q)\right)$. For a factorization of type $L_{2}\left(q^{2}\right)=B L_{2}(q)$, [33] gives
$q=2,3$ or 4 . If $q=2$ or 4 we have $B \triangleright \Omega_{2}^{-}\left(q^{2}\right)$, as in (ii). And for $q=3$ we get $B \triangleright A_{5}$ as in (iii).

Finally, let $m=3$. Here the factorization $\Gamma O_{6}^{-}(q)=B N_{1}$ becomes $\Gamma U_{4}(q)=B N\left(S p_{4}(q)\right)$, and hence either $B \leq N\left(S U_{3}(q)\right)$ or $B \leq N\left(L_{3}(4)\right)$ with $q=3$. In the first case we get a factorization of type $U_{3}(q)=B N_{1}$, hence either $B \geq S U_{3}(q)$ or $q=2$, as in (i) or (iii). And in the second we get $B \triangleright L_{3}(4)$ as in (iii) (no proper subgroups of $L_{3}(4)$ arise, as there is no relevant factorization of $N\left(L_{3}(4)\right)$).

Lemma 4.5 Let B be a subgroup of $\Gamma O_{2 m}^{+}(q)(m \geq 3)$ not containing $\Omega_{2 m}^{+}(q)$, such that B is transitive on an orbit of N_{1}-spaces. Then one of the following holds:
(i) $B \triangleright X_{m}(q), X_{m / 2}\left(q^{2}\right)(q=2$ or 4$)$ or $X_{m / 4}\left(q^{4}\right)(m \geq 8, q=2)$, where $X \in\{S L, S U, S p\}$; moreover m is even for $X_{m}(q)=S p_{m}(q)$ or $S U_{m}(q)$;
(ii) $B \triangleright G_{2}(q)^{\prime}(m=6, q$ even $), G_{2}\left(q^{2}\right)(m=12, q=2$ or 4$)$, or $G_{2}\left(q^{4}\right)$ ($m=24, q=2$);
(iii) $B \triangleright \Omega_{m}^{+}\left(q^{2}\right)$ (m even, $q=2$ or 4), or $\Omega_{m / 2}^{+}\left(q^{4}\right)(m / 2 \geq 2$ even, $q=2$);
(iv) $B \triangleright S L_{2}\left(q^{2}\right)(m=4, q$ even $), S L_{2}\left(q^{4}\right)(m=8, q=2$ or 4$)$, or $S L_{2}\left(q^{8}\right) \quad(m=16, q=2)$;
(v) one of:

$$
\begin{aligned}
& m=4: B \triangleright \Omega_{7}(q) \text { or } \Omega_{8}^{-}\left(q^{1 / 2}\right) \\
& m=8, q=2 \text { or } 4: B \triangleright \Omega_{7}\left(q^{2}\right) \text { or } \Omega_{8}^{-}(q) \\
& m=16, q=2: B \triangleright \Omega_{7}\left(q^{4}\right) \text { or } \Omega_{8}^{-}\left(q^{2}\right)
\end{aligned}
$$

(vi) one of:

$$
\begin{aligned}
& m=8: B \triangleright \Omega_{9}(q) \\
& m=16, q=2 \text { or } 4: B \triangleright \Omega_{9}\left(q^{2}\right) \\
& m=32, q=2: B \triangleright \Omega_{9}\left(q^{4}\right)
\end{aligned}
$$

(vii) one of:

$$
\begin{aligned}
& m=4, q=2: B \triangleright A_{6}, A_{7} \text { or } A_{9} \\
& m=4, q=3: B \triangleright \Omega_{8}^{+}(2), S p_{6}(2), U_{4}(2), A_{9} \text { or } A_{6} \\
& m=6, q=2: B \triangleright U_{4}(3) \text { or } M_{22} \\
& m=12, q=2: B \triangleright 3 . S u z \text { or } C o_{1}
\end{aligned}
$$

(viii) $B \leq P_{m}$ or P_{m-1}, and modulo the unipotent radical, B induces a subgroup of $\Gamma L_{m}(q)$ which is transitive on 1-spaces.

Proof We begin with the observation that if $B \leq P_{m}$ or P_{m-1}, then conclusion (viii) holds. To see this, suppose $B \leq P=\operatorname{stab}(W)=P_{m}$ or P_{m-1}, where W is a totally singular m-space, and take $N_{1}=\operatorname{stab}(v)$. Then $v^{\perp} \cap W$ has dimension $m-1$, so modulo the unipotent radical of P, we have a factorization $\Gamma L_{m}(q)=\bar{B} P_{m-1}$. In other words \bar{B} is transitive on hyperplanes of W, hence also on 1 -spaces, proving (viii).

Now assume that $m=3$. Then we have a factorization of type $S L_{4}(q)=$ $B S p_{4}(q)$, and so by [33] and Lemma 2.6, B stabilizes either a 1 -space, or a hyperplane, or an antiflag of $V_{4}(q)$. In the first two cases $B \leq P_{i}\left(S L_{4}(q)\right)$ ($i=1$ or 3), so $B \leq P_{3}\left(\Omega_{6}^{+}(q)\right)$ or $P_{2}\left(\Omega_{6}^{+}(q)\right)$, and so conclusion (viii) holds. In the third case the antiflag stabilizer $G L_{3}(q)$ intersects $N\left(S p_{4}(q)\right)$ in a subgroup of an antiflag stabilizer of $V_{3}(q)$, and so B is antiflag transitive on this space. Hence $B \triangleright S L_{3}(q)$, as in (i).

Now assume $m \geq 4$. We have a factorization $G=B N_{1}$ with $\Omega_{2 m}^{+}(q) \leq$ $G \leq \Gamma O_{2 m}^{+}(q)$, so [33] (and Lemma 2.6) gives one of
(α) $B \leq P_{m}$ or P_{m-1}
(β) $B \leq N_{G}\left(S U_{m}(q)\right)$ (m even)
($\gamma) B \leq N_{G}\left(S p_{2}(q) \otimes S p_{m}(q)\right)(m$ even, $q>2)$
($\delta) B \leq N_{G}\left(S L_{m}(q)\right)$
(ϵ) $B \leq N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right)(m$ even, $q=2$ or 4$)$
(ϕ) $B \leq N_{G}\left(\Omega_{7}(q)\right)(m=4)$
(к) $B \leq N_{G}\left(\Omega_{8}^{-}\left(q^{1 / 2}\right)\right)(m=4, q$ square)
($) ~ B \leq N_{G}\left(\Omega_{9}(q)\right)(m=8)$
(λ) $B \leq N_{G}\left(A_{9}\right)(m=4, q=2)$
(μ) $B \leq N_{G}\left(\Omega_{8}^{+}(2)\right)$ or $N_{G}\left(\Omega_{6}^{+}(3)\right)(m=4, q=3)$
$(\nu) B \leq N_{G}\left(C o_{1}\right)(m=12, q=2)$.
Case (α) In this case conclusion (viii) holds (the transitivity assertion follows from the first paragraph of this proof).

Case (β) Here $N\left(S U_{m}(q)\right) \cap N_{1}$ is contained in the stabilizer in $S U_{m}(q)$ of a nonsingular 1-space, giving a factorization of type $\Gamma U_{m}(q)=B N_{1}$. Hence B is given by Lemma 4.3, and all possibilities are listed in the conclusion under (i) or (ii).

Case (γ) Here $\left(S p_{2}(q) \otimes S p_{m}(q)\right) \cap N_{1} \leq S p_{2}(q) \otimes N_{2}\left(S p_{m}(q)\right)$. Hence B contains a subgroup of $\Gamma S p_{m}(q)$ transitive on N_{2}-spaces, so is given by

Lemma 4.2. All possibilities are in the conclusion under (i), (ii) or (iv).
Case (δ) Here [33, p.63] shows that $N_{G}\left(S L_{m}(q)\right) \cap N_{1}$ fixes an antiflag of $V_{m}(q)$, hence B is antiflag transitive and is given by Theorem 3.2. The possibilities appear in (i), (ii), (vii).

Case (ϵ) Here [33, p.64] shows that $N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right) \cap N_{1}$ lies in a nonsingular 1-space stabilizer of $N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right)$, so we have a factorization $N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right)=$ $B N_{1}$. For $m \geq 6, B$ is given inductively, and appears in the conclusion. Note that this is where the $S U_{m / 2}\left(q^{2}\right)$ and $S U_{m / 4}\left(q^{4}\right)$ possibilities arise in (i).

Now assume $m=4$. We have $\Omega_{4}^{+}\left(q^{2}\right) \cong L_{2}\left(q^{2}\right)^{2}$, and N_{1} of this group is a diagonal subgroup $L_{2}\left(q^{2}\right)$. Hence by [33], either $B \triangleright L_{2}\left(q^{2}\right)$ as in (iv), or B lies in a parabolic, hence is as in (viii), or $B \leq N\left(\left(q^{2}+1\right) \times\left(q^{2}-1\right)\right)=N\left(\Omega_{2}^{+}\left(q^{4}\right)\right)$. This is in (iii) for $q=2$, and we exclude it for $q=4$ as follows. Write $L=\Omega_{8}^{+}(4)$. By [24] we have $N=N_{L}\left(\Omega_{4}^{+}(16)\right)=\left(L_{2}(16)^{2}\right) \cdot 2^{2}$, with one of the outer automorphisms interchanging the two $L_{2}(16)$ factors. Hence $\left|N_{N}(17 \times 15)\right|_{2}=2^{3}$. It follows that $\left|N_{\Gamma O_{8}^{+}(4)}(17 \times 15)\right|_{2} \leq 2^{5}$. However $\left|G: N_{1}\right|_{2}=2^{6}$, so this is impossible.

Case (ϕ) In this case $N_{1} \cap \Omega_{7}(q)=G_{2}(q)$, so we get a factorization $N_{G}\left(\Omega_{7}(q)\right)=B N_{G}\left(G_{2}(q)\right)$. Hence by [33] one of the following holds: $B \geq$ $\Omega_{7}(q)$; or B lies in a parabolic, in $N_{G}\left(\Omega_{6}^{\epsilon}(q)\right)$, or in $N_{G}\left(\Omega_{5}(q)\right)$; or $q=3$ and $B \leq S p_{6}(2)$ or $S 9$. In the first case we have conclusion (v); in the second and third we are back in cases (α, β, δ) (applying triality); in the fourth, applying triality we have $B \leq N\left(S p_{4}(q) \otimes S p_{2}(q)\right)$, which is case (γ). Finally consider the last case, where $q=3$ and $B \leq S p_{6}(2)$ or S_{9}. By [33] we have $S_{9} \cap G_{2}(3)=L_{2}(7) .2$, so if $B \leq S_{9}$ then $S_{9}=B\left(L_{2}(7) .2\right)$, which forces $B \triangleright A_{9}$, as in (vii). Likewise, $S p_{6}(2) \cap G_{2}(3)=2^{3} . L_{3}(2)$, so if $B \leq S p_{6}(2)$ then $S p_{6}(2)=B\left(2^{3} . L_{3}(2)\right) \leq B P_{3}$; this implies that either $B=S p_{6}(2)$ or $B \leq O_{6}^{-}(2)$, and in the latter case we have $O_{6}^{-}(2)=B P_{2}$, which forces $B \triangleright \Omega_{6}^{-}(2) \cong U_{4}(2)$, as in (vii).

Case (κ) Here we have a factorization $N_{G}\left(\Omega_{8}^{-}\left(q^{1 / 2}\right)\right)=B N_{G}\left(G_{2}\left(q^{1 / 2}\right)\right) \leq$ $B N_{1}\left(O_{8}^{-}\left(q^{1 / 2}\right)\right)$. Hence by Lemma 4.4, $B \triangleright \Omega_{4}^{-}(q)$ with $q=4$ or 16 , as in conclusion (iv).

Case ($\iota)$ Here we see from [33, p.144] that there is a factorization $N_{G}\left(\Omega_{9}(q)\right)=$ $B N_{1}^{+}$, and hence $B \triangleright \Omega_{9}(q)$, as in (vi).

Case (λ) In this case we have $A_{9}=B\left(L_{2}(8) .3\right)$, which by [33, Theorem D]
forces $B \triangleright A_{c}(5 \leq c \leq 9)$, as in (vii) (the A_{5} and A_{8} are elsewhere as $L_{2}(4)$ and $L_{4}(2)$ in (iv), (i)).

Case (μ) The $\Omega_{6}^{+}(3)$ case has been handled in (δ), so assume $B \leq N_{G}\left(\Omega_{8}^{+}(2)\right)$. Here $N_{1} \cap \Omega_{8}^{+}(2)=2^{6} . A_{7}$, so $N\left(\Omega_{8}^{+}(2)\right)=B N\left(2^{6} . A_{7}\right) \leq B P_{4}$. If $B \nsucceq$ $\Omega_{8}^{+}(2)$, then by [33] this implies $B \leq N\left(\Omega_{7}(2)\right), N\left(\Omega_{6}^{-}(2)\right)$ or A_{9}. Also $\left|G: N_{1}\right|=3^{3} \cdot 40$ divides $|B|$. Inspection of these groups in [9] now yields $B \triangleright \Omega_{7}(2), U_{4}(2), A_{9}$ or A_{6}, as in conclusion (vii).

Case (ν) Here $N_{1} \cap C o_{1}=C o_{3}$, so $C o_{1}=B C o_{3}$. If $B \nsupseteq C o_{1}$ this gives $B \leq 3 . S u z .2$ or $\left(A_{4} \times G_{2}(4)\right) .2$. Also $\left|G: N_{1}\right|=2^{11}\left(2^{12}-1\right)$. Hence from the factorizations of $G_{2}(4)$ and $S u z$, we see that $B \triangleright G_{2}(4)$ or $3 . S u z$, as in (ii), (vii).

Lemma 4.6 Let B be a subgroup of $\Gamma S p_{2 m}(q)(m \geq 2, q$ even, $(m, q) \neq$ $(2,2))$ not containing $S p_{2 m}(q)$, such that B is transitive on the coset space $S p_{2 m}(q) / O_{2 m}^{-}(q)$. Then one of the following holds:
(i) $B \triangleright S p_{2 a}\left(q^{b}\right)$ or $G_{2}\left(q^{b}\right)^{\prime} \quad(a b=m$ or $3 b=m$, resp.);
(ii) $B \triangleright S p_{c}\left(q^{d}\right)^{2}$ or $\left(G_{2}\left(q^{d}\right)^{\prime}\right)^{2} \quad(d \geq 1, c d=m, c$ even; or $6 d=m$, resp.);
(iii) $B \triangleright S p_{2 c}\left(q^{d / 2}\right)$ or $G_{2}\left(q^{d / 2}\right)^{\prime} \quad(d \geq 1, c d=m$ or $3 d=m$, resp.);
(iv) $q=2$ or 4 , and B is as in (i) - (vii) of Lemma 4.5;
(v) one of:

$$
\begin{aligned}
& m=2, q=4: B \triangleright A_{6} \\
& m=3, q=4: B \triangleright J_{2} \\
& m=4, q=2: B \triangleright A_{6} \text { or } A_{10} \\
& m=6, q=2: B \triangleright J_{2}
\end{aligned}
$$

(vi) $B \leq P_{m}$, and modulo the unipotent radical, B induces a subgroup of $\Gamma L_{m}(q)$ which is transitive on 1-spaces.

Proof We have a factorization $G=B N_{G}\left(O_{2 m}^{-}(q)\right)$, where $S p_{2 m}(q) \leq G \leq$ $\Gamma S p_{2 m}(q)$. Hence by [33] and Lemma 2.6, one of the following holds:
$(\alpha) B \leq P_{m}$
$(\beta) B \leq N_{G}\left(S p_{2 a}\left(q^{b}\right)\right)(a b=m)$
$(\gamma) B \leq N_{G}\left(S p_{m}(q)^{2}\right)(m$ even $)$
($\delta) B \leq N_{G}\left(\Omega_{2 m}^{+}(q)\right)(q=2$ or 4$)$
(ϵ) $B \leq N_{G}\left(\operatorname{Sp}_{2 m}\left(q^{1 / 2}\right)\right)(q=4$ or 16$)$
$(\phi) B \leq N_{G}\left(G_{2}(q)\right)(m=3)$
$(\kappa) B \leq S_{10}(m=4, q=2)$.
Case (α) This gives conclusion (vi) (the transitivity assertion follows in the usual way, as $P_{m} \cap O_{2 m}^{-}(q)$ fixes an $(m-1)$-space, by [33, p.49]).

Case (β) Here we have a factorization $N\left(S p_{2 a}\left(q^{b}\right)\right)=B N\left(O_{2 a}^{-}\left(q^{b}\right)\right)$, so B is given inductively. For $a \geq 2$ all such groups are in the conclusion. For $a=1$ we have $N\left(S L_{2}\left(q^{b}\right)\right)=B N\left(q^{b}+1\right)$ with $q^{b} \geq 8$ (we excluded $(m, q)=(2,2)$ in the hypothesis). Then by [33], either B lies in a parabolic, giving (vi), or $q^{b}=16$ and $B \triangleright L_{2}(4)$, giving (iii).

Case (γ) In this case we have $O_{2 m}^{-}(q) \cap\left(S p_{m}(q) \imath S_{2}\right)=O_{m}^{+}(q) \times O_{m}^{-}(q)$, so we have a factorization

$$
N\left(S p_{m}(q)^{2}\right)=B N\left(O_{m}^{+}(q) \times O_{m}^{-}(q)\right)
$$

In particular B must contain an element interchanging the two $S p_{m}(q)$ factors.

Let $V=V_{2 m}(q)$, and let $V=W_{1} \perp W_{2}$ be the decomposition preserved by $S p_{m}(q)$ 乙 S_{2}, where W_{1}, W_{2} are non-degenerate m-spaces. Write $H=$ $N_{G}\left(S p_{m}(q)^{2}\right), A=N_{G}\left(O_{2 m}^{-}(q)\right)$, and let B_{0} be the subgroup of index 2 in B fixing W_{1} and W_{2}. Then as $H \cap A$ fixes W_{1}, W_{2}, we have

$$
H_{W_{i}}^{W_{i}}=B_{0}^{W_{i}}(H \cap A)^{W_{i}} \quad(i=1,2)
$$

giving factorizations of type

$$
S p_{m}(q)=B_{0}^{W_{1}} O_{m}^{+}(q)=B_{0}^{W_{2}} O_{m}^{-}(q)
$$

As $B_{0}^{W_{1}} \cong B_{0}^{W_{2}}$, it follows using [33] that $B_{0}^{W_{i}} \leq N\left(S p_{c}\left(q^{d}\right)\right)$ or $N\left(G_{2}\left(q^{d}\right)\right)$ with $c d=m$ or $6 d=m$ respectively, giving further factorizations of type $S p_{c}\left(q^{d}\right)=B_{0}^{W_{1}} O_{c}^{+}\left(q^{d}\right)=B_{0}^{W_{2}} O_{c}^{-}\left(q^{d}\right)$ or $G_{2}\left(q^{d}\right)=B_{0}^{W_{1}}\left(S L_{3}\left(q^{d}\right) \cdot 2\right)=$ $B_{0}^{W_{2}}\left(S U_{3}\left(q^{d}\right) \cdot 2\right)$. From this and [33], taking d maximal, we conclude that

$$
B_{0}^{W_{1}} \cong B_{0}^{W_{2}} \triangleright S p_{c}\left(q^{d}\right) \text { or } G_{2}\left(q^{d}\right)^{\prime}(c d=m \text { or } 6 d=m) .
$$

Thus $B \triangleright S p_{c}\left(q^{d}\right)^{a}$ or $G_{2}\left(q^{d}\right)^{a}$ with $a=1$ or 2 , as in (ii) or (iii).
Case (δ) Here $O_{2 m}^{-}(q) \cap O_{2 m}^{+}(q) \leq N_{1}\left(O_{2 m}^{+}(q)\right)$, so we have a factorization $N\left(O_{2 m}^{+}(q)\right)=B N_{1}$. Thus B is given by Lemma 4.5 (with $q=2$ or 4), as in (iv) or (vi).

Case (ϵ) In this case $O_{2 m}^{-}(q) \cap S p_{2 m}\left(q^{1 / 2}\right)$ normalizes $O_{2 m-1}\left(q^{1 / 2}\right)$, so we have a factorization $N\left(S p_{2 m}\left(q^{1 / 2}\right)\right)=B P_{1}$. Thus B is given by Lemma 3.1.

We cannot have $B \leq \Gamma L_{1}\left(q^{m}\right)$, as $\Gamma L_{1}\left(q^{m}\right) \cap N\left(S p_{2 m}\left(q^{1 / 2}\right)\right.$ does not have order divisible by $\left|S p_{2 m}(q): O_{2 m}^{-}(q)\right|=q^{m}\left(q^{m}-1\right) / 2$. Also the case where $m=2, q=4, B \triangleright A_{7}$ is out, as $A_{7} \not \leq S p_{4}(2)$. The remaining possibilities for B are in the conclusion.

Case (ϕ) Here $O_{6}^{-}(q) \cap G_{2}(q)=S U_{3}(q) .2$, so we have $N\left(G_{2}(q)\right)=B N\left(S U_{3}(q)\right)$. If $B \nsupseteq G_{2}(q)$, it follows that $q=4$ and $B \leq J_{2} .2$ or $G_{2}(2) \times 2$. In the first case we get a factorization $J_{2} .2=B\left(5^{2} .\left(4 \times S_{3}\right)\right.$, which implies either $B \triangleright J_{2}$ as in (v), or $B \leq G_{2}(2)$. Finally, if $B \leq G_{2}(2) \times 2$ then the fact that $|B|$ is divisible by $2^{7} \cdot 63$ forces $B \triangleright U_{3}(3)=\bar{G}_{2}(2)^{\prime}$, as in (iii).

Case (κ) Here $N_{1} \cap S_{10}=S_{7} \times S_{3}$. Hence $S_{10}=B\left(S_{7} \times S_{3}\right)$, so B is 3 -homogeneous of degree 10 , whence $B \triangleright A_{6}$ or A_{10}, as in (v).

5 Proof of Theorem 1.1: linear groups

In this section we prove Theorem 1.1 in the case where the simple group L is a linear group $L_{n}(q)$ which is not isomorphic to an alternating group (so we assume $(n, q) \neq(2,4),(2,5),(4,2))$. Write $Z=Z\left(S L_{n}(q)\right)$.

Suppose then that G has socle $L=L_{n}(q)$, acts primitively on a set Ω, and possesses a subgroup B which acts regularly on Ω. Let $\alpha \in \Omega$ and write $A=G_{\alpha}$, so that we have

$$
G=A B, A \cap B=1, \text { and } A \max G
$$

By [33] together with Lemma 2.6, one of the following holds:
(5.1) $n \geq 3$ and $A=P_{1}, P_{n-1}$ or $N_{1, n-1}$;
(5.2) $A \triangleright P S p_{n}(q)(n$ even, $n \geq 4)$ and $B \leq P_{1}, P_{n-1}$ or $N_{1, n-1}$;
(5.3) $A \triangleright S L_{a}\left(q^{b}\right) / Z(a b=n, a \geq 2, b$ prime $)$, and either $B \leq P_{1}, P_{n-1}$, or $b=2, q \in\{2,4\}$ and $B \leq N_{1, n-1}$;
(5.4) $A \leq \Gamma L_{1}\left(q^{n}\right) / Z_{q-1}\left(n\right.$ odd prime) and $B \leq P_{1}, P_{n-1}$;
(5.5) $L=L_{2}(q), L_{3}(4)$ or $L_{5}(2)$.

Case (5.1) If $A=P_{1}$ or P_{n-1} then $|B|=|G: A|=\frac{q^{n}-1}{q-1}$, and B is transitive on the set of 1-spaces in $V=V_{n}(q)$. Hence by Lemma 3.1 we have $B \leq \Gamma L_{1}\left(q^{n}\right) / \mathbb{F}_{q}^{*}$, as in line 1 of Table 16.1. A complete description of the regular subgroups in this case can be deduced from [14].

If $A=N_{1, n-1}$ then $|B|=|G: A|=q^{n-1} \cdot \frac{q^{n}-1}{q-1}$ and B is antiflag transitive on V, hence is given by Theorem 3.2. By arithmetic the only possibility
occurs when $n=4, q=2$, but this was excluded by assumption (because $\left.L_{4}(2) \cong A_{8}\right)$.

Case (5.2) Here

$$
|B|=|G: A|=\frac{1}{d} q^{\left(n^{2}-2 n\right) / 4}\left(q^{n-1}-1\right)\left(q^{n-3}-1\right) \ldots\left(q^{3}-1\right)
$$

where d divides $(n, q-1)$ (see $[25,4.8 .3])$.
Suppose first that $B \leq P_{1}$. Since $G=A B$ we have $P_{1}=B\left(A \cap P_{1}\right)$. Write $P_{1}=Q R$ where $Q=\left(\mathbb{F}_{q}\right)^{n-1}$ is the unipotent radical and $R \triangleright S L_{n-1}(q)$ a Levi subgroup. Working modulo Q, and writing $\bar{B}=B Q / Q$, we obtain a factorization $N\left(S L_{n-1}(q)\right)=\bar{B} N\left(S p_{n-2}(q)\right)$. In particular \bar{B} is transitive on 1-spaces in $V_{n-1}(q)$, and so by Lemma 3.1 (noting that $n-1$ is odd) we have either $\bar{B} \triangleright S L_{c}\left(q^{d}\right)(c d=n-1, c \geq 3)$ or $\bar{B} \leq \Gamma L_{1}\left(q^{n-1}\right)$. Since $|B|=|G: A|$ is divisible by $q^{n-3}-1$, this is clearly impossible unless $n=4$. In this case $B \leq Q . \Gamma L_{1}\left(q^{3}\right)$ with $|Q|=q^{3}$ and $|B|=\frac{1}{d} q^{2}\left(q^{3}-1\right)$. As q^{2} does not divide $3 \log q$ this forces $B \cap Q \neq 1$. However this is impossible, as \bar{B} acts irreducibly on Q. The same argument deals with $B \leq P_{n-1}$.

A very similar argument applies when $B \leq N_{1, n-1}$: the factorization $N_{1, n-1}=B\left(A \cap N_{1, n-1}\right)$ gives $N\left(S L_{n-1}(q)\right)=B N\left(S p_{n-2}(q)\right)$, which leads to a contradiction using the above argument.

Case (5.3) Suppose first that $B \leq P_{1}=Q R$ as above (the argument below also deals with the case where $\left.B \leq P_{n-1}\right)$. Now $A \cap P_{1}$ fixes an $\mathbb{F}_{q^{b}} 1$-space containing the $\mathbb{F}_{q} 1$-space fixed by P_{1}. Hence, working modulo Q with the factorization $P_{1}=B\left(A \cap P_{1}\right)$ yields a factorization

$$
N\left(S L_{n-1}(q)\right)=\bar{B} P_{b-1}
$$

where $\bar{B}=B Q / Q$ and P_{b-1} is the stabilizer of a $(b-1)$-space in $V_{n-1}(q)$. By [33] this implies that either $b=2$ or $L=L_{6}(2), b=3$ and $|\bar{B}|=31 \cdot 5$. In the latter case $|B|$ divides $2^{6} \cdot 31 \cdot 5$, which is less than $|G: A|$, a contradiction.

Hence $b=2$ and $n=2 a$ is even. Moreover, Lemma 3.1 implies that $\bar{B} \leq \Gamma L_{c}\left(q^{d}\right)$ with $c d=n-1$. As $|G: A|$ is divisible by $q^{n-3}-1$ this forces $n=4$ and $B \leq Q . \Gamma L_{1}\left(q^{3}\right)$. Here

$$
|B|=|G: A|=\frac{1}{2} q^{4}\left(q^{3}-1\right)(q-1)
$$

Hence q must divide $6 \log q$, forcing $q=2,3$ or 4 . The first case is out as we are assuming $L \neq L_{4}(2)$. In the second and third cases we get the possibilities
(a) $q=3: G=L_{4}(3) \cdot 2=P G L_{4}(3), A=\left(4 \times L_{2}(9)\right) \cdot 2^{2}, B=3^{3}$.13.3.2
(b) $q=4: G=L_{4}(4) \cdot 2$ (field aut.), $A=\left(5 \times L_{2}(16)\right) \cdot 4, B=2^{6} . \Gamma L_{1}\left(2^{6}\right)$.

Each of these gives examples in Table 16.1. To see this in case (a), note first that the elements of order 3 in A have Jordan form J_{2}^{2}, whereas those in B do not; hence $|A \cap B|_{2^{\prime}}=1$. Furthermore $A \geq P \Gamma L_{2}(9), A \cap L \geq$ $P \Sigma L_{2}(9)$, and $P \Gamma L_{2}(9) \backslash P \Sigma L_{2}(9)$ contains no involution, whereas B does. Hence $A \cap B=1$, and we have an exact factorization $G=A B$.

The argument for (b) is quite similar. Since the normal 2^{6} in B consists of transvections (and the identity), it intersects A trivially. The elements of B of order dividing 3 form an elementary abelian subgroup, generated by the matrix $\operatorname{diag}(1, \omega, \omega, \omega)$ and a field automorphism acting on the ω eigenspace viewed as \mathbb{F}_{64} (where $\omega^{3}=1$). Hence the elements of order 3 in B have 1 as an eigenvalue, whereas those in A do not. Therefore $A \cap B \cap L=1$. Finally, $A \cap B$ cannot contain an involution since there are no involutions in $L_{2}(16) \cdot 4 \backslash L_{2}(16) \cdot 2$. Consequently $A \cap B=1$ and we have an exact factorization $G=A B$.

Now suppose that $B \leq N_{1, n-1}$ with $b=2$ and $q=2$ or 4 . Then $A \cap N_{1, n-1}$ fixes an antiflag in $V_{n-1}(q)$ (see [33, p.46]), and so B is antiflag transitive on this space. As $n-1$ is odd, by Theorem 3.2 this forces $B \geq S L_{n-1}(q)$. But then it is impossible that $|B|=|G: A|$.

Case (5.4) Here $A \leq \Gamma L_{1}\left(q^{n}\right) / Z_{q-1}$ with n an odd prime, and we can take $B \leq P_{1}$. Write $P_{1}=Q R$ as above. Observe that $\left|A \cap P_{1}\right|$ divides $n \log q$.

Assume first that B contains the subgroup $Q S$ of P_{1}, where $S=S L_{n-1}(q)$. For the moment identify $V=V_{n}(q)$ with the field $F=\mathbb{F}_{q^{n}}$. Taking $A \leq \Gamma L_{1}(F)$, it is then the case that A contains the Frobenius map ϕ of order n sending $x \rightarrow x^{q}$ for all $x \in F$. As an element of $G L_{n}(q), \phi$ has determinant 1 and fixes the vector $1 \in F$. Hence ϕ lies in the subgroup $Q S$, and it follows that $\phi \in A \cap B$, which is a contradiction.

Hence B does not contain $Q S$. Since $P_{1}=B\left(A \cap P_{1}\right)$, it follows that $S=$ $S L_{n-1}(q)$ has a proper subgroup of index dividing $n \log q$. Using [25, 5.2.2], we see that this forces $n=3$ and $q=2,3,4$ or 9 , giving the possibilities

G	A	B
$L_{3}(2)$	7.3	D_{8}
$L_{3}(3)$	13.3	$3^{2} .[16]$
$L_{3}(4) . S_{3}$	$7.3 \times S_{3}$	$2^{4} .\left(3 \times D_{10}\right) .2$
$L_{3}(9) .2$	91.3 .2	$3^{4} .\left(8 \circ 2 A_{5}\right) .2^{2}$

The first two lines are examples; the first is recorded as $L_{2}(7)=P_{1} D_{8}$ in

Table 16.1, and in the second, the normal 3^{2} is the unipotent radical of a parabolic $P_{1}=3^{2} . G L_{2}(3)$, the subgroup [16] being a Sylow 2-subgroup of $G L_{2}(3)$. The fourth line is not an example, as $2 A_{5}<S L_{2}(9)$ is not normalized by an involutory field automorphism. The third line does give an example in Table 16.1. To see this, take $G=P \Gamma L_{3}(4)=L .3 .2_{2}$ (notation of $[9$, p.23] $)$. There is a factorization $P G L_{3}(4)=(7.3 \times 3) P_{1}$ with $P_{1}=2^{4} .(3 \times$ A_{5}), and the two factors intersect in a group of order 3 (not centralizing A_{5} in $\left.P_{1}\right)$. Hence we see that $(7.3 \times 3) \cap 2^{4} .\left(3 \times D_{10}\right)=1$. Moreover, the quotient $B / 2^{4}=\left(3 \times D_{10}\right) .2$ is of index 2 in $S_{3} \times F_{20}$ (where F_{20} is a Frobenius group of order 20), and contains no involution lying outside $3 \times D_{10}$. Consequently $A \cap B=1$ and we have an exact factorization $G=A B$.

Case (5.5) If $L=L_{5}(2)$, then the maximal factorization not yet considered has factors 31.5 and P_{2} (or P_{3}). This gives the exact factorizations in Table 16.1, with A and B either factor:

$$
L_{5}(2)=P_{i}(31.5)=(31.5) P_{i} \quad(i=2,3)
$$

If $L=L_{3}(4)$, the maximal factorization not yet considered is

$$
L_{3}(4) .2_{1}=\left(L_{3}(2) .2\right)\left(A_{6} \cdot 2\right)
$$

The intersection of the factors has order 6 . Now the factor $A_{6} .2$ is M_{10}, so has no subgroup of index 6 . On the other hand, the index of M_{10} in G is 56 , and $L_{3}(2) .2$ has no subgroup of order 56 . Hence no exact factorizations arise in this case.

It remains to deal with $L=L_{2}(q), q>5$. The maximal factorizations of groups with socle L are given by [33], and in particular one of the following holds:
(α) $A=P_{1}$
(β) $A \cap L=D_{2(q+1) /(2, q-1)}, B \leq P_{1}$
$(\gamma) A \cap L=A_{5}, S_{4}$ or A_{4}.
Consider (α), where $A=P_{1}$. Here B has order $q+1$. We can assume B is not as in line 1 of Table 16.1 , so $B \cap L \leq A_{5}, S_{4}$ or A_{4}. If $B \cap L \leq A_{5}$, then q is one of $59,29,19,11$. For $q=59$, we get the exact factorization $L_{2}(59)=P_{1} A_{5}$, as in Table 16.1. For $q=29$, there is no suitable subgroup B. If $q=19$, the only possibility is the exact factorization $P G L_{2}(19)=P_{1}(5.4)$ - but this is as in line 1 of Table 16.1. And if $q=11$, we get the exact factorization $L_{2}(11)=P_{1} A_{4}$ in Table 16.1.

If $B \cap L \leq S_{4}$ then q is either 7 or 23 , and we get the exact factorization $L_{2}(23)=P_{1} S_{4}$ (the only $q=7$ examples are in line 1 of Table 16.1). Finally, if $B \cap L \leq A_{4}$ then $q=11$, leading again to the example $L_{2}(11)=P_{1} A_{4}$.

Next consider $(\beta): A \cap L=D_{2(q+1) /(2, q-1)}, B \leq P_{1}$. Note that $\mid G$: $A\left|=q(q-1) / 2=|B|\right.$. If $q \equiv 3 \bmod 4$ then $A \cap P_{1} \cap L=1$ and we have exact factorizations as in Table 16.1. Note that if $q=7$, then A only becomes maximal in $P G L_{2}(7)$. If $q \not \equiv 3 \bmod 4$, for an exact factorization, no involution of $P G L_{2}(q)$ can be contained in B. Hence the Sylow 2 -subgroup of B, of order equal to the 2 -part of $q(q-1) / 2$, would have to consist of field automorphisms. An easy calculation shows this is only possible for $q=4$, a case excluded here.

Finally consider case (γ). If $A=A_{5}$ then either $G=L$ with q one of $59,29,19,11$ and $B \leq P_{1}$, or $G=L_{2}(16) .4$. The former leads to the examples $L_{2}(59)=A_{5}(59.29), L_{2}(29)=A_{5}(29.7)$, and $L_{2}(11)=A_{5} 11$. There is no regular subgroup in the cases $q=19$ and $q=16$, since the elements of order 3, respectively 2 in L are not fixed point free. This argument also disposes of the possibility that $q=16$ and $A \cap L=D_{34}$, since the degree is 120 .

If $A \cap L=S_{4}$ then q is 7 or 23 . The former leads to the example $L_{3}(2)=$ $P_{1} 7$ in line 1 of Table 16.1, while the latter gives the exact factorization $L_{2}(23)=S_{4}$ (23.11) in the table.

Finally, if $A \cap L=A_{4}$, then $q=11$ and $G=P G L_{2}(11)$. We get the example $P G L_{2}(11)=S_{4}$ (11.5), which is recorded in the table with the sign \dagger indicating that outer automorphisms are needed in G for maximality of A in G (see the beginning of Section 16).

6 Proof of Theorem 1.1: unitary groups

In this section we prove Theorem 1.1 in the case where the simple group L is a unitary group $U_{n}(q)$ with $n \geq 3$ and $(n, q) \neq(3,2)$. Suppose then that G has socle $L=U_{n}(q)$, acts primitively on a set Ω, and possesses a subgroup B which acts regularly on Ω. Let $\alpha \in \Omega$ and write $A=G_{\alpha}$, so that $G=A B, A \cap B=1$ and $A \max G$. By [33] and Lemma 2.6, one of the following holds:
(6.1) n is even and $A=N_{1}$;
(6.2) n is even and $B \leq N_{1}$;
(6.3) $L=U_{3}(3), U_{3}(5), U_{3}(8), U_{4}(2), U_{4}(3)$ or $U_{9}(2)$.

Case (6.1) In this case we have, writing $n=2 m$,

$$
\begin{equation*}
|B|=\left|G: N_{1}\right|=q^{2 m-1} \cdot \frac{q^{2 m}-1}{q+1} \tag{2}
\end{equation*}
$$

Moreover, B satisfies the conclusion of Lemma 4.3. None of the possibilities given in (i), (ii), (iii) or (iv) of the lemma can satisfy (2). So suppose $B \leq P_{m}$, as in (v) of Lemma 4.3. Write $P_{m}=Q R$, with Q the unipotent radical and $R \triangleright S L_{m}\left(q^{2}\right)$, so that $\bar{B}=B Q / Q$ is transitive on the 1 -spaces in $V_{m}\left(q^{2}\right)$. Then by Lemma 3.1, one of the following holds:
(a) $\bar{B} \triangleright S L_{a}\left(q^{2 b}\right)(a b=m, a \geq 2), S p_{a}\left(q^{2 b}\right)\left(a b=m, a\right.$ even) or $G_{2}\left(q^{2 b}\right)$ ($6 b=m, q$ even)
(b) $m=2, q=3$ and $\bar{B} \triangleright A_{5}$
(c) $\bar{B} \leq G L_{1}\left(q^{2 m}\right)$.

Case (a) is not possible by (2). And case (b) is out, as there is no subgroup $3^{2} . A_{5}$ in $P_{2}=3^{4} . L_{2}(9)$.

Now consider case (c), $\bar{B} \leq G L_{1}\left(q^{2 m}\right)$. Assume for the time being that $(q, 2 m) \neq(2,6)$, and let $t \in B$ be an element of order $q_{2 m}$ (see Section 2 for notation). Now $|Q|=q^{m^{2}}$, and as an $S L_{m}\left(q^{2}\right)$-module over \mathbb{F}_{q}, we have $Q \cong V \otimes V^{(q)}$ realised over \mathbb{F}_{q}, where $V=V_{m}\left(q^{2}\right)$. Obviously any t-invariant subgroup of Q on which t acts nontrivially has order at least $q^{2 m}$, and hence by (2), we have $B \cap Q \leq C_{Q}(t)$.

If λ denotes a primitive $q_{2 m}$ th root of unity in the algebraic closure $\overline{\mathbb{F}}_{q}$, then since it is fixed by the Frobenius q^{2}-power map, t acts on $V \otimes \overline{\mathbb{F}}_{q}$ as $\operatorname{diag}\left(\lambda, \lambda^{q^{2}}, \ldots, \lambda^{q^{2 m-2}}\right)$. As $Q \cong V \otimes V^{(q)}$, it follows that $\left|C_{Q}(t)\right|$ is 1 if m is even, and is q^{m} if m is odd.

If m is even, then $B \cap Q=1$, so it follows from (2) that $q^{2 m-1}$ divides $2 m \log q$. This is impossible as $m \geq 2$. Likewise, if m is odd then $|B \cap Q| \leq$ q^{m}, so q^{m-1} divides $2 m \log q$, which is impossible as $m \geq 3$.

It remains to handle the excluded case $(q, 2 m)=(2,6)$. In this case let $t \in B$ be an element of order 7. As above we calculate that $C_{Q}(t)=1$, and the composition factors of $Q \downarrow\langle t\rangle$ have order 2^{3}. As $|B|=2^{5} \cdot 21$, this forces 2^{2} to divide $2 m \log q=6$, a contradiction.

Case (6.2) Again write $n=2 m$. In this case $B \leq N_{1}$ and by [33], one of the following holds:
(a) $A=P_{m}$;
(b) $A \triangleright P S p_{2 m}(q)$ or $S L_{m}\left(q^{2}\right)(q=2$ or 4$)$;
(c) $L=U_{6}(2), A \triangleright U_{4}(3)$ or M_{22}; or $L=U_{12}(2), A \triangleright S u z$.

We have a factorization $N_{1}=B\left(A \cap N_{1}\right)$, and $N_{1} \triangleright S U_{2 m-1}(q)$. Since $|B|=|G: A|$, we have $B \nsupseteq S U_{2 m-1}(q)$ by arithmetic. Hence it follows from the factorizations of unitary groups of odd dimension in [33] that

$$
L=U_{4}(q)(q=2,3,5,8) \text { or } U_{10}(2) .
$$

The last case $L=U_{10}(2)$ is not possible, as it requires $A \cap N_{1} \leq N\left(J_{3}\right)$ (see [33, Table 3]), whereas from the proofs of the factorizations $G=A N_{1}$ in [33] it is clear that this cannot be the case.

Now consider $L=U_{4}(2)$. If $A=P_{2}$ then $|B|=|G: A|=27$, and there are examples of such regular subgroups in $N_{1}=G U_{3}(2)$, as recorded in Table 16.1: for example, relative to an orthonormal basis of $V=V_{4}\left(2^{2}\right)$, define

$$
a=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\omega & 0 & 0 & 0 \\
0 & 0 & 0 & \omega^{2}
\end{array}\right), \quad b=\operatorname{diag}\left(1, \omega, \omega^{2}, 1\right)
$$

where $\omega^{3}=1$. Then $a^{3}=\left(\omega I_{3}, 1\right)$ and $a^{b}=a^{4}$, so $\langle a, b\rangle=9.3$. Elements of order 3 in A are conjugate to ($\omega, \omega, \omega^{2}, \omega^{2}$), whereas elements of order 3 in $\langle a, b\rangle$ are in $\left\langle a^{3}, b\right\rangle$. Hence $\langle a, b\rangle$ is regular on ($L: A$).

Now suppose $A \triangleright S p_{4}(2)$ (still with $L=U_{4}(2)$). Then $|B|=36$; however we see from [9] that A contains representatives of all classes of involutions in $U_{4}(2) .2$, so there is no regular subgroup B in this case.

Next let $L=U_{4}(3)$. The only proper factorization of $U_{3}(3)$ is $L_{2}(7) P_{1}$. Hence $A=P_{2},|B|=|G: A|=112$, and from $[9, \mathrm{p} .52]$ we see that $B \leq$ $\left(L_{2}(7) \times 4\right) .2$. But this group has no subgroup of order 112.

Now consider $L=U_{4}(5)$. The only factorization of $U_{3}(5)$ is $A_{7} P_{1}$, so $A=P_{2},|B|=756$ and $B \leq 2 \times 3 . S_{7}$. However $2 \times 3 . S_{7}$ has no subgroup of order 756 .

Finally, let $L=U_{4}(8)$. Again $A=P_{2}$ so $|B|=3^{5} \cdot 19$, and $B \leq N_{1}$. In order to have a subgroup B of this order in $N_{1}=N_{1}(G)$ we require $G=L .3$ and the only possibility for B is $G U_{1}(29) .9<N_{1}=G U_{3}(8) .3$. This is an example in Table 16.1: arguing as in the case above where $L=U_{4}(2), A=$ P_{2}, we see that no element of order 3 in $B \cap L=(29+1) .3$ is conjugate to an element of order 3 of P_{2}; hence $A \cap B \cap L=1$. Finally $B \backslash((B \cap L)$ has no element of order 3 , hence also $A \cap B=1$, so we have an exact factorization $G=A B$.

Case (6.3) There are six possible socles to consider here:

$$
L=U_{3}(3), U_{3}(5), U_{3}(8), U_{4}(2), U_{4}(3) \text { or } U_{9}(2) .
$$

We consider possible maximal factorizations of G containing our factorization $A B$.

Let $L=U_{3}(3)$. The maximal factorization of L to consider has factors P_{1} and $L_{2}(7)$, intersecting in a subgroup of order 6 . An inspection of the permutation characters of $G=U_{3}(3) .2$ of degrees 28 and 36 shows that there are no fixed-point-free involutions in either action.

Let $L=U_{3}(5)$. The maximal factorization of L to consider has factors P_{1} and A_{7}, intersecting in a subgroup of order 20 . If $A=P_{1}$ then A_{7} must have a proper subgroup of order divisible by 63 - not so. Hence A normalizes A_{7} and B is regular of order 50 . This is not possible, since an inspection of the permutation character shows that all involutions fix points in this action.

Let $L=U_{3}(8)$. Here the maximal factorization to consider is in fact exact:

$$
U_{3}(8) .3^{2}=P_{1}(3 \times 19.9)=(3 \times 19.9) P_{1}
$$

as in Table 16.1.
Let $L=U_{4}(2)$. Here the maximal factorization of L not already considered (in (6.1), (6.2)) has factors $3^{3} . S_{4}$ and P_{2}, of index 40 and 27 . From the permutation character of degree 40 we see that all involutions in G fix a point in this action. Hence $A=P_{2}$, of index 27 . We have seen an exact factorization

$$
U_{4}(2)=P_{2}[27]
$$

in the above case (6.2). The Magma computations of Michael Giudici (mentioned in the remarks after Theorem 1.1) show that up to L-conjugacy there are two regular examples $B=[27]$, which are in fact non-isomorphic.

Let $L=U_{4}(3)$. Here one of the factors of a maximal factorization containing $A B$ intersects L in $L_{3}(4)$, the other in one of P_{1}, P_{2} and $P S p_{4}(3)$. Assume A normalizes $L_{3}(4)$, so B has order 162. Since L has a unique class of involutions, G must contain some outer involutory automorphisms. We claim that there is an exact factorization

$$
U_{4}(3) \cdot 2=\left(L_{3}(4) \cdot 2\right)\left(3^{4} \cdot 2\right)
$$

This follows from the argument in [33, p. 113]: let $G=U_{4}(3) .2_{1}$ in the notation of $\left[9\right.$, p. 52], and $A=N_{G}\left(L_{3}(4)\right)=L_{3}(4) .2_{2}$. Now $G=A P_{2}$, and $P_{2}=3^{4} .\left(2 \times A_{6}\right)$, with $A \cap P_{2}=A_{6}$. It is then clear that the normal subgroup $B=3^{4} .2$ of P_{2} is an example of a regular subgroup of degree 162 . In fact there are more examples - the computations of Giudici show that
there are 6 classes of regular subgroups B of order 162 in $G=U_{4}(3) \cdot 2^{2}$, all pairwise non-isomorphic.

If A is one of the other factors (namely P_{1}, P_{2} or $P S p_{4}(3)$), then the degree $|G: A|$ is 280,112 or 126 , and B is a subgroup of $N_{G}\left(L_{3}(4)\right)$ of this order. However, $L_{3}(4) .2^{2}$ has no subgroups of any of these orders, since the only maximal subgroup of $L_{3}(4)$ of order divisible by 7 is $L_{2}(7)$.

Finally let $L=U_{9}(2)$. The relevant maximal factorization of L has factors P_{1} and J_{3}, with intersection $2^{2+4} .\left(3 \times S_{3}\right)$. Since J_{3} has no proper factorizations, A must be $N_{G}\left(J_{3}\right)$ and L has index at most 2 in G. Now the derived subgroup of the Levi subgroup of P_{1} is $U_{7}(2)$; since this has no proper factorizations, it must be involved in B. Considering the power of 3 , this is impossible as B is regular.

7 Proof of Theorem 1.1: orthogonal groups in odd dimension

In this section we prove Theorem 1.1 in the case where G has socle $L=$ $\Omega_{2 m+1}(q)\left(m \geq 3, q=p^{a}\right.$ odd $)$.

Suppose $G=A B, A \cap B=1$ and $A \max G$. By [33] and Lemma 2.6, one of the following holds:
(7.1) $A=N_{1}^{-}$;
(7.2) $A=P_{m}, B \leq N_{1}^{-}$;
(7.3) $m=3$ and either $A=N_{G}\left(G_{2}(q)\right)$ or $B \leq N_{G}\left(G_{2}(q)\right)$;
(7.4) $q=3^{e}, L=\Omega_{13}(q)$ or $\Omega_{25}(q)$ and $A=N\left(P S p_{6}(q)\right)$ or $N\left(F_{4}(q)\right)$, respectively;
(7.5) $L=\Omega_{7}(3)$.

Case (7.1) Here $|B|=\left|G: N_{1}^{-}\right|=\frac{1}{2} q^{m}\left(q^{m}-1\right)$. For any involution $t \in S O_{2 m+1}(q)$, either the 1-eigenspace or the -1-eigenspace of t is a nondegenerate subspace of dimension at least 4 , and hence t lies in a conjugate of N_{1}^{-}. In other words $A=N_{1}^{-}$contains representatives of all involution classes of $G \cap S O_{2 m+1}(q)$, and hence $B \cap S O_{2 m+1}(q)$ has odd order. It follows that $|B|_{2}$ divides $\log _{p} q$. This is only possible if $|B|$ is odd - in other words, m is odd and $q \equiv 3 \bmod 4$.

By [33], the factorization $G=B N_{1}^{-}$implies that either $B \leq P_{m}$ or $B \leq N\left(G_{2}(q)\right)(m=3)$. In the latter case we get an exact factorization
$N\left(G_{2}(q)\right)=B\left(N_{1}^{-} \cap N\left(G_{2}(q)\right)\right.$. However there is no such exact factorization by [33, Theorem B].

Hence $B \leq P_{m}$. Write $P_{m}=Q R$, where Q is the unipotent radical and the Levi subgroup $R \triangleright S L_{m}(q)$. Working modulo Q with the factorization $P_{m}=B\left(A \cap P_{m}\right)$, we get a factorization of type $S L_{m}(q)=\bar{B} P_{m-1}$, where $\bar{B}=B Q / Q$. As $|B|$ is odd, it follows by Lemma 3.1 that $\bar{B} \leq \Gamma L_{1}\left(q^{m}\right)$.

Relative to a standard basis $e_{1}, \ldots, e_{m}, d, f_{1} \ldots, f_{m}$ of $V=V_{2 m+1}(q)$ (see $[25,2.5 .3]), Q$ consists of matrices of the form

$$
\left(\begin{array}{ccc}
I_{m} & 0 & 0 \\
x & 1 & 0 \\
Y & -x^{T} & I_{m}
\end{array}\right)
$$

where x is $1 \times m, Y$ is $m \times m$, and $Y+Y^{T}=-x^{T} x$. Denote such a matrix by $M(x, Y)$. The conjugation action of an element g in the Levi subgroup $G L_{m}(q)$ sends $M(x, Y) \rightarrow M\left(x g, g^{T} Y g\right)$.

We have $Q^{\prime}=Z(Q)=\left\{M(0, Y): Y+Y^{T}=0\right\}$. Moreover, Q^{\prime} and Q / Q^{\prime} are irreducible $\mathbb{F}_{q} S L_{m}(q)$-modules, isomorphic to $\wedge^{2} V^{*}$ and V respectively, where $V=V_{m}(q)$.

Let $t \in B$ be an element of prime order $q_{m}=p_{m e}$, where $q=p^{e}$, and let $Q_{0}=B \cap Q$. Now $C_{Q}(t)=1$, and hence every composition factor of $Q \downarrow\langle t\rangle$ has order q^{m}. Since Q_{0} is t-invariant, and $|B|=\frac{1}{2} q^{m}\left(q^{m}-1\right)$, it follows that Q_{0} has order q^{m}. Also Q_{0} is abelian (as $Z\left(Q_{0}\right)$ is t-invariant). Moreover $Q_{0} \leq Q^{\prime}$, since otherwise the irreducibility of $\langle t\rangle$ on Q / Q^{\prime} would imply that $Q=Q_{0} Q^{\prime}=Q_{0} Z(Q)$, which is a contradiction as Q is non-abelian.

Let $u=M(0, Y) \in Q_{0}$. Under the action of the Levi $G L_{m}(q), u$ is conjugate to $M(0, Z)$, where

$$
Z=\left(\begin{array}{ccc}
0 & 0 & I_{r} \\
0 & 0_{m-2 r} & 0 \\
-I_{r} & 0 & 0
\end{array}\right)
$$

for some r. Then u has Jordan form $\left(J_{2}^{2 r}, J_{1}^{2 m-4 r+1}\right)$. As m is odd, we have $2 m-4 r+1 \geq 3$. But then Lemma 2.4(iii) implies that a conjugate of u lies in $A=N_{1}^{-}$, contradicting the exactness of the factorization $G=A B$.

Case (7.2) Here $|B|=|G: A|=\prod_{i=1}^{m}\left(q^{i}+1\right)$, and writing $N_{1}^{-}=G_{\langle v\rangle}$, we see from [33, p.57] that $A \cap N_{1}^{-}$fixes a totally isotropic ($m-1$)-space in v^{\perp}. Hence the factorization $N_{1}^{-}=B\left(A \cap N_{1}^{-}\right)$gives $N\left(\Omega_{2 m}^{-}(q)\right)=B P_{m-1}$. By [33] there is no such factorization, except for $m=3$, in which case this
becomes $N\left(U_{4}(q)\right)=B P_{1}$, which yields $q=3$ and $B \leq N\left(L_{3}(4)\right)$. However the fact that 5 and 7 divide $|B|$ then implies that $B \geq L_{3}(4)$ (see [9, p.23]), which is clearly not the case.

Case (7.3) Suppose first that $A=N\left(G_{2}(q)\right)$. By [33, Lemma A, p.105], if we embed $L=\Omega_{7}(q)$ irreducibly in $H=P \Omega_{8}^{+}(q)$ via a spin representation, then we have $H=L N_{1}$ and $L \cap N_{1}=G_{2}(q)$. Hence the action of G on G / A is contained in that of H on H / N_{1}. In Section 9 we prove that the latter action has no regular subgroups for q odd (see the proof of Lemma 9.4).

Now suppose that $B \leq N_{G}\left(G_{2}(q)\right)$. Then we have an exact factorization $N_{G}\left(G_{2}(q)\right)=B\left(A \cap N_{G}\left(G_{2}(q)\right)\right.$. However, $G_{2}(q)$ and its automorphism groups have no exact factorizations, by [33, Theorem B]. Hence there are no regular subgroups in this case.

Case (7.4) Here $B \leq N_{1}^{-}$and we have a factorization $N_{1}^{-}=B\left(A \cap N_{1}^{-}\right)$. But it is easy to see using [33] that there is no such factorization with $|B|=|G: A|$.

Case (7.5) Here $L=\Omega_{7}(3)$. The relevant maximal factorizations are discussed in detail in [33, pp. 100-103].

If $A=N_{1}^{+}$then the degree $|G: A|$ is $378=2.3^{3} .7$, and relevant maximal factorizations of L have the other factor either $S p_{6}(2)$ or S_{9}. In the first of these, the interesection of the factors is a subgroup of a parabolic subgroup P_{1} of $S p_{6}(2)$. This gives rise to a factorization of $S p_{6}(2)$, so B must be contained in $G_{2}(2)$ or $L_{2}(8) .3$; however, there is no subgroup of the right order. In the second case, S_{9} has no subgroup of order 378: this would have to be transitive, containing a 7 -cycle and hence 3 -transitive, not so.

The case where $A=G_{2}(3)$ has been handled in (7.3) already.
If $A=P_{3}$, the degree is $1120=2^{5} .5 .7$ and the relevant maximal factorizations of L have the other factor one of $S_{9}, S p_{6}(2)$ and $2^{6} . A_{7}$. Now S_{9} has no subgroup of order 1120: a subgroup of order divisible by both 7 and 5 has to involve A_{7}. The same is true for $S p_{6}(2)$: the only maximal subgroup of order divisible by 35 is S_{8}, and the above applies. And the same is true also for the remaining possibility, $2^{6} . A_{7}$.

If $A=S p_{6}(2)$, the degree is $3^{5} 13$ and the relevant maximal factorizations of G have the other factor one of $G_{2}(3), N_{1}^{+}$and P_{3}. Now $G_{2}(3)$ has no exact factorizations, so the first possibility is out. In the second case, B must be contained in the parabolic $3^{3} L_{3}(3)$ of $L_{4}(3)$; that however has no subgroup of order $3^{5} 13$. Similarly $P_{3}=3^{3+3} L_{3}(3)$ has no subgroup of order $3^{5} 13$.

If $A=S_{9}$, the degree is $12636=2^{2} 3^{5} 13$ and the relevant maximal factorizations of G have the other factor one of $G_{2}(3), N_{1}^{+}$and P_{3}. Now $G_{2}(3)$ has no exact factorization. Next, $N_{1}^{+}=L_{4}(3) .2$; the only maximal subgroups of $L_{4}(3)$ of order divisible by 13 are the parabolic subgroups $3^{3} L_{3}(3)$, from which we see there is no subgroup of the required order. The same applies for $P_{3}=3^{3+3} L_{3}(3)$.

If finally $A \cap L=2^{6} . A_{7}$, the degree is $3^{7} 13$ and B is a subgroup of P_{3}. Regarding L as a subgroup N_{1} of $P \Omega_{8}^{+}(3)$, there is a factorization $P \Omega_{8}^{+}(3)=L \Omega_{8}^{+}(2)$ such that $L \cap \Omega_{8}^{+}(2)=2^{6} . A_{7}=A \cap L$ (see [33, p. 106]). However, we show in Section 11 (see case (a) of the $P \Omega_{8}^{+}(3)$ part in (11.10)) that N_{1} has no subgroup B which is regular on the coset space $P \Omega_{8}^{+}(3) / \Omega_{8}^{+}(2)$, so there is no regular subgroup B in the case under current consideration.

8 Proof of Theorem 1.1: orthogonal groups of minus type

In this section we prove Theorem 1.1 in the case where G has socle $L=$ $P \Omega_{2 m}^{-}(q)(m \geq 4)$.

Suppose $G=A B, A \cap B=1$ and $A \max G$. By [33] and Lemma 2.6, one of the following holds:
(8.1) $A=N_{1}$;
(8.2) $A=P_{1}$ or $N_{2}^{+}(q=4), B \leq N_{G}\left(S U_{m}(q)\right)$ (m odd);
(8.3) $A=N_{G}\left(S U_{m}(q)\right)(m$ odd $), B \leq P_{1}, N_{1}$ or N_{2}^{+};
(8.4) $A=N_{G}\left(\Omega_{m}^{-}\left(q^{2}\right)(m\right.$ even, $q=2$ or 4$), B \leq N_{1}$;
(8.5) $L=\Omega_{10}^{-}(2)$.

Case (8.1) Here $G=B N_{1}$ and $|B|=\left|G: N_{1}\right|=\frac{1}{(2, q-1)} q^{m-1}\left(q^{m}+1\right)$. Moreover B is given by Lemma 4.4 , from which we check that the only possibility is $m=4, q=2$ and $B \triangleright \Omega_{m / 2}^{-}\left(q^{4}\right)=\Omega_{2}^{-}(16)$. However in this case $L=\Omega_{8}^{-}(2)$ and it follows from Lemma 2.2 that every involution class in G is represented in N_{1}, so no regular subgroup occurs.

Case (8.2) If $A=P_{1}$ then $|B|=|G: A|=\left(q^{m}+1\right)\left(q^{m-1}-1\right) /(q+1)$ and we have a factorization $N\left(S U_{m}(q)\right)=B\left(A \cap N\left(S U_{m}(q)\right) \leq B P_{1}\right.$. For $m \geq 5$ odd, the only factorization of $U_{m}(q)$ (or an automorphism group) with P_{1} as a factor is $U_{9}(2)=J_{3} P_{1}$. However, it is easily seen using [9] that J_{3} and $J_{3} .2$
have no subgroups of order $\left(2^{9}+1\right)\left(2^{8}-1\right) / 3$. A similar argument handles the case where $A=N_{2}^{+}$.

Case (8.3) Here $A=N_{G}\left(S U_{m}(q)\right)$ with $m \geq 5$ odd, and

$$
\begin{equation*}
|B|=|G: A|=q^{m(m-1) / 2}\left(q^{m-1}+1\right)\left(q^{m-2}-1\right) \cdots\left(q^{2}+1\right)(q-1) \tag{3}
\end{equation*}
$$

Suppose first that $B \leq P_{1}$, and write $P=Q R$ where Q is the unipotent radical and the Levi subgroup $R \triangleright \Omega_{2 m-2}^{-}(q)$. Then $A \cap P_{1}$ lies in $P_{1}(A)$, hence modulo Q we have a factorization $R=\bar{B} \bar{P}_{1}$ (where bars denote image modulo Q). There are no such factorizations of $\Omega_{2 m-2}^{-}(q)$ or an automorphism group thereof (note $m-1$ is even).

Next suppose that $B \leq N_{1}$. Then $N_{1}=B\left(A \cap N_{1}\right) \leq B N_{G}\left(S U_{m-1}(q)\right)$. For q odd there is no such factorization of N_{1}, so q is even and we have

$$
N\left(S p_{2 m-2}(q)\right)=B N\left(S U_{m-1}(q)\right) \leq B N\left(\Omega_{2 m-2}^{+}(q)\right)
$$

Clearly $B \nsupseteq S p_{2 m-2}(q)$ by (3). Hence [33] implies that either $B \leq N\left(S p_{2 a}\left(q^{b}\right)\right)$ $(a b=m-1, b>1)$, or $B \leq N\left(\Omega_{2 m-2}^{-}(q)\right)(q=2$ or 4$)$, or $B \leq N\left(L_{2}(17)\right)$ $(m=5, q=2)$. The first and third cases are out by (3). In the second case we have a factorization of the form $N\left(\Omega_{2 m-2}^{-}(q)\right)=B N_{1}$. Then [33] forces $B \triangleright \Omega_{2 m-2}^{-}(q)$ or $\Omega_{m-1}^{-}\left(q^{2}\right)$, neither of which is possible by (3). The same observation rules out the last possibility in (8.3), namely $B \leq N_{2}^{+}$.

Case (8.4) In this case $A \cap N_{1} \triangleright \Omega_{m-1}\left(q^{2}\right)$, so the factorization $N_{1}=$ $B\left(A \cap N_{1}\right)$ gives

$$
N_{G}\left(S p_{2 m-2}(q)\right)=B N\left(\Omega_{m-1}\left(q^{2}\right)\right) \leq B P_{1}
$$

As $m-1 \geq 3$ is odd, Lemma 3.1 now implies that either $B \triangleright S p_{2} a\left(q^{b}\right)(a b=$ $m-1$) or $m=4$ and $B \triangleright G_{2}(q)$. Since $|B|=|G: A|$, arithmetic shows that only the second possibility can hold.

If $q=4$ then from $[25,4.3 .16]$ we have $A \cap L=\Omega_{4}(16) .2$, while $B \cap$ $L=G_{2}(4)$, so $|L|_{2} /\left(|A|_{2}|B|_{2}\right)=2^{3}$. This is impossible as $|G: L|$ divides $|\operatorname{Out}(L)|=4$.

Finally, if $q=2$ then our potential exact factorization of G is $\Omega_{8}^{-}(2) .2=$ $\left(L_{2}(16) .4\right)\left(G_{2}(2) \times 2\right)$. However, we claim that this is not a factorization, and prove this by showing that the subgroups $L_{2}(16)$ and $G_{2}(2)$ meet the same involution class of L. To see this, we refer to [9, p.88]. All classes of involutions in L meet $S p_{6}(2)$. The irreducible character of degree 34 splits as a sum of two irreducibles of $S p_{6}(2)$, one of degree 7 and the other of degree
27. We deduce that the class $2 B$ of L contains involutions from both classes $2 A$ and $2 C$ in $S p_{6}(2)$. From the permutation character we see that these involutions are not contained in $G_{2}(2)$. On the other hand, the other two classes of involutions in L therefore have to be represented in $G_{2}(2)$. Next, considering possible restrictions of the character of degree 34 to $L_{2}(16)$, we see that the value on involutions there has to be 2 , so the class in L to which these belong is either $2 A$ or $2 C$ (in fact it is the latter). This establishes the claim.

Case (8.5) Here $L=O_{10}^{-}(2)$. The factors in L are P_{1} and A_{12}, intersecting in a subgroup $\left(S_{4} \times S_{8}\right)^{+}$of A_{12}. The index of A_{12} in L is $2^{11} .51$, whereas it is quite easy to see (cf. [9, p. 89]) that any subgroup of $O_{8}^{-}(2)$ (and hence P_{1}) of order divisible by 51 involves $L_{2}(16)$ and hence has order divisible by 5. On the other hand, if $A=P_{1}$ of index 495, then A_{12} does not have a suitable exact factorization.

9 Proof of Theorem 1.1: some special actions of symplectic and orthogonal groups

In this section we prove Theorem 1.1 in the following two special cases:

L	Ω	$\|\Omega\|$
$S p_{2 m}(q)(q$ even, $m \geq 2)$	$L / O_{2 m}^{-}(q)$	$\frac{1}{2} q^{m}\left(q^{m}-1\right)$
$P \Omega_{2 m}^{+}(q)(m \geq 4)$	L / N_{1}	$\frac{1}{(2, q-1)} q^{m-1}\left(q^{m}-1\right)$

It will turn out that the main candidates for regular subgroups in these cases contain normal subgroups $L_{2}\left(q^{m / 2}\right)$. It is convenient to begin by classifying such subgroups.

Proposition 9.1 Let L, Ω be as in (4). Suppose m is even, and let $S \leq L$ with $S \cong L_{2}\left(q^{m / 2}\right)$ and S semiregular on Ω. If q is odd, assume that S is contained in a parabolic P_{m} or P_{m-1} of L. Then the following hold.
(i) S is a factor of $L_{2}\left(q^{m / 2}\right) \times L_{2}\left(q^{m / 2}\right)=P \Omega_{4}^{+}\left(q^{m / 2}\right)<L$; conversely, such a factor is indeed semiregular on Ω.
(ii) S is contained in a Levi subgroup of a parabolic subgroup P_{m} (or P_{m-1} in the orthogonal case) of L.
(iii) $C_{L}(S) \cong L_{2}\left(q^{m / 2}\right)$.
(iv) If q is even, u is an involution in $C_{L}(S)$ and s is an involution in S, then su fixes a point of Ω.

Proof (A) Suppose first that q is even. Let $V=V_{2 m}(q)$ be the natural module for L. Let $t \in S$ be an element of order 3 so that V is completely reducible as $\langle t\rangle$-module. If $W=C_{V}(t)$ is nonzero then it is non-degenerate and so t lies in $S p\left(W^{\perp}\right) \times 1^{W}$ or $\Omega\left(W^{\perp}\right) \times 1^{W}$, from which it follows easily that t fixes a point of Ω, contrary to our semiregularity assumption. Hence $C_{V}(t)=0$.

By Lemma 2.5, the $\mathbb{F}_{q} S$-composition factors of V are sums of field twists of tensor products $V_{2} \otimes V_{2}^{\left(2^{i_{1}}\right)} \otimes \ldots \otimes V_{2}^{\left(2^{i_{l}}\right)}$, realised over \mathbb{F}_{q}, where V_{2} is the natural module for S. If $l \geq 1$ then t has nonzero fixed point space on such a tensor product. It follows that $l=0$ and the $\mathbb{F}_{q} S$-composition factors of V are m-dimensional modules of the form $V_{2} \oplus V_{2}^{(q)} \oplus \ldots \oplus V_{2}^{\left(q^{m / 2-1}\right)}$, realised over \mathbb{F}_{q}.

Thus S has two m-dimensional composition factors on V of the above form. In particular S fixes an m-dimensional subspace U of V, and U is either totally singular or non-degenerate.

Suppose U is non-degenerate. Now S fixes an $\mathbb{F}_{q^{m / 2}}$-symplectic form [,] on $V_{2}=V_{2}\left(q^{m / 2}\right)$, unique up to $\mathbb{F}_{q^{m / 2}}$-scalar multiplication. Identifying the vectors in U with those of V_{2}, we see that S fixes the \mathbb{F}_{q}-symplectic form on U defined by $(u, v)=\operatorname{Tr}_{\mathbb{F}_{q}}^{\mathbb{F}_{q^{m / 2}}}[u, v]$. If we take an involution $s \in S$ sending $e \rightarrow e, f \rightarrow f+e$ for some $\mathbb{F}_{q^{m / 2}}$-basis e, f of V_{2}, then s has Jordan form J_{2}^{m} on V, and satisfies $(v, s(v)) \neq 0$ for some $v \in V$ (for example take $v=\lambda f$ $\left(\lambda \in \mathbb{F}_{q^{m / 2}}\right)$, where $\left.\operatorname{Tr}\left(\lambda^{2}[e, f]\right) \neq 0\right)$. Hence by Lemma 2.1, some conjugate of s fixes a point of Ω, a contradiction.

Hence U, and indeed every S-invariant m-subspace of V, is totally singular. In particular $S<L_{U}=P_{m}$, a parabolic subgroup of L. Write $P_{m}=Q R$, where Q is the unipotent radical and $R \cong G L_{m}(q)$ is a Levi subgroup. Then Q is elementary abelian, and has the structure of an $\mathbb{F}_{q} R$ module, with composition factors $V_{m}, \wedge^{2} V_{m}$, if $L=S p_{2 m}(q)$, and just $\wedge^{2} V_{m}$ if $L=P \Omega_{2 m}^{+}(q)$ (where V_{m} denotes a natural module for R).

The Levi subgroup R has a subgroup $T \cong S L_{2}\left(q^{m / 2}\right)$ acting as above on V_{m} (namely, as $V_{2} \oplus V_{2}^{(q)} \oplus \ldots \oplus V_{2}^{\left(q^{m / 2-1}\right)}$, realised over \mathbb{F}_{q}). Observe that this subgroup T acts semiregularly on Ω : for semisimple elements of T are clearly semiregular, while an involution $t \in T$ acts on V with Jordan form J_{2}^{m} and satisfies $(v, t(v))=0$ for all $v \in V$, hence is fixed point free on Ω by Lemmas 2.1 and 2.2.

We next aim to prove that
S is Q-conjugate to T.

We first claim that in P_{m} there are at most two conjugacy classes of subgroups $S L_{2}\left(q^{m / 2}\right)$ which project to T (via the canonical map $Q R \rightarrow R$). If $L=P \Omega_{2 m}^{+}(q)$, then as an $\mathbb{F}_{q} T$-module we have

$$
Q \downarrow T=\wedge^{2} V_{m} \downarrow T \cong \sum_{i<j} V_{2}^{\left(q^{i}\right)} \otimes V_{2}^{\left(q^{j}\right)}+\operatorname{triv}_{m / 2}
$$

(realised over \mathbb{F}_{q}). Hence from Lemma 2.5(ii) we see that $H^{1}(T, Q)=0$, whence the semidirect product $Q T$ has just one class of complements to Q, giving the claim. If $L=S p_{2 m}(q)$ this is no longer the case: here we have

$$
Q \downarrow T=\sum_{i=1}^{m / 2} V_{2}^{\left(q^{i}\right)} / \sum_{i<j} V_{2}^{\left(q^{i}\right)} \otimes V_{2}^{\left(q^{j}\right)} / \operatorname{triv}_{m / 2}
$$

(realised over \mathbb{F}_{q}). Hence we see from Lemma 2.5(ii) that $H^{1}(T, Q)$ has dimension at most $m / 2$ over \mathbb{F}_{q}, arising from the fact that $H^{1}\left(T, V_{2}^{\left(q^{i}\right)}\right)$ has dimension 1 for each i. As a module over \mathbb{F}_{q} for a subgroup $G L_{2}\left(q^{m / 2}\right)$ of R containing $T, \sum_{i} H^{1}\left(T, V_{2}^{\left(q^{i}\right)}\right)$ is of the form $V_{1}+V_{1}^{(q)}+\ldots+V_{1}^{\left(q^{m / 2-1}\right)}$ realised over \mathbb{F}_{q}, where V_{1} is a 1-dimensional module over $\mathbb{F}_{q^{m / 2}}$ for $G L_{2}\left(q^{m / 2}\right)$. In particular $G L_{2}\left(q^{m / 2}\right)$ acts transitively on the nonzero elements of this module, and it follows that there are at most two classes of complements to Q in the semidirect product $Q T$, which establishes our claim in this case also.

We now deduce the assertion (5). If $L=P \Omega_{2 m}^{+}(q)$ then as shown above, the semidirect product $Q T$ has just one class of complements to Q. Since $Q S$ is conjugate to $Q T,(5)$ follows in this case.

Now assume $L=S p_{2 m}(q)$. We first produce a complement to Q in $Q T$ which is not conjugate to T. Let X be a non-degenerate m-subspace of V, and let $S_{1} \cong S L_{2}\left(q^{m / 2}\right)$ be a subgroup of L fixing X and X^{\perp}, such that

$$
X \downarrow S_{1} \cong X^{\perp} \downarrow S_{1} \cong \sum_{i=0}^{m / 2-1} V_{2}^{\left(q^{i}\right)}
$$

(realised over \mathbb{F}_{q}). If $\phi: X \rightarrow X^{\perp}$ is an S_{1}-isomorphism, then S_{1} fixes the subspace $W=\{x+\phi(x) x \in X\}$, which is a totally singular m-space. Hence we may take $S_{1} \leq P_{m}$. Replacing S_{1} by a suitable P_{m}-conjugate, we may assume that $S_{1} \leq Q T$. Further, S_{1} is not conjugate to T, since it follows from the above observations that an involution in T is fixed point free on Ω, while an involution in S_{1} is not.

It now follows that our subgroup S is Q-conjugate to either T or S_{1}. However, as just noted, S_{1} is not semiregular on Ω. Hence S is conjugate to T. This establishes (5), and also proves conclusion (ii) and the last part of (i) of the proposition.

Now consider a subgroup $\Omega_{4}^{+}\left(q^{m / 2}\right)<\Omega_{2 m}^{+}(q) \leq L$. Write $\Omega_{4}^{+}\left(q^{m / 2}\right)=$ $T_{1} \times T_{2}$ with $T_{i} \cong S L_{2}\left(q^{m / 2}\right)$. This acts on $V_{4}\left(q^{m / 2}\right)$ as a tensor product of two 2-dimensional spaces, say $V_{1} \otimes V_{2}$. Then for $v \in V_{2}$, the subspace $V_{1} \otimes v$ is a totally singular m-space in V fixed by T_{1}, and it follows that T_{1} fixes a pair of complementary totally singular m-spaces, hence lies in a Levi subgroup $G L_{m}(q)$ of a parabolic P_{m}. Thus we see that S is conjugate to T_{1}, proving (i).

To prove (iii), let P be a Sylow 2-subgroup of $C_{L}\left(T_{1}\right)$. Then $P \times T_{1}$ lies in a parabolic subgroup of L, which must be P_{m}. Hence $P \leq C_{P_{m}}\left(T_{1}\right)$, whence $P=C_{Q}\left(T_{1}\right)$. The composition factors of $Q \downarrow T_{1}$ are given above, and there are at most $m / 2$ trivial ones, whence $|P| \leq q^{m / 2}$. Since T_{2} lies in $C_{L}\left(T_{1}\right)$, it follows that $|P|=q^{m / 2}$. Moreover the composition factors of T_{1} on $V \otimes \overline{\mathbb{F}}_{q}$ are all 2-dimensional and have multiplicity 2 . Hence we see that $C_{L}\left(T_{1}\right)=T_{2}$, giving (iii).

Finally we establish (iv). As above take $T_{1} \times T_{2}$ to act on $V_{1} \otimes V_{2}$, a tensor product of 2-dimensional spaces over $\mathbb{F}_{q^{m / 2}}$. Let T_{i} fix a symplectic form $(,)_{i}$ on V_{i}, and let e_{i}, f_{i} be a basis of V_{i} with $\left(e_{i}, f_{i}\right)_{i}=1$. Then $T_{1} \times T_{2}$ fixes the quadratic form Q_{0} on $V_{1} \otimes V_{2}$ which has associated bilinear form [,] equal to the product of $(,)_{1}$ and $(,)_{2}$, and satisfies $Q_{0}\left(v_{1} \otimes v_{2}\right)=0$ for all $v_{i} \in V_{i}$ (see [25, p.127]). For $i=1,2$, let $t_{i} \in T_{i}$ be the involution which sends $e_{i} \rightarrow e_{i}, f_{i} \rightarrow e_{i}+f_{i}$. Then the involution $t_{1} t_{2}$ sends

$$
f_{1} \otimes f_{2} \rightarrow e_{1} \otimes e_{2}+e_{1} \otimes f_{2}+f_{1} \otimes e_{2}+f_{1} \otimes f_{2}
$$

Hence $t_{1} t_{2}$ acts on $V_{1} \otimes V_{2}$ with Jordan form J_{2}^{2}, and if we write $v=f_{1} \otimes f_{2}$ then $\left[\lambda v, t_{1} t_{2}(\lambda v)\right]=\lambda^{2}$ for $\lambda \in \mathbb{F}_{q^{m / 2}}$. Now regarding $V_{1} \otimes V_{2}$ as the $2 m$ dimensional space over \mathbb{F}_{q} with symplectic form $()=,\operatorname{Tr}_{\mathbb{F}_{q}}^{\mathbb{F}_{q / 2}}[$,], we see that $t_{1} t_{2}$ acts on V as J_{2}^{m} and, taking $u=\lambda v$ with $\operatorname{Tr}\left(\lambda^{2}\right) \neq 0$, we have $\left(u, t_{1} t_{2}(u)\right) \neq 0$. Hence $t_{1} t_{2}$ fixes a point of Ω by Lemma 2.1, and (iv) is proved.
(B) Now assume that q is odd, so that $L=P \Omega_{2 m}^{+}(q)$ and $\Omega=L / N_{1}$. Again write $V=V_{2 m}(q)$. Let \hat{S} be the preimage of S in $\hat{L}=\Omega_{2 m}^{+}(q)$. If t is an involution in \hat{S} then $C_{V}(t)$ is non-degenerate, so the semiregularity of S on Ω forces $C_{V}(t)=0$ and $t=-1_{V}$. In particular $\hat{S} \cong S L_{2}\left(q^{m / 2}\right)$.

By hypothesis, \hat{S} is contained in a parabolic $P=P_{m}$ or P_{m-1} of \hat{L}. This parabolic P is the stabilizer of a totally singular m-subspace W of V. As before write $P=Q R$, where Q is the unipotent radical and $R \leq G L_{m}(q)$ is a Levi subgroup.

Consider the action of $\hat{S} \cong S L_{2}\left(q^{m / 2}\right)$ on the m-space W. This action is realised over \mathbb{F}_{q}, so the set of composition factors of \hat{S} on W is invariant under a Frobenius q-power morphism. Simple arithmetic shows that the only possible sets of composition factors are $\left\{V_{2}^{\left(q^{i}\right)}: 0 \leq i \leq \frac{m}{2}-1\right\}$ and $\left\{\left(V_{2} \otimes V_{2}^{\left(q_{0}\right)}\right)^{\left(q^{i}\right)}: 0 \leq i \leq \frac{m}{4}-1\right\}$, where V_{2} is the natural 2-dimensional module for \hat{S} and q_{0} is a power of p. In fact the latter set is impossible, as $Z(\hat{S})$ acts trivially on $V_{2} \otimes V_{2}^{\left(q_{0}\right)}$, whereas we showed above that it must act as $\left\langle-1_{V}\right\rangle$ on V. It follows that

$$
W \downarrow \hat{S} \cong \sum_{1}^{m / 2-1} V_{2}^{\left(q^{i}\right)}
$$

realised over \mathbb{F}_{q}.
We next establish that \hat{S} acts completely reducibly on V. Assume for a contradiction that this is not the case. As an \hat{S}-module, $V / W \cong W^{*} \cong$ $\sum_{1}^{m / 2-1} V_{2}^{\left(q^{i}\right)}$, so it must be the case that $\operatorname{Ext}_{\hat{S}}\left(V_{2}, V_{2}^{\left(q^{i}\right)}\right) \neq 0$ for some i. By $[1,4.5]$, for this to be the case we must have $q^{i}=3$, and $V \downarrow \hat{S}$ the sum of field twists of a 4-dimensional indecomposable with composition factors $V_{2}, V_{2}^{(3)}$. Such an indecomposable can be viewed as the space of homogeneous polynomials of degree 3 in two variables or its dual, from which we see that the action of an element $u \in \hat{S}$ of order 3 has Jordan form $\left(J_{3}, J_{1}\right)$. Hence the action of u on the whole of V is $\left(J_{3}^{m / 2}, J_{1}^{m / 2}\right)$. However, such an element fixes pointwise a non-degenerate subspace of dimension $m / 2$ (see [42, p.38]), and hence fixes a point of Ω, contradicting the semiregularity of S.

Hence $V \downarrow \hat{S}$ is completely reducible, and is $\sum_{1}^{m / 2-1} V_{2}^{\left(q^{i}\right)}+\sum_{1}^{m / 2-1} V_{2}^{\left(q^{i}\right)}$. In particular \hat{S} fixes an m-subspace W^{\prime} of V such that $V=W \oplus W^{\prime}$. Assume W^{\prime} is non-degenerate, so that $\hat{S} \leq \Omega\left(W^{\prime}\right) \cong \Omega_{m}^{\epsilon}(q)$. Consideration of primitive prime divisors of $q^{m}-1$ shows that for $\left|S L_{2}\left(q^{m / 2}\right)\right|$ to divide $\left|\Omega_{m}^{\epsilon}(q)\right|$ we must have $4 \mid m$ and $\epsilon=-$. However in this case $\Omega_{m}^{-}(q)$ does not contain $-I_{m}$ (see $\left.[25,2.5 .13]\right)$, giving a contradiction as \hat{S} contains -1_{V}. It follows that W^{\prime} is totally singular. Thus \hat{S} fixes the complementary totally singular m-spaces W, W^{\prime}, and hence \hat{S} lies in a Levi subgroup of P, giving conclusion (ii) of the lemma.

Finally, conclusions (i) and (iii) are proved by similar arguments to those given above for these in part (A) of this proof.

Next we establish the existence of the examples in Table 16.1 for this case (i.e. L, Ω as in (4)).

Proposition 9.2 Regular subgroups B of G exist in each of the following cases:

G	G_{α}	B
$S p_{4}(4) \cdot 2$	$O_{4}^{-}(4) \cdot 2$	S_{5}
$S p_{8}(2)$	$O_{8}^{-}(2)$	S_{5}
$\Omega_{8}^{+}(2)$	N_{1}	S_{5}
$\Omega_{8}^{+}(4) \cdot 2$	N_{1}	$L_{2}(16) .4$

where in lines 1 and $4, G / L$ is generated by an involutory field automorphism. Moreover, in each case the subgroup B^{\prime} is unique up to G-conjugacy.

Proof First consider the last two lines. Here $L=\Omega_{8}^{+}(q)$ with $q=2$ or 4. By Lemma 9.1 there is a subgroup $S=S L_{2}\left(q^{2}\right)$ of a Levi $G L_{4}(q)$ in L which acts semiregularly on Ω. In fact there is a subgroup $S .2=S L_{2}\left(q^{2}\right) \cdot 2$ in this $G L_{4}(q)$, and any outer involution t of this has Jordan form J_{2}^{4} on $V=V_{8}(q)$ and satisfies $(v, t(v))=0$ for all $v \in V\left(\right.$ since $G L_{4}(q)$ fixes a pair of complementary totally singular 4 -spaces), and hence t is fixed point free on Ω by Lemma 2.1. It follows that this subgroup $S .2$ is semiregular on Ω. For $q=2$ this gives a regular subgroup $B \cong S_{5}$, as required. For $q=4$, adjoin a field automorphism τ to L. Then the normalizer of S in $G=L\langle\tau\rangle$ contains $S .4=L_{2}(16) .4$. If this intersects N_{1} nontrivially, the intersection must have order 2 . However elements in $L_{2}(16) .4 \backslash L_{2}(16) .2$ have order divisible by 4 , so this is not possible, and it follows that this subgroup $L_{2}(16) .4$ is regular on Ω, giving the example in line 4 of the table in the conclusion.

Observe that the action of $\Omega_{8}^{+}(2)$ on N_{1}-spaces is contained in the action of $S p_{8}(2)$ on the cosets of $O_{8}^{-}(2)$, and hence the latter also has a regular subgroup S_{5}.

Now consider line 1. Let $G=S p_{4}(4) .2$. By Lemma 9.1 there is a semiregular subgroup $S=S L_{2}(4)$. Its normalizer in G contains a subgroup S_{5}. This must intersect $G_{\alpha}=L_{2}(16) .4$ trivially, since as above, elements of $G_{\alpha} \backslash L$ have order divisible by 4 . Hence this S_{5} is regular.

Finally, the uniqueness statement in the proposition follows from Proposition 9.1.

Remark The proof shows that the indicated outer automorphisms of L are necessary in lines 1 and 4 of the table in 9.2 , hence the $*$ in the corresponding entries of Table 16.1.

Now we embark upon the proof of Theorem 1 for the special actions given in (4). Let G, L, Ω be as in (4), and suppose $B<G$ acts regularly on Ω.

Lemma 9.3 One of the following holds:
(i) m is even and B has a normal subgroup $S \cong L_{2}\left(q^{m / 2}\right)$, where S is contained in a Levi subgroup $S L_{m}(q) /\langle-1\rangle$ in L;
(ii) $(m, q)=(4,3), B$ lies in a parabolic subgroup $P_{i}(i=3$ or 4$)$ of G, and $B \triangleright A_{5}$, where this A_{5} lies in a Levi subgroup $L_{4}(3)$ of P_{i}.

Proof We know that $|B|=\frac{1}{2} q^{m}\left(q^{m}-1\right)$ or $\frac{1}{(2, q-1)} q^{m-1}\left(q^{m}-1\right)$, according as $L=S p_{2 m}(q)$ or $P \Omega_{2 m}^{+}(q)$. Moreover B satisfies the conclusion of Lemma 4.6 or 4.5 , respectively. It follows by arithmetic that one of the following holds:
(α) $B \triangleright L_{2}\left(q^{m / 2}\right)$ with q even or $(m, q)=(4,3)$;
(β) $B \leq P_{m}$ (or P_{m-1} in the orthogonal case), and modulo the unipotent radical B induces a subgroup of $\Gamma L_{m}(q)$ which is transitive on 1 -spaces.

Consider case (α). If q is even then conclusion (i) holds by Proposition 9.1. Now assume $(m, q)=(4,3)$ and $B \triangleright L_{2}(9)=A_{6}$. We have $|B|=1080$, hence $B=3 \times A_{6}$, and so B lies in a maximal parabolic P, which must be P_{3} or P_{4} (since $G=B N_{1}$). Hence conclusion (i) holds by 9.1 again.

Now consider case (β). Let $P_{m}=Q R$ as in the proof of Proposition 9.1, and let \bar{B} denote the subgroup of $\Gamma L_{m}(q)$ induced by B. Then \bar{B} is given by Lemma 3.1. Since $|B|=|\Omega|$ is as in (4), one of the following holds:
(a) $\bar{B} \triangleright L_{2}\left(q^{m / 2}\right)$;
(b) $\bar{B} \triangleright L_{2}(13)$ with $(m, q)=(6,3)$;
(c) $\bar{B} \triangleright A_{5}$ or $\bar{B} \leq 2^{4} . S_{5}$ with $(m, q)=(4,3)$;
(d) $\bar{B} \leq \Gamma L_{1}\left(q^{m}\right)$.

Consider (a). Since $|B|_{p}<q^{m}, \bar{B}$ must act trivially on $B \cap Q$, and hence the preimage of $L_{2}\left(q^{m / 2}\right)$ in B is a central extension of $B \cap Q$ by $L_{2}\left(q^{m / 2}\right)$. Now the Schur multiplier of $L_{2}\left(q^{m / 2}\right)$ is a p^{\prime}-group, with the exception of
$L_{2}(4)$ and $L_{2}(9)$ (see [16, 6.1]). Therefore, apart from these exceptions, we have $B \geq L_{2}\left(q^{m / 2}\right)$, and conclusion (i) now follows by Proposition 9.1. The exceptional possibilities are that B contains a cover 2. $L_{2}(4)$ or $3 . L_{2}(9)$ (with $m=4, q=2$ or 3). However, there is no such cover in P_{m} in these cases: for example, when $q=2$ we have $P_{m}=P_{4}=2^{6} . L_{4}(2)$ or $2^{4+6} . L_{4}(2)$ according as $L=\Omega_{8}^{+}(2)$ or $S p_{8}(2)$. The group \bar{B}, being transitive on 1 -spaces, is an $L_{2}(4)$ centralizing an element of order 3 in $L_{4}(2)$, hence acting completely reducibly on 2^{6} as $2^{2} \oplus 2^{4}$. The derived group of $2^{6} . \bar{B}$ is therefore $2^{4} . \bar{B}$, which does not contain a cover $2 . L_{2}(4)$ as \bar{B} is fixed point free on 2^{4}. The argument for $q=3$ is similar.

In case (b) the fact that $|B|=\frac{1}{2} 3^{5}\left(3^{6}-1\right)$ forces $B=3^{4} . L_{2}(13)$. We have $Q=\wedge^{2} V_{6}(3)$ as a module for $R^{\prime}=L_{6}(3)$, and hence using [20] we see that $Q \downarrow L_{2}(13)$ has composition factors of orders $3^{7}, 3^{7}$ and 3 . Hence P_{6} has no subgroup $3^{4} . L_{2}(13)$, a contradiction.

Now consider (c). Here $|B|=1080$ and $B \leq P_{i} \leq 3^{6} . L_{4}(3) . D_{8}$, where $i \in\{3,4\}$. If $|\bar{B}|_{3}=1$ then $|B \cap Q|=3^{3}$. However since B has an element of order 5 , there is no B-invariant subgroup of order 3^{3} in Q, so this is impossible. Hence $|\bar{B}|_{3}=3, \bar{B} \triangleright A_{5}$ and $B \cap Q=3^{2}=C_{Q}\left(A_{5}\right)$. Since the Schur multiplier of A_{5} has 3^{\prime}-order, it follows that $B \triangleright A_{5}$. Arguing as in part (B) of the proof of Proposition 9.1, we see that this A_{5} lies in a Levi subgroup of P_{i} (using [26, Lemma 1] instead of [1] for the relevant fact about Ext groups). Hence conclusion (ii) of the lemma holds.

Finally, consider (d), in which $\bar{B} \leq \Gamma L_{1}\left(q^{m}\right)$. Assume first that $(m, q) \neq$ $(6,2)$, so that B contains an element t of prime order q_{m} (a primitive prime divisor of $q^{m}-1$). The non-trivial composition factors of $Q \downarrow\langle t\rangle$ have order q^{m}; in addition we have $\left|C_{Q}(t)\right|=1$ or $q^{m / 2}$, according as m is odd or even, respectively. Since $|B|_{p}<q^{m}$, it follows that $B \cap Q \leq C_{Q}(t)$, and so $m \log _{p} q$ is divisible by $|B|_{p} /\left|C_{Q}(t)\right|$. Hence one of the following holds:

$$
\begin{aligned}
& m=2, q=4 \text { or } 16 \\
& m=4, q=2,4 \text { or } 16 \\
& m=8, q=2 .
\end{aligned}
$$

In the $m=2$ case we have $L=S p_{4}(q)$ and $B \cap L \leq N_{P_{2}}(t)=[q \cdot(q-1)] \times$ $[(q+1) .2] \leq L_{2}(q) \times L_{2}(q)=\Omega_{4}^{+}(q)$. By Proposition 9.1(iv), no involution from the second factor can be present in B. Hence for $q=16$ we have $B \leq([q \cdot(q-1)] \times(q+1)) .4$, whereas $|B|_{2}=2^{7}$, a contradiction. And for $q=4$ we have $G=L .2$ and $B=\left(2^{2} .3 \times 5\right) .2$; however, any 2 -element in the outer coset of this group would have to have order 4 , since $N_{L_{2}(4) .2}(5)=5.4$, so this is also impossible.

In the $m=4$ case, we similarly have $B \cap L \leq\left(\left[q^{2} \cdot\left(q^{2}-1\right)\right] \times\left(q^{2}+1\right)\right) .2 \leq$ $\Omega_{4}^{+}\left(q^{2}\right)$, and again any outer 2 -element must have order greater than 2 , leading to a contradiction. The $m=8$ case yields to an entirely similar argument.

To complete the proof, observe that in the excluded case $(m, q)=(6,2)$ we take $t \in B$ to be an element of order 7; then all composition factors of $Q \downarrow\langle t\rangle$ have order 2^{3}. This yields a contradiction since $|B|_{2}=2^{5}$.

Lemma $9.4 q$ is even.

Proof Suppose q is odd. Then $L=P \Omega_{2 m}^{+}(q)(m \geq 4)$ and $\Omega=L / N_{1}$. Say N_{1} is the stabilizer of a 1 -space $\langle w\rangle$ with $(w, w)=1$.

Assume first that case (i) of Lemma 9.3 holds. By Lemma 9.1, the normal subgroup $S \cong L_{2}\left(q^{m / 2}\right)$ of B is a factor of a subgroup $S \times T=$ $L_{2}\left(q^{m / 2}\right) \times L_{2}\left(q^{m / 2}\right)=P \Omega_{4}^{+}\left(q^{m / 2}\right)<L$, and moreover $C_{L}(S)=T$. Hence B normalizes $S \times T$. Since $|B|_{p}=q^{m-1}$ it follows that B contains an element $t_{2} \in T$ of order p.

However, we claim that we can choose $t_{1} \in S$ of order p such that $t_{1} t_{2}$ fixes a point of Ω. To see this, rewrite $S \times T=T_{1} \times T_{2}$ and take this to act on $V_{1} \otimes V_{2}$, a tensor product of 2-dimensional spaces over $\mathbb{F}_{q^{m / 2}}$. Let T_{i} fix a symplectic form $(,)_{i}$ on V_{i}, and let e_{i}, f_{i} be a basis of V_{i} with $\left(e_{i}, f_{i}\right)_{i}=1$. Then $T_{1} \times T_{2}$ fixes the symmetric form [,] on $V_{1} \otimes V_{2}$ which is the product of $(,)_{1}$ and $(,)_{2}$, and we may assume the \mathbb{F}_{q}-form $($,$) on V$ preserved by L to be $\operatorname{Tr}_{K}^{k}[$,$] , where K=\mathbb{F}_{q^{m / 2}}, k=\mathbb{F}_{q}$. We may take t_{i} to send $e_{i} \rightarrow e_{i}, f_{i} \rightarrow \alpha_{i} e_{i}+f_{i}$ for $i=1,2$ and some $\alpha_{i} \in \mathbb{F}_{q^{m / 2}}$. Then $t_{1} t_{2}$ fixes the vector

$$
v=\alpha_{1} e_{1} \otimes f_{2}-\alpha_{2} f_{1} \otimes e_{2} .
$$

Now $[v, v]=2 \alpha_{1} \alpha_{2}$, and so for a suitable choice of α_{1} (recall that we can choose t_{1} to be any element of order p in S), we have $(v, v)=\operatorname{Tr}_{K}^{k}[v, v]=1$, so the $\mathbb{F}_{q^{-}}-1$-space spanned by v is in Ω and is fixed by $t_{1} t_{2} \in B$, as claimed. This contradicts the fact that B acts semiregularly on Ω.

Finally, consider case (ii) of Lemma 9.3 . As in the fifth paragraph of the proof of that lemma (case (c)), we have $B \cap Q=C_{Q}\left(A_{5}\right)=3^{2}$, and the subgroup $3^{2} \times A_{5}$ of B lies in a subgroup $A_{6} \times A_{6}=P \Omega_{4}^{+}(9)<L$. Then B contains an element $t_{1} t_{2}$, where t_{1}, t_{2} are elements of order 3 in the two factors A_{6}, and as above, this element fixes a point of Ω, which is a contradiction.

At this point we can complete the proof of Theorem 1 for the actions in (4). Let G, L, Ω be as in (4), and suppose $B<G$ is regular on Ω. By Lemmas 9.3 and 9.4, m and q are even, and B has a normal subgroup $S \cong L_{2}\left(q^{m / 2}\right)$. Moreover, S satisfies (i)-(iv) of Proposition 9.1.

Let $T=C_{L}(S)$, so $T \cong L_{2}\left(q^{m / 2}\right)$ by Proposition 9.1 (iii). Now $|B|_{2^{\prime}}=$ $q^{m}-1=|S|_{2^{\prime}}$, while $|B \cap T|_{2}=1$ by Proposition 9.1 (iv). It follows that $B \cap T=1$. Since S is centralized by no nontrivial field automorphism of L, we have $C_{G}(S)=C_{L}(S)=T$, whence $C_{B}(S)=1$. Consequently B / S has order dividing $|\operatorname{Out}(S)|=\frac{m}{2} \log _{2} q$. Since $|B / S|=\frac{1}{2} q^{m / 2}$ if $L=S p_{2 m}(q)$, and $|B / S|=q^{m / 2-1}$ if $L=\Omega_{2 m}^{+}(q)$, this forces one of the following to hold:

$$
\begin{aligned}
& L=S p_{2 m}(q): m=2, q=4 \text { or } m=4, q=2 \\
& L=\Omega_{2 m}^{+}(q): m=4, q=2 \text { or } 4
\end{aligned}
$$

In all these cases examples of regular subgroups B exist, and are unique up to conjugacy, by Proposition 9.2. Finally, we see using Proposition 9.1(iv) that there are no further examples of regular subgroups.

This completes the proof of Theorem 1 for the actions in (4).

10 Proof of Theorem 1.1: remaining symplectic cases

In this section we prove Theorem 1.1 in the case where G has socle $L=$ $P S p_{2 m}(q)(m \geq 2,(m, q) \neq(2,2))$.

Suppose $G=A B, A \cap B=1$ and $A \max G$. By [33] and Lemma 2.6, one of the following holds:
(10.1) $A=N_{G}\left(\Omega_{2 m}^{\epsilon}(q)\right)(q$ even, $\epsilon= \pm) ;$
(10.2) $A=P_{1}$;
(10.3) $A=N_{G}\left(P S p_{2 a}\left(q^{b}\right)\right), B \leq P_{1}(a b=m, b$ prime $)$;
(10.4) $A=N_{G}\left(P S p_{2 a}\left(q^{b}\right)\right), B \leq N_{G}\left(\Omega_{2 m}^{\epsilon}(q)\right)$ (q even, $a b=m, b$ prime);
(10.5) $A=P_{m}, B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)(q$ even $)$;
(10.6) $A=N_{G}\left(S p_{m}(q)\right.$ ไ $\left.S_{2}\right), B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)$ (m even, q even);
(10.7) $A=N_{2}, B \leq N_{G}\left(S p_{m}\left(q^{2}\right)\right)(m \geq 4$ even, $q=2$ or 4$)$;
(10.8) $A=N_{G}\left(S p_{m}\left(q^{2}\right)\right), B \leq N_{2}(m \geq 4$ even, $q=2$ or 4$)$;
(10.9) $A=N_{G}\left(S p_{2 m}\left(q^{1 / 2}\right)\right), B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)(q=4$ or 16$)$;

```
(10.10) \(m=2, A=N(S z(q))\) or \(B \leq N(S z(q))\left(q=2^{2 a+1} \geq 8\right)\);
(10.11) \(m=3, A=N\left(G_{2}(q)\right)\) or \(B \leq N\left(G_{2}(q)\right)\) ( \(q\) even);
(10.12) \(L=P S p_{4}(3), P S p_{6}(3)\) or \(S p_{8}(2)\).
```

Case (10.1) For $\epsilon=-$ this case has been handled in Section 9. So assume $\epsilon=+$. Then $A=N_{G}\left(\Omega_{2 m}^{+}(q)\right)$ and $|B|=\frac{1}{2} q^{m}\left(q^{m}+1\right)$. By Lemma 2.3, A contains representatives of all involution classes in L, and hence, as B is regular on Ω, B can contain no such involutions; in other words, $|B \cap L|$ is odd. It follows that $|B|_{2}=\frac{1}{2} q^{m}$ divides $|G: L|$, hence divides $\log _{2} q$. This is impossible.

Case (10.2) Here $A=P_{1},|B|=\left(q^{2 m}-1\right) /(q-1)$, and by Lemma 3.1 we have $B \leq \Gamma L_{1}\left(q^{2 m}\right) /\langle-1\rangle$. Now $\Gamma L_{1}\left(q^{2 m}\right) \cap S p_{2 m}(q)=\left(q^{m}+1\right) .2 m$ (see for example the proof of $[25,4.3 .15]$), and hence $\left(q^{2 m}-1\right) /(q-1)$ must divide $\left(q^{m}+1\right) .2 m \log q$. This forces $m=2, q=3$. In this case $L=P S p_{4}(3) \cong U_{4}(2)$, which was handled in (6.3).

Case (10.3) Here $B \leq P_{1}$ and $A=N_{G}\left(P S p_{2 a}\left(q^{b}\right)\right)(a b=m, b$ prime $)$, and we have

$$
\begin{equation*}
|B|=|L: A|=\frac{1}{b} q^{m(m-a)} \prod_{i \leq m-1, i \neq k b}\left(q^{2 i}-1\right) \tag{6}
\end{equation*}
$$

Write $P_{1}=Q R$ where Q is the unipotent radical and R a Levi subgroup, so $R \triangleright S p_{2 m-2}(q)$. As usual set $\bar{B}=B Q / Q$. If $P_{1}=G_{\langle v\rangle}$ then $A \cap P_{1}$ stabilizes the 1 -space spanned by v over $\mathbb{F}_{q^{b}}$, and hence we have a factorization $R=$ $\bar{B} P_{b-1}$. By [33] this forces one of the following to hold:
(1) $\bar{B} \triangleright S p_{2 m-2}(q)$
(2) $b=m>2$
(3) $b=2$.

Consider first case (1). Here (6) forces $b=m$, and $|B| /\left|S p_{2 m-2}(q)\right|=$ q^{m-1} / m. Hence as m is prime, $m=p$. Moreover $S p_{2 m-2}(q)$ has composition factors on Q of orders q and $q^{2 m-2}$, and so $B \cap Q \leq Q_{0}$, where $Q_{0}=$ $C_{Q}\left(S p_{2 m-2}(q)\right)$, a group of order q. Thus q^{m-1} / m divides $q \log q$. If $m=2$ then $p=2$ and $A=N_{G}\left(S p_{2}\left(q^{2}\right)\right)$ is conjugate under a graph automorphism of L to $N\left(O_{4}^{-}(q)\right)$, a case already handled in Section 9 . The only other possibility is that $m=p=3$, in which case q^{2} divides $3 q \log q$, forcing $q=3$, and $A \cap L=P S p_{2}(27) .3, B \cap L=S p_{4}(3) \times 3$. But then A and B contain conjugate elements of order 3 and Jordan form J_{2}^{3}.

For the rest of the proof we may assume that $\bar{B} \nsupseteq S p_{2 m-2}(q)$.
Consider case (2): $b=m>2$. Here the factorization $R=\bar{B} P_{m-1}$ implies using [33] that one of the following holds:
(2i) $\bar{B} \leq N\left(O_{2 m-2}^{-}(q)\right), q$ even
(2ii) $m=q=3, \bar{B} \leq 2^{1+4} \cdot S_{5}$
(2iii) $m=3, q=2$.
In case $(2 \mathrm{i})$ we have $B \leq Q \cdot\left(O_{2 m-2}^{-}(q) \times(q-1)\right) \cdot \log q$, and hence by (6), $q^{m-1}-1$ divides $m(q-1) \log q$. This forces $m=3, q=2$ or 8 . For $q=2$ the only possibility for B is $2^{4} . A_{5}$, and we claim there is indeed an exact factorization

$$
S p_{6}(2)=\left(S p_{2}(8) .3\right)\left(2^{4} \cdot A_{5}\right)
$$

as in Table 16.1. To prove this claim, we start with the factorization $S p_{6}(2)=\left(S p_{2}(8) .3\right) O_{6}^{-}(2)$ given by [33]. The intersection of the two factors is $O_{2}^{-}(8) .3$, which is not contained in $\Omega_{6}^{-}(2)$, and hence we also have $S p_{6}(2)=\left(S p_{2}(8) .3\right) \Omega_{6}^{-}(2)$, the factors intersecting in $\Omega_{2}^{-}(8) .3=9.3$. Now take $B=2^{4} . A_{5}=P_{1}\left(\Omega_{6}^{-}(2)\right.$. Then B is also $P_{2}\left(U_{4}(2)\right)$. From Section 6 we have an exact factorization of $U_{4}(2)$ which interpreted for $\Omega_{6}^{-}(2)$ takes the form $\Omega_{6}^{-}(2)=P_{1} \Omega_{2}^{-}(8) .3$, and the claim follows.

Finally, for $m=3, q=8$ we assert that no example arises: for here the relevant exact factorization must be $S p_{6}(8) .3=\left(S p_{2}\left(8^{3}\right) .9\right) B$, where $B=\left(\mathbb{F}_{8}\right)^{4} .\left(\Omega_{4}^{-}(8) \times 7\right) .3$, and B is unique up to P_{1}-conjugacy. Hence B is the stabilizer of a singular 1-space in Ω_{6}^{-}(8). Since $S p_{6}(8)=\left(S p_{2}\left(8^{3}\right) .3\right) \Omega_{6}^{-}(8)$, with factors intersecting in $\Omega_{2}^{-}\left(8^{3}\right) .3$, this leads to a factorization $\Omega_{6}^{-}(8) .3=$ $P_{1}\left(\Omega_{2}^{-}\left(8^{3}\right) \cdot 3.3\right)$. However there is no such factorization, by [33].

Next consider case (2 ii): $m=q=3, \bar{B} \leq 2^{1+4} . S_{5}$. Under the action of a subgroup of order 5 in B, the radical $Q=3^{1+4}$ contains no invariant 3^{4}, and hence the only possibility is $B=Q \cdot\left(2^{1+4} \cdot 5.4\right)$. We claim that there is an example of this form, i.e. an exact factorization

$$
P S p_{6}(3) \cdot 2=A B=\left(P S p_{2}(27) \cdot 3 \cdot 2\right)\left(3^{1+4} \cdot 2^{1+4} \cdot 5 \cdot 4\right)
$$

as in Table 16.1. To see this, observe first that $|A \cap B|_{3}=1$: for the elements of order 3 in A have Jordan form J_{2}^{3} or J_{3}^{2}, whereas those in B (hence in $Q)$ do not. Next, $|A \cap B \cap L|_{2}=1$: for involutions in P_{1} lift to involutions in $S p_{6}(3)$, whereas involutions in the subgroup $P S p_{2}(27)$ lift to elements of order 4. Finally, $|A \cap B|_{2}=1$ also, since, working in $B / O_{2,3}(B)=5.4$, we see that every 2-element of $B \cap(L .2 \backslash L)$ has order divisible by 4 and has a power which is an involution in L. This proves the existence of the above exact factorization.

Now consider case (2iii): $m=3, q=2$. Here the factorization $R=$ $S p_{4}(2)=\bar{B} P_{2}$ implies that $\bar{B} \geq A_{5}$ by [33]. Moreover $|B|=2^{4} \cdot 60$, so the only possibility is given by the exact factorization $S p_{6}(2)=\left(S p_{2}(8) .3\right)\left(2^{4} \cdot A_{5}\right)$, the existence of which was established above. This completes our analysis of case (2).

To complete this subsection (10.3), consider case (3): $b=2$. Here $m=a b$ is even and

$$
|B|=\frac{1}{2} q^{m^{2} / 2}\left(q^{2 m-2}-1\right)\left(q^{2 m-6}-1\right) \ldots\left(q^{2}-1\right)
$$

The factorization $R=\bar{B} P_{1}$ implies by Lemma 3.1 that one of the following holds:
(3i) $\bar{B} \triangleright S p_{2 c}\left(q^{d}\right)$ with $c d=m-1, d \geq 3$
(3ii) $\bar{B} \triangleright G_{2}\left(q^{d}\right)$ with q even, $3 d=m-1$
(3iii) $m=4, q=3$ and $\bar{B} \triangleright S L_{2}(13)\left(<S p_{6}(3)\right)$
(3iv) $m=2, q \in\{5,7,9,11,19,23,29,59\}, \bar{B} \triangleright Q_{8}$ or $S L_{2}(5)$
$(3 \mathrm{v}) \bar{B} \cap S p_{2 m-2}(q) \leq \Gamma L_{1}\left(q^{2 m-2}\right)$.
In case $(3 \mathrm{i})$, the fact that $|B|$ is divisible by $q^{2 m-6}-1$ forces $m=4$ and $\bar{B} \triangleright S p_{2}\left(q^{3}\right)$. Now B acts on Q with composition factors of order q and q^{6}. Since $|B|_{p}=q^{8} /(2, q)$, it follows that $|B \cap Q|$ divides q. However this means that $|B \cap L|_{p} \leq q^{4}$, hence $q^{4} /(2, q)$ divides $|\operatorname{Out}(L)|$, which is clearly impossible.

Now consider (3ii). Here again the divisibility of $|B|$ by $q^{2 m-6}-1$ forces $d=1$ and $m=4$, and as above $|B \cap Q|$ divides q. We claim that A and B both contain conjugates of an element of order $q+1$, which will contradict the factorization $G=A B$. To see the claim, consider $G_{2}(q)<S p_{6}(q)<L$. A subgroup $S=S L_{2}(q)$, generated by long root elements of $G_{2}(q)$, acts on the natural module V_{8} as $V_{2}^{2}+V_{1}^{4}$, and hence S has an element s of order $q+1$ acting on V_{8} as $\left(A, A, 1^{4}\right)$, where A stands for a 2×2 matrix of order $q+1$. Then B contains a conjugate of s. Moreover, so does A, within a natural subgroup $S p_{2}\left(q^{2}\right)$ of $S p_{4}\left(q^{2}\right) \triangleleft A$. This proves the claim.

Next consider (3iii). Here $|B|_{2} \leq 2\left|S L_{2}(13)\right|_{2}=2^{4}$, whereas $|B|=$ $\frac{1}{2} 3^{8}\left(3^{6}-1\right)\left(3^{2}-1\right)$ has 2 -part 2^{5}, a contradiction.

In case (3iv) we have $|B|=\frac{1}{2} q^{2}\left(q^{2}-1\right)$, and as before $|B \cap Q|$ divides q. Hence q divides $|\bar{B}|$, which is not possible.

Finally consider (3v). We have $\left|S p_{2 m-2}(q) \cap \Gamma L_{1}\left(q^{2 m-2}\right)\right|=\left(q^{m-1}+\right.$ 1) $(m-1) \cdot(2, q)$ (contained in a subgroup $S p_{2}\left(q^{m-1}\right) \cdot(m-1)$ - see the proof of $[25,4.3 .15]$. Hence $|B|$ divides $2\left(q^{m-1}+1\right)(m-1)(q-1) \log q$. This must
be divisible by $q^{m-1}-1$, which forces $m=2$. Then $|B|=\frac{1}{2} q^{2}\left(q^{2}-1\right)$, and as usual $|B \cap Q|$ divides q. Hence $\frac{1}{2} q$ divides $2 \log q$, so $q=4$ or 16 (recall $q \neq 2$ since by assumption $L \neq S p_{4}(2) \cong S_{6}$). Now applying a graph automorphism of $L=S p_{4}(q)$ to A and B, we have $A=N\left(O_{4}^{-}(q)\right)$ and $B \leq P_{2}$. Hence we are done by Section 9 .

Case (10.4) Here $A=N_{G}\left(P S p_{2 a}\left(q^{b}\right)\right), B \leq N_{G}\left(\Omega_{2 m}^{\epsilon}(q)\right)$ (q even, $a b=m$, b prime), and $|B|$ is as in (6). There is a factorization

$$
\begin{equation*}
N_{G}\left(\Omega_{2 m}^{\epsilon}(q)\right)=B N\left(O_{2 a}^{\epsilon}\left(q^{b}\right)\right) \tag{7}
\end{equation*}
$$

and $B \nsupseteq \Omega_{2 m}^{\epsilon}(q)$ (by (6)). Hence by [33], one of the following holds:
(1) $m \geq 4, b=2, q=2$ or 4 , and $B \leq N_{1}$ (or an image of N_{1} under triality if $m=4, \epsilon=+$)
(2) $m \leq 3$.

Consider first case (1). Here $|B|=\frac{1}{2} q^{m^{2} / 2}\left(q^{2 m-2}-1\right)\left(q^{2 m-6}-1\right) \ldots\left(q^{2}-1\right)$, so $B \nsupseteq \Omega_{2 m-1}(q)$. From [33] we see that $N_{1} \cap O_{m}^{\epsilon}\left(q^{2}\right)$ fixes a 1-space of the natural module for $S p_{2 m-2}(q) \cong \Omega_{2 m-1}(q)$, and hence (7) leads to a factorization

$$
N\left(S p_{2 m-2}(q)\right)=B P_{1}
$$

By Lemma 3.1 together with the fact that $m \geq 4$ is even, it follows that either $B \leq N\left(S p_{2 c}\left(q^{d}\right)(c d=m-1, d \geq 3)\right.$, or $m=4$ and $B \triangleright G_{2}(q)$. In the former case $|B|_{p}<\frac{1}{2} q^{m^{2} / 2}$, a contradiction. And in the latter case, we see as in the case (3ii) of (10.3) above, that A and $G_{2}(q)$ both contain conjugates of an element of order $q+1$, which contradicts the exact factorization $G=A B$.

Now consider case (2): $m \leq 3$. If $m=2$ we can apply a graph automorphism of L to take $A=N\left(O_{4}^{-}(q)\right)$, and we are done by Section 9 . So assume that $m=3$. Then $|B|=\frac{1}{3} q^{6}\left(q^{4}-1\right)\left(q^{2}-1\right)$, and (7) gives a factorization $N_{G}\left(O_{6}^{\epsilon}(q)\right)=B N\left(O_{2}^{\epsilon}\left(q^{3}\right)\right)$. For $q>2$ there is no possible such factorization, by [33]; neither is there for $q=2, \epsilon=+$ (note that $\left.O_{6}^{+}(2) \cong S_{8}\right)$. For $q=2, \epsilon=-$, the only possibility is the factorization arising from $U_{4}(2)=(9.3) P_{2}$ which we have seen in Section 6, leading to the example

$$
S p_{6}(2)=\left(S p_{2}(8) .3\right)\left(2^{4} . A_{5}\right)
$$

seen in case (2i) of (10.3) above.
Case (10.5) Here $A=P_{m}$ and $B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)$ (q even). We have $|B|=|G: A|=\prod_{i=1}^{m}\left(q^{i}+1\right)$. From [33] we see that $A \cap O_{2 m}^{-}(q)$ fixes a
totally singular ($m-1$)-space, and hence we get a factorization

$$
N_{G}\left(\Omega_{2 m}^{-}(q)\right)=B P_{m-1} .
$$

There is no such factorization for $m \geq 3$, by [33] (note that for $m=3$ it translates into a factorization of type $\left.U_{4}(q)=B P_{1}\right)$. Finally, $m=2$ is also not possible as $\operatorname{Aut}\left(L_{2}\left(q^{2}\right)\right)$ has no subgroup of order $\left(q^{2}+1\right)(q+1)$.

Case (10.6) Here $A=N_{G}\left(S p_{m}(q) \imath S_{2}\right)$ and $B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)$ (m even, q even), and we get a factorization

$$
N_{G}\left(\Omega_{2 m}^{-}(q)\right)=B N\left(O_{m}^{+}(q) \times O_{m}^{-}(q)\right) .
$$

Clearly $B \nsupseteq \Omega_{2 m}^{-}(q)$, so there is no such factorization for $m \geq 4$, by [33]. And for $m=2$ we have $|B|=\frac{1}{2} q^{2}\left(q^{2}+1\right)$, and the above factorization is $N\left(L_{2}\left(q^{2}\right)\right)=B N\left(q^{2}-1\right)$, which is not possible for $q>2$.

Case (10.7) Here $A=N_{2}, B \leq N_{G}\left(S p_{m}\left(q^{2}\right)\right)(m \geq 4$ even, $q=2$ or 4), and $|B|=|G: A|=q^{2 m-2}\left(q^{2 m}-1\right) /\left(q^{2}-1\right)$. From [33] we see that $A \cap N_{G}\left(S p_{m}\left(q^{2}\right)\right)$ normalizes $S p_{2}(q) \times S p_{m-2}\left(q^{2}\right)$, so we get a factorization

$$
N_{G}\left(S p_{m}\left(q^{2}\right)\right)=B N\left(S p_{2}(q) \times S p_{m-2}\left(q^{2}\right)\right) \leq B N_{2}
$$

Hence by [33], one of the following holds:
(1) $q=2, B \leq N\left(S p_{m / 2}(16)\right)$
(2) $m=6, B \leq N\left(G_{2}\left(q^{2}\right)\right)$.

In case (1), repetition of the above considerations yields a factorization $N_{G}\left(S p_{m / 2}(16)\right)=B N\left(S p_{2}(4) \times S p_{m / 2-2}(16)\right)$, which implies by [33] that either $m=12, B \leq N\left(G_{2}(16)\right)$, or $m=4, B \leq N(17)$. In the latter case $|B|$ cannot be divisible by 5 , a contradiction. In the former, as $G_{2}(16)$ and its automorphism groups have no proper factorizations (see [33, Theorem $\mathrm{B}]$), we have $B \geq G_{2}(16)$, contrary to the above formula for $|B|$.

In case (2), the factorizations of $G_{2}\left(q^{2}\right)$ imply that $q=2$ and $B \triangleright$ $S U_{3}(4), G_{2}(2)$ or J_{2}. None of these are possible by the formula for $|B|$.

Case (10.8) Here $A=N_{G}\left(S p_{m}\left(q^{2}\right)\right), B \leq N_{2}(m \geq 4$ even, $q=2$ or 4$)$, and projecting to the $S p_{2 m-2}(q)$ factor of N_{2}, we get a factorization

$$
N\left(S p_{2 m-2}(q)\right)=\bar{B} N\left(S p_{2}(q) \times S p_{m-2}\left(q^{2}\right)\right)
$$

where \bar{B} is the projection of B. As in the previous case this forces $m=4$ and $\bar{B} \triangleright G_{2}(q)$. However, as in case (3ii) of (10.3) above, A and $G_{2}(q)$
both contain conjugates of an element of order $q+1$ in G, which gives a contradiction.

Case (10.9) Here $A=N_{G}\left(S p_{2 m}\left(q^{1 / 2}\right)\right), B \leq N_{G}\left(\Omega_{2 m}^{-}(q)\right)(q=4$ or 16), and

$$
\begin{equation*}
|B|=|G: A|=q^{m^{2} / 2} \prod_{i=1}^{m}\left(q^{i}+1\right) \tag{8}
\end{equation*}
$$

From [33] we have $A \cap O_{2 m}^{-}(q)=O_{2 m-1}\left(q^{1 / 2}\right) \times 2$, so there is a factorization

$$
N_{G}\left(\Omega_{2 m}^{-}(q)\right)=B N\left(O_{2 m-1}\left(q^{1 / 2}\right)\right) \leq B N_{1} .
$$

For $m=2$ or 3 , neither $\operatorname{Aut}\left(L_{2}\left(q^{2}\right)\right) \operatorname{nor} \operatorname{Aut}\left(U_{4}(q)\right)$ has a subgroup of the order required by (8). And for $m \geq 4$, the above factorization implies by [33] that either $B \leq N\left(S U_{m}(q)\right)$ with m odd, or $B \leq N\left(\Omega_{m}^{-}\left(q^{2}\right)\right)$ with m even, $q=4$. Neither of these is possible, again by (8).

Case (10.10) As $S z(q)$ and its automorphism groups do not have proper factorizations, the only possibility here is that $A=N(S z(q))$ and $B \leq$ $N\left(O_{4}^{+}(q)\right)$ (see [33]). Then $|B|=|G: A|=q^{2}\left(q^{2}-1\right)(q+1)$. However it is easy to see that there is no subgroup of this order in $N\left(O_{4}^{+}(q)\right)$ (\leq $\left.\operatorname{Aut}\left(L_{2}(q)^{2}\right)\right)$ for $q=2^{2 a+1} \geq 8$.

Case (10.11) As $G_{2}(q)$ and its automorphism groups do not have proper exact factorizations, we must have $A=N\left(G_{2}(q)\right)$. By [33] we have $\Omega_{8}^{+}(q)=$ $S p_{6}(q) N_{1}$ (where the $S p_{6}(q)$ factor acts irreducibly), and the intersection of the two factors is $G_{2}(q)$. Hence the action of $L=S p_{6}(q)$ on the cosets of $G_{2}(q)$ is contained in that of $\Omega_{8}^{+}(q)$ on N_{1}. The possibilities for regular subgroups of $\Omega_{8}^{+}(q)$ in this action are determined in Section 9 ; they are given in the last two rows of the table in Proposition 9.2. Inspection of the proof of this proposition shows that the subgroups $B=S_{5}, L_{2}(16) .4$ in these rows lie in an irreducible subgroup $S p_{6}(q)$ of $\Omega_{8}^{+}(q)$, and hence these examples carry over to this case, and are recorded in Table 16.1.

Case (10.12) We have already dealt with $L=P S p_{4}(3) \cong U_{4}(2)$ in Section 6. In the remaining cases L is either $P S p_{6}(3)$ or $S p_{8}(2)$. We consider maximal factorizations of G containing $A B$ which have not already been considered in previous cases.

Let $L=P S p_{6}(3)$. The maximal factorization of L to be considered here has factors $L_{2}(13)$ and P_{1}, intersecting in a subgroup of order 3. If
$A=L_{2}(13)$ then $G=L$; however P_{1} has no subgroup of index 3 . And, A cannot be P_{1} either, since $L_{2}(13)$ has no subgroup of index less than 14.

Now let $L=S p_{8}(2)$. There are two factorizations to consider here. In one, the factors are S_{10} and $O_{8}^{-}(2) .2$, intersecting in a subgroup $S_{7} \times S_{3}$. Now S_{10} does not have a suitable exact factorization, so $A=S_{10}$ and B is a proper subgroup of $O_{8}^{-}(2) .2$. Since 17 divides the order of B, it follows from [9, p. 89] that B is a subgroup of $L_{2}(16)$, which is clearly impossible by considering the power of 2 . In the other factorization, the factors are $L_{2}(17)$ and $O_{8}^{+}(2) .2$, intersecting in a subgroup D_{18}. Now $O_{8}^{+}(2) .2$ has no subgroup of index 18 , so $A=O_{8}^{+}(2) .2$, of index 136. However, $L_{2}(17)$ does not have a suitable exact factorization, as it has a unique class of involutions.

11 Proof of Theorem 1.1: orthogonal groups of plus type

In this section we prove Theorem 1.1 in the case where G has socle $L=$ $P \Omega_{2 m}^{+}(q)(m \geq 4)$.

Suppose $G=A B, A \cap B=1$ and $A \max G$. By [33] and Lemma 2.6, one of the following holds (if necessary replacing A by its image under some automorphism of L):
(11.1) $A=N_{1}$;
(11.2) $B \leq N_{1}$ and $A=P_{m}, P_{m-1}, N_{G}\left(S L_{m}^{\epsilon}(q)\right), N_{G}\left(P S p_{2}(q) \otimes P S p_{m}(q)\right)$ $(m$ even, $q>2), N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right)(m$ even, $q=2,4)$, or $N_{G}\left(\Omega_{8}^{-}\left(q^{1 / 2}\right)\right)(m=4$, q square);
(11.3) $A=N_{2}^{-}$and $B \leq P_{m}, P_{m-1}$ or $N_{G}\left(S L_{m}(q)\right)(q=2,4)$;
(11.4) $A=P_{1}$ and $B \leq N_{G}\left(S U_{m}(q)\right)$ (m even);
(11.5) $A=N_{G}\left(S U_{m}(q)\right)$ and $B \leq P_{1}$ (m even);
(11.6) $A=N_{2}^{+}$and $B \leq N_{G}\left(S U_{m}(q)\right)(q=4, m$ even $)$;
(11.7) $A=N_{G}\left(S U_{m}(q)\right)$ and $B \leq N_{2}^{+}(q=4, m$ even $)$;
(11.8) $L=P \Omega_{16}^{+}(q), A=N_{G}\left(\Omega_{9}(q)\right)$ and $B \leq N_{1}$;
(11.9) $L=\Omega_{24}^{+}(2), A=C o_{1}$ and $B \leq N_{1}$;
(11.10) $L=P \Omega_{8}^{+}(q)(q=2,3,4)$, and the factorization $G=A B$ is contained in one in the bottom half of [33, Table 4].

Note that when $m=4$ some apparently missing cases are omitted above because of the presence of the triality automorphism of $L=P \Omega_{8}^{+}(q)-$ for
example, the case where $A=P_{1}, B \leq \Omega_{7}(q)$ is in fact included under (11.2), since triality sends P_{1} to P_{3} or P_{4} and sends $\Omega_{7}(q)$ to N_{1}; likewise, the cases where $A=N_{2}^{+}$or N_{2}^{-}, and $B \leq \Omega_{7}(q)$, are also under (11.2) as triality sends N_{2}^{+}to $N_{G}\left(S L_{4}(q)\right)$, and N_{2}^{-}to $N_{G}\left(S U_{4}(q)\right)$. (For $\varepsilon=+$ or - we write $S L_{m}^{\varepsilon}(q)$ for $S L_{m}(q)$ or $S U_{m}(q)$ respectively.)

Case (11.1) This has been handled in Section 9.
Case (11.2) Here $B \leq N_{1}$ and we have a factorization

$$
\begin{equation*}
N_{1}=B\left(N_{1} \cap A\right) . \tag{9}
\end{equation*}
$$

By arithmetic, B does not contain $\Omega_{2 m-1}(q)$, so the possibilities are given by the factorizations of $\Omega_{2 m-1}(q)$ in [33].

If $A=P_{m}$ or P_{m-1}, then $|B|=|G: A|=\prod_{i=1}^{m-1}\left(q^{i}+1\right)$ and (9) gives $N_{G}\left(\Omega_{2 m-1}(q)\right)=B P_{m-1}$. Hence by [33], one of the following holds:
(1) $B \leq N_{G}\left(\Omega_{2 m-2}^{-}(q)\right)$
(2) $m=4, q=3$ and B lies in the normalizer of $S_{9}, S p_{6}(2)$ or $2^{6} . A_{7}$.

In case (1) we get a factorization $N_{G}\left(\Omega_{2 m-2}^{-}(q)\right)=B P_{m-2}$, which forces $m=4, q=3$ and $B \leq N_{G}\left(L_{3}(4)\right)$ (the $L_{3}(4)$ lying in a subgroup N_{2}^{-}of $L)$. But $N_{G}\left(L_{3}(4)\right)$ has no subgroup of order $(3+1)\left(3^{2}+1\right)\left(3^{3}+1\right)$ (see for example [9]). Likewise, neither do the normalizers of $S_{9}, S p_{6}(2)$ or $2^{6} . A_{7}$, so case (2) is also out.

Next consider $A=N\left(S L_{m}^{\epsilon}(q)\right)$. Then

$$
|B|=\frac{1}{t} q^{m(m-1) / 2} \prod_{i=1}^{m-1}\left(q^{i}+\epsilon^{i}\right)
$$

where $t \leq 4$. Now (9) gives a factorization of type $O_{2 m-1}(q)=B N\left(S L_{m-1}^{\epsilon}(q)\right) \leq$ $B N_{1}^{\epsilon}$. By [33], the only maximal factorizations of $O_{2 m-1}(q)$ with one factor N_{1}^{ϵ} and the second divisible by $|B|$ have the second factor equal to $N_{1}^{-\epsilon}$, with $q=2$ or 4 . This leads to a factorization of type $N\left(O_{2 m-2}^{-\epsilon}(q)\right)=B N_{1}$. However, Lemma 4.4 implies that there is no factorization of $O_{2 m-2}^{-\epsilon}(q)$ with one factor N_{1} and the other divisible by $|B|$. This forces $B \geq \Omega_{2 m-2}^{-\epsilon}(q)$, but this contradicts the formulae given above for $|B|$.

Now suppose that $A=N_{G}\left(P S p_{2}(q) \otimes P S p_{m}(q)\right)(m$ even, $q>2)$. Here $|B|_{p^{\prime}}=\left(\prod_{i=0}^{\frac{m}{2}-2}\left(q^{m+2 i}-1\right)\right) /\left(q^{2}-1\right)$, and (9) gives rise to a factorization of type $O_{2 m-1}(q)=B N\left(P S p_{2}(q) \otimes P S p_{m-2}(q)\right) \leq B N_{1}^{+}$. However, [33] shows that there is no such factorization with the given value of $|B|_{p^{\prime}}$.

Next let $A=N_{G}\left(\Omega_{m}^{+}\left(q^{2}\right)\right)(m$ even, $q=2,4)$. Here $|B|=\frac{1}{4} q^{m^{2} / 2}\left(q^{2 m-2}-\right.$ 1) $\left(q^{2 m-6}-1\right) \cdots\left(q^{2}-1\right)$, and (9) gives a factorization of type $S p_{2 m-2}(q)=$ $B O_{m-1}^{+}\left(q^{2}\right)<B P_{1}$. Clearly $B \nsupseteq S p_{2 m-2}(q)$, so from [33] we see that either $B \leq N\left(S p_{2 a}\left(q^{b}\right)\right)(a b=m-1, b>1)$ or $B \leq N\left(G_{2}(q)\right)(m=4)$. The first case is impossible since $\left|N\left(S p_{2 a}\left(q^{b}\right)\right)\right|$ is not divisible by the above expression for $|B|$. In the second case we must have $B \geq G_{2}(q)^{\prime}$, and now we see as in the case (3ii) of (10.3) above, that A and $G_{2}(q)$ both contain conjugates of an element of order $q+1$, which contradicts the exact factorization $G=A B$.

To complete this case (11.2), assume now that $A=N_{G}\left(\Omega_{8}^{-}\left(q^{1 / 2}\right)\right)(m=$ $4, q$ square $)$. Then $|B|=q^{6}(q+1)\left(q^{3}+1\right)\left(q^{4}-1\right)$ and $A \cap N_{1} \triangleleft G_{2}\left(q^{1 / 2}\right)$, so (9) gives a factorization of type $O_{7}(q)=B G_{2}\left(q^{1 / 2}\right)<B G_{2}(q)$. Hence [33] implies that $B \leq N\left(\Omega_{6}^{-}(q)\right)$. However $\left|\Omega_{6}^{-}(q)\right|=|B| \cdot(q-1)$ and $q>2$ (since q is square), so this is impossible.

Case (11.3) Here $|B|=\frac{1}{2} q^{2 m-2}\left(q^{m}-1\right)\left(q^{m-1}-1\right) /(q+1)$. If $B \leq P$ with $P=P_{m}$ or P_{m-1}, the stabilizer of a totally singular m-space W, then $A \cap B$ fixes an $(m-2)$-subspace of W, so writing $\bar{B}=B Q / Q$ we get a factorization of type $G L_{m}(q)=\bar{B} P_{m-2}$. By [33] this forces either $\bar{B} \geq S L_{m}(q)$ or $m=5, q=2$ and $\bar{B} \leq \Gamma L_{1}\left(2^{5}\right)$, both of which possibilities conflict with the above formula for $|B|$. Similarly if $B \leq N_{G}\left(S L_{m}(q)\right)$ we get a factorization $N_{G}\left(S L_{m}(q)\right)=B N_{2, m-2}$, which forces $B \geq S L_{m}(q)$, a contradiction.

Case (11.4) Here $|B|=\left(q^{m}-1\right)\left(q^{m-1}+1\right) /(q-1)$ and we have a factorization $N_{G}\left(S U_{m}(q)\right)=B P_{1}$, which by [33] forces $m=4, q=3$ and $B \leq N\left(L_{3}(4)\right)$. But $N\left(L_{3}(4)\right)$ has no subgroup of order $28 \cdot 40$, a contradiction.

Case (11.5) Here $|B|=\frac{1}{t} q^{m(m-1) / 2} \prod_{i=1}^{m-1}\left(q^{i}+(-1)^{i}\right)$ with $t \leq 4$, and writing $\bar{B}=B Q / Q$ (where Q is the unipotent radical of P_{1}), we have a factorization of type $O_{2 m-2}^{+}(q)=\bar{B} P_{1}$. This forces $\bar{B} \geq \Omega_{2 m-2}^{+}(q)$ by [33], which is impossible.

Case (11.6) Here $|B|=\frac{1}{2} q^{2 m-2}\left(q^{m}-1\right)\left(q^{m-1}+1\right) /(q-1)$ and we have a factorization $N_{G}\left(S U_{m}(q)\right)=B N_{2}$, giving a contradiction using [33].

Case (11.7) Here $|B|$ is as in (11.5) and the factorization $N_{2}^{+}=B\left(A \cap N_{2}^{+}\right)$ gives rise to a factorization of type $O_{2 m-2}^{+}(4)=B N\left(S U_{m-2}(4)\right) \leq B N_{2}^{+}$. This leads to the usual contradiction using [33].

Case (11.8) Here $L=P \Omega_{16}^{+}(q), A=N_{G}\left(\Omega_{9}(q)\right)$ and $B \leq N_{1}$. From [33, Appendix 3] we see that $A \cap N_{1} \triangleright \Omega_{7}(q)$, fixing a non-degenerate 8dimensional subspace of the underlying 16 -dimensional orthogonal space for G. Thus (9) gives rise to a factorization of type $O_{15}(q)=B N_{8}$. However there is no such factorization unless $B \geq \Omega_{15}(q)$, which is a contradiction.

Case (11.9) Here $A \cap N_{1}=C o_{3}$ by [33, Lemma B, p.79], so (9) gives a factorization $S p_{22}(2)=B C o_{3}$. However there is no such factorization with B proper in $S p_{22}(2)$, a contradiction.

Case (11.10) Consider first $L=\Omega_{8}^{+}(2)$. Then, adjusting A, B by a triality automorphism of L if necessary, and noting that the case $A=N_{1}$ has been done in Section 9, we may assume that one of the following holds:
(a) $A=A_{9}, B \leq N_{1}, P_{1}$ or N_{2}^{-};
(b) $A=P_{1}$ or $N_{2}^{-}, B \leq A_{9}$;
(c) $A=A_{5}^{2} \cdot 2^{2}, B \leq N_{1}$.

Consider (a). If $B \leq N_{1}$ then since $A \cap N_{1}=L_{2}(8) .3$ (see [33]), we have a factorization $N_{1}=S p_{6}(2)=B\left(L_{2}(8) .3\right)$. This is considered in case (2i) of (10.3), where it is shown that there is a unique possible such exact factorization with $B=2^{4} . A_{5}$; hence we have the example

$$
\Omega_{8}^{+}(2)=A_{9}\left(2^{4} . A_{5}\right)
$$

in Table 16.1.
When $B \leq P_{1}$ (still in case (a)), apply triality to take $A=A_{9}$ to be embedded in $\bar{\Omega}_{8}^{+}(2)$ with the natural module $V=V_{8}(2)$ being an irreducible constituent of the permutation module for A over \mathbb{F}_{2}, and $B \leq P_{3}$ or P_{4} (see [9, p.85]). Write vectors of V as subsets of $\{1, \ldots, 9\}$ of even size (addition being symmetric difference), and define W to be the 4 -space spanned by the vectors $1234,1256,1278,1357$. Then W is totally singular and an easy check shows that $C_{A}(W)=1$. We know from [33] that $L=A L_{W}$ and $A \cap L_{W}=2^{3} . L_{3}(2)$; moreover if we write $L_{W}=Q R$ where $Q=C_{L}(W)=2^{6}$ is the unipotent radical, and $R \cong L_{4}(2)$ a Levi subgroup, then $A \cap Q=1$. Hence (9) gives a factorization $L_{W}=B\left(A \cap L_{W}\right)$, which forces B to be of the form $Q . F$, where $F \leq R$ is a group of order 15 such that $R=L_{4}(2)=$ $\left(2^{3} . L_{3}(2)\right) F$. Hence we have the example

$$
\Omega_{8}^{+}(2)=A_{9}\left(2^{6} .15\right)
$$

in Table 16.1.

To complete case (a), suppose $B \leq N_{2}^{-}$. Note that $|B|=|L: A|=2^{6} \cdot 3 \cdot 5$ and $N_{2}^{-}=\left(3 \times U_{4}(2)\right) \cdot 2$. It follows using $[9, \mathrm{p} .26]$ that $B \leq\left(3 \times 2^{4} \cdot A_{5}\right) \cdot 2$ with index 6 , and hence that $B=2^{4} \cdot A_{5}$ or $\left(3 \times 2^{4} \cdot D_{10}\right) \cdot 2$. The first case has been handled above, so assume $B=\left(3 \times 2^{4} . D_{10}\right) \cdot 2$. By the $2^{4} . A_{5}$ case above, the subgroup $3 \times 2^{4} . D_{10}$ is semiregular on L / A with 2 orbits. The normalizer of the D_{10} in $A_{5} .2=S_{5}$ is 5.4 , and hence there are no involutions in $B \backslash\left(3 \times 2^{4} . D_{10}\right)$. It follows that B is regular on L / A, giving the example

$$
\Omega_{8}^{+}(2)=A_{9}\left(3 \times 2^{4} \cdot D_{10}\right) \cdot 2
$$

in Table 16.1.
Now consider case (b). If $A=P_{1}$, then $|B|=135$ and $A \cap A_{9}=2^{3} . L_{3}(2)$. But A_{9} has no exact factorization of the form $B\left(2^{3} . L_{3}(2)\right)$. And if $A=N_{2}^{-}$, then $|B|=1120$ and $A \cap A_{9}=3^{3} . S_{3}$, but there is no exact factorization $A_{9}=B\left(3^{3} S_{3}\right)$, a contradiction.

Finally consider (c): $A=A_{5}^{2} \cdot 2^{2}, B \leq N_{1}$. Here $B \leq S p_{6}(2)$ and $|B|=$ 12096, which forces $B=G_{2}(2)$, giving a possible exact factorization $\Omega_{8}^{+}(2)=$ $\left(\Omega_{4}^{+}(4) \cdot 2^{2}\right) G_{2}(2)$. However the two factors in fact share an element of order 3 , as in (3ii) of (10.3), which gives a contradiction.

This completes the analysis for $L=\Omega_{8}^{+}(2)$.
Now suppose that $L=P \Omega_{8}^{+}(3)$. Again adjusting A, B by a triality automorphism of L if necessary, and noting that the case $A=N_{1}$ has been handled in Section 9, we may assume that one of the following holds:
(a) $A=N_{G}\left(\Omega_{8}^{+}(2)\right), B \leq N_{1}, P_{1}$ or P_{13};
(b) $A=P_{1}$ or $P_{13}, B \leq N_{G}\left(\Omega_{8}^{+}(2)\right)$;
(c) $A=N\left(2^{6} . A_{8}\right), B \leq P_{1}$;
(d) $A=P_{1}, B \leq N\left(2^{6} . A_{8}\right)$.

Consider case (a). Here $|B|=|G: A|=3^{7} \cdot 13$. Suppose $B \leq P_{1}=Q R$, where $Q=3^{6}$ and $R=L_{4}(3) .\left[2^{a}\right](a \leq 3)$. From [33, p.107] we have $A \cap P_{1} \cap L=\left(3 \times P S p_{4}(3)\right) .2$, and hence, writing bars for images modulo Q, we have a factorization of type $L_{4}(3)=\bar{B} P S p_{4}(3)$. It follows that $B \cap Q=3^{3}$ and $B=3^{3} .\left(3^{3} \cdot 13.3\right)$. However a computation using Magma [6], kindly carried out for us by Michael Giudici, showed that no such regular subgroups exist for this action.

If $B \leq P_{13}$ then as B has odd order it also lies in P_{1}, a case already considered. And if $B \leq N_{1}$ then by [33] we have $A \cap N_{1} \cap L=2^{6} . A_{7}$, giving a factorization of type $O_{7}(3)=B\left(2^{6} \cdot A_{7}\right)$. Hence from [33] we see that B
lies in a parabolic subgroup of N_{1}, hence in a parabolic of G, which we have already excluded.

Now consider (b). If $A=P_{13}$ then $|B|=2^{8} \cdot 5 \cdot 7$; however $O_{8}^{+}(2)$ has no subgroup of this order, so this is impossible. Now assume that $A=P_{1}$. Then $|B|=1120$ and $A \cap \Omega_{8}^{+}(2)=\left(3 \times U_{4}(2)\right) .2$. Hence the factorization $N_{G}\left(\Omega_{8}^{+}(2)\right)=B\left(A \cap N_{G}\left(\Omega_{8}^{+}(2)\right)\right.$ implies that B lies in the normalizer of either $S p_{6}(2)$ or A_{9}. The latter is impossible as neither A_{9} nor S_{9} has a subgroup of order 1120. The former case gives a factorization of type $S p_{6}(2)=B N\left(S U_{3}(2)\right) \leq B O_{6}^{-}(2)$. Hence, using [33] and the fact that $|B|=1120$, we see that $B \leq N\left(\Omega_{6}^{+}(2)\right)=N\left(A_{8}\right)$. However this does not have a subgroup of order 1120 .

In case (c), we have $|B|=3^{10} \cdot 5 \cdot 13$; but the Levi factor $L_{4}(3)$ of P_{1} has no subgroup of odd order divisible by $5 \cdot 13$; similarly, in case (d), $|B|=2^{5} \cdot 5 \cdot 7$, but $N\left(2^{6} . A_{8}\right)$ has no subgroup of this order.

This completes the analysis for $L=P \Omega_{8}^{+}(3)$.
Finally, note that for $L=\Omega_{8}^{+}(4)$, the factorizations given at the bottom of [33, Table 4] have already been considered in versions adjusted by triality, under (11.2) and (11.3).

The proof of Theorem 1.1 for classical groups is now complete.

12 Proof of Theorem 1.1: exceptional groups of Lie type

In this rather brief section, we note that when L is an exceptional group of Lie type, all (maximal or non-maximal) factorizations of L and its automorphism groups are given in [33, Table 5] (taken from [19]), and it is clear from the short list of factorizations in this table that none of them is exact. Theorem 1.1 for exceptional groups follows immediately.

13 Proof of Theorem 1.1: alternating groups

A complete description of the exact factorizations of the alternating and symmetric groups appears in the paper of Wiegold and Williamson [43]. We analyze their results to obtain our Table 16.2. An alternative starting point would be [33, Theorem D and Remark 2], which gives all the maximal
factorizations. We postpone dealing with the automorphisms of A_{6} outside S_{6} till the end of this section.

Thus G is A_{m} or S_{m}, acting naturally on the set Ω of size $m \geq 5$. Assume that $G=A B$ with A a maximal subgroup and B regular on the set of cosets of A in G. The general case to consider is where for some k with $1 \leq k \leq 5$, one of A and B normalizes a subgroup A_{m-k} of G acting naturally on a subset Γ of Ω of size $m-k$, and the other is k-homogeneous on Ω. (In fact, this is so unless m is 6 or 8 , cases considered later.)

Assume first that A_{m-k} is normal in A. By maximality of A, it follows that $A=G \cap\left(S_{m-k} \times S_{k}\right)$. Then B is sharply k-homogeneous on Ω. If $k=1$, we get the standard examples $S_{n}=S_{n-1} B$ with B regular on Ω, and similarly for A_{n}. For $k>1$ we use Kantor's list [23]; the possibilities are listed in [43]. For $k=2$, we see that B must have odd order and it follows that $m=q$ is a prime power congruent to $3 \bmod 4$ and B is a subgroup of $A G L_{1}(q)$ of order $q \frac{q-1}{2}$, yielding the example

$$
A_{q}=S_{q-2}\left([q] \frac{q-1}{2}\right)
$$

in Table 16.2. For $k=3$ we get the two examples with

$$
\begin{aligned}
A_{32} & =\left(A_{29} \times A_{3}\right) \cdot 2\left(A \Gamma L_{1}(32)\right) \\
A_{8} & =\left(A_{5} \times A_{3}\right) \cdot 2\left(A G L_{1}(8)\right)
\end{aligned}
$$

There are no sharply k-homogeneous examples with $k=4$ and $k=5$.
Assume next that A is the k-homogeneous factor, which now must be maximal in G. We consider the various cases in the Theorems in [43]. In Theorem A there, G is alternating, and in Theorem S it is symmetric.

In case (AI) (of [43]), we have G alternating, A is sharply k-transitive and $B=A_{m-k}$. The possibilities are well known and are listed in [43, Remarks, p.173]. Certainly $k>1$ by maximality of A. Next, $k>2$, since there are no maximal sharply 2 -transitive groups in A_{m}. If $k=3$ we have A a Zassenhaus group; since A is sharply 3 -transitive and maximal in A_{m}, we get $A=P S L_{2}\left(p^{2}\right) .2$ with p a prime congruent to $3 \bmod 4$. This gives examples in Table 16.2:

$$
A_{p^{2}+1}=P S L_{2}\left(p^{2}\right) \cdot 2\left(A_{p^{2}-2}\right)
$$

If k is 4 or 5 , the only sharply k-transitive groups are the Mathieu groups M_{11} and M_{12}, and we get the examples

$$
A_{m}=M_{m} A_{7} \quad(m=11,12)
$$

In case (AII), G is alternating and A is k-homogeneous but not k transitive on Ω. The possibilities are listed in [43, p.173]. Those leading to maximal subgroups of G lead to the factorizations

$$
\begin{gathered}
A_{9}=\left(L_{2}(8) \cdot 3\right) S_{5} \\
A_{33}=\left(L_{2}(32) \cdot 5\right)\left(A_{29} \times A_{3}\right) \cdot 2, \\
A_{p}=\left(p \cdot \frac{p-1}{2}\right) S_{p-2} \text { with } p \text { prime, } p \equiv 3 \bmod 4, p \neq 7,11,23, \\
A_{p+1}=L_{2}(p) S_{p-2} \text { with } p \text { prime, } p \equiv 3 \bmod 4, p \neq 7,11,23 .
\end{gathered}
$$

Note that in the last two lines the congruence on p is needed to obtain a factorization (see [43, Theorem A]); for $p \equiv 1 \bmod 4$, we shall meet the corresponding factorizations for the symmetric groups below, which explains why they appear in Table 16.2 with a *. The excluded values are there to rule out non-maximal cases - they do occur below for the relevant symmetric groups and hence appear in Table 16.2 with a \dagger.

Next we consider the cases in Theorem S, where G is symmetric. In case (SIi), we have precisely the trivial factorization $S_{m}=A_{m} 2$, which is ruled out by our conditions. In case (SIii), the maximal subgroup A contains $A \cap A_{m}$ as a subgroup of index 2 which is sharply k-transitive on Ω, There is no such maximal subgroup with $k=1$: it would have to be primitive on Ω, so would have to be dihedral of order $2 p$, but that is not maximal either. Further, there is no such maximal subgroup with $k=2$: A would have to be soluble, so $A=A G L_{1}(p)$ - but then the intersection with the alternating group is no longer 2 -transitive on Ω. Thus $k=3$ and A is maximal and contains a sharply 3 -transitive subgroup of index 2 ; we deduce that $A=P \Gamma L_{2}\left(p^{2}\right)$ with p congruent to $3 \bmod 4$, and we have seen the correponding factorizations of the alternating groups above in case (AI). In cases (SIiii) and SIII), we have A sharply k-transitive on Ω. If $k=4$ or $k=5$, there is no such maximal sharply k-transitive subgroup, and also $k>1$ by maximality. For $k=2$, we have $A=A G L_{1}(p)$ with p a prime, and we get the exact factorizations

$$
S_{p}=A G L_{1}(p) S_{p-2}
$$

and

$$
S_{p}=A G L_{1}(p)\left(A_{p-2} \times 2\right)(p \equiv 1 \bmod 4) .
$$

For $k=3$, we have $A=P G L_{2}(p)$ with p a prime (for maximality), and we get the factorizations

$$
S_{p+1}=P G L_{2}(p) S_{p-2}
$$

and

$$
S_{p+1}=P G L_{2}(p)\left(A_{p-2} \times 2\right)(p \equiv 1 \bmod 4)
$$

These are listed in Table 16.2, with appropriate remarks. In case (SIIii), A is k-homogeneous but not k-transitive on Ω. The possibilities are listed in [43, p.176]. None of these is maximal in S_{m}.

Next we consider the cases where m is 6 or 8 and neither A nor B normalizes a large natural alternating subgroup - see cases (AIII) and (SIII) of [43]. We obtain the exact factorizations

$$
\begin{gathered}
S_{6}=L_{2}(5) .2 B \text { with } B \text { either } C_{6} \text { or } D_{6} \\
A_{8}=A G L_{3}(2) C_{15}
\end{gathered}
$$

Finally, to complete the treatment of groups with alternating socle, we consider the case $m=6$ where G contains an automorphism of A_{6} not contained in S_{6}. By [9], maximal subgroups of G have intersection with A_{6} of order 10,36 or 8 , so the index is 36,10 or 45 , respectively. There is no subgroup of order 45 , so the last is out. If $A \cap A_{6}=D_{10}$, since there is only one class of involutions in A_{6} and since the factorization is exact, we must have $B \cap A_{6}=3^{2}$ and $G=A_{6} .2^{2}$. Thus $B=3^{2} 2^{2}$. On the other hand, the extension $A_{6} .2_{3}$ is non-split, so this cannot work. Finally, in the remaining case $A=N\left(3^{2}\right)$, there are factorizations both with $B=C_{10}$ and $B=D_{10}$ in $G=A_{6} \cdot 2_{2}=P G L_{2}(9)$: here $B<D_{20}$; the cyclic group C_{10} (the Singer cycle in $P G L_{2}(5)$) is clearly transitive in the action of degree 10 , and since D_{20} is isomorphic to $D_{10} \times C_{2}$, there is also a dihedral subgroup D_{10} which is transitive.

This completes the consideration of groups with alternating socles.

14 Proof of Theorem 1: sporadic groups

We argue separately for each of twelve sporadic simple groups (and their automorphism groups) which have a factorization. By [33], these are the five Mathieu groups, $J_{2}, H S, H e, R u, S u z, F i_{22}$ and $C o_{1}$. Suppose that $G=A B$, $A \cap B=1$ and $A \max G$. We aim to show that this exact factorization is in Table 16.3, and that all such factorizations exist.

Case M_{11} : Since M_{11} has a unique conjugacy class of involutions, either A or B has odd index in L. From the list of factorizations in [33], we see that B cannot have odd index. Hence $|L: A|$ is odd. If $A=M_{10}$, we get

$$
M_{11}=M_{10} 11
$$

as the only possibility. If $A=M_{9} .2$, we get

$$
M_{11}=\left(M_{9} .2\right)(11.5)
$$

as the only possibility. And if $A=2 S_{4}$, there are no possibilities for B.
Case M_{12} : First consider the factorization $M_{12}=M_{11} A_{5}$ coming from Lemma 2.6. Here the intersection of the factors has order 5. Taking a subgroup of index 5 in A_{5}, we get the exact factorization

$$
M_{12}=M_{11} A_{4} .
$$

This is the only factorization arising here: for if $A=M_{11}$ then $G=M_{12}$, since M_{11} is not maximal in $M_{12} .2$; and B is not in M_{11} since that has no subgroup of index 5 .

Now we consider the factorizations arising in [33]. If $A=M_{11}$, we get exact factorizations for various subgroups B of order 12; we already noted the factorization with $B=A_{4}$, but others exist: a regular $B=D_{12}$ can be seen as a subgroup of $L_{2}(11)$, and a regular $B=2^{2} \times 3$ can be seen as a subgroup of $A_{4} \times S_{3}$. Next let $A=L_{2}(11)$. Since $M_{12}=L_{2}(11) M_{11}$ with intersection of factors being 11.5 and since $M_{11}=(11.5) M_{9} .2$ is an exact factorization, we get the exact factorization

$$
M_{12}=L_{2}(11)\left(M_{9} \cdot 2\right),
$$

given in Table 16.3.
Now A cannot be $M_{10} .2$ or $M_{9} . S_{3}$, since it is easy to see that M_{12} has no subgroups of order 66 or 220 . And A cannot be one of $2 \times S_{5}, 4^{2} . D_{12}, A_{4} \times S_{3}$: here B would be a subgroup of M_{11} of index $20,16,6$, which is impossible.

Case M_{22} : The only maximal factorization to consider here (containing $G=A B)$ is $M_{22} \cdot 2=\left(L_{2}(11) \cdot 2\right)\left(L_{3}(4) \cdot 2\right)$. Now A cannot be $L_{2}(11) \cdot 2$ since the index of this in $M_{22} .2$ is 672 and $L_{3}(4) .2$ has no subgroup of order 672 ([9, p. 23]). On the other hand, if $A=L_{3}(4) \cdot 2=M_{21} \cdot 2$, we get

$$
M_{22} \cdot 2=\left(M_{21} \cdot 2\right) D_{22}
$$

as the only possibility. This is an exact factorization: for by [9], the involution in the normaliser of an 11-subgroup is in class $2 C$, being a power of an element of order 10 , and these involutions are fixed point free in the natural action of degree 22 . On the other hand, $M_{22} .2$ has no cyclic subgroup of order 22 , so there is no other possibility for an exact factorization here.

Case M_{23} : This is very similar to the case M_{11}. Since M_{23} has a unique conjugacy class of involutions, A has odd index or odd order. If A has odd order, then $A=23.11$. Now $B<M_{22}$ is not possible, since M_{22} has no subgroup of index 11. Hence we get precisely the two exact factorizations

$$
M_{23}=(23.11)\left(L_{3}(4) .2\right)
$$

and

$$
M_{23}=(23.11)\left(2^{4} A_{7}\right),
$$

as in Table 16.3. Assume now that the index of A is odd. If $A=M_{22}$, the only possibility is

$$
M_{23}=M_{22} 23 .
$$

If A is $L_{3}(4) .2$ or $2^{4} A_{7}$, we get the first two examples with A and B swapped. Finally, the maximal subgroup of index 1771 does not appear as a factor in a factorization.

Case M_{24} : First let $A=M_{23}$. There are subgroups of order 24 regular here. For example, considering the factorization $M_{24}=M_{23} L_{2}(23)$ we see that

$$
M_{24}=M_{23} D_{24}
$$

is an exact factorization. And, considering the factorization $M_{24}=M_{23} L_{2}(7)$, we see that

$$
M_{24}=M_{23} S_{4}
$$

is an exact factorization. Next let $A=L_{2}(23)$. Then B is a subgroup of one of $M_{23}, M_{22} \cdot 2,2^{4} A_{8}, L_{3}(4) .2$ of index $253,22,8,1$, respectively. Thus we get precisely the exact factorizations

$$
M_{24}=L_{2}(23)\left(L_{3}(4) \cdot 2\right)
$$

and

$$
M_{24}=L_{2}(23)\left(2^{4} A_{7}\right),
$$

as in Table 16.3. Next, if A is $M_{22} \cdot 2,2^{4} A_{8}$ or $L_{3}(4) \cdot S_{3}$, then B is a subgroup of $L_{2}(23)$ of index 22,8 or 3 , which is impossible. Finally, if A is $M_{12} \cdot 2,2^{6} 3 S_{6}$ or $2^{6}\left(L_{3}(2) \times S_{3}\right)$ then B is a subgroup of M_{23}. But B has order divisible by 23 , forcing $B=23.11$, which is not so.

Case J_{2} : First consider the factorization of J_{2} with factors $U_{3}(3)$ and $A_{5} \times D_{10}$. The intersection of the factors has order 6 . Since $U_{3}(3)$ has no subgroup of index 6 , we must have $A=U_{3}(3)$ of index 100 and B contained
in the normalizer of a Sylow 5 -subgroup. This does not lead to a factorization of the simple group by [33, p. 119]. Thus we are searching for subgroups B of $J_{2} .2$ which are regular in the action of degree 100 . We claim that there is a subgroup $B=5^{2} .4$ acting regularly: The argument in [33, p. 119] implies that the elements of order 4 which lie in $U_{3}(3) .2$ are of type $4 B$ whereas those normalizing a Sylow 5 -subgroup are of type $4 C$. Since the elements of type $4 C$ square to involutions $2 B$ which are not represented in $U_{3}(3) .2$, the assertion follows. It is also not hard to see that no subgroup $B=5^{2} .2^{2}$ would do.

Case HS: The factorizations to consider here all have one of the factors intersecting L in M_{22}, whereas the other intersects L in $U_{3}(5) .2,(5: 4) \times A_{5}$ or $\left[5^{3} 2^{5}\right]$. There is only one exact factorization of an automorphism group of M_{22}; it is quite easy to see that this forces A to normalize M_{22} and B to be regular of degree 100. Also, B must normalize a 5 -subgroup. Looking at the permutation character of degree 100, all involutions in B must be of type $2 B$. If B were contained in a subgroup $U_{3}(5) .2$, then $B \cap U_{3}(5)$ would have even order. However all involutions in $U_{3}(5)$ are conjugate and are of type $2 A$, so this is not possible.

Suppose that B contains no elements of order 4. Then, since the only involutions in B are of type $2 B$, it follows that $B \subset H S$. Now the maximal subgroup $\left[5^{3} 2^{5}\right.$] of $H S \cdot 2$ meets $H S$ in the intersection of two maximal subgroups $U_{3}(5) .2$, so if B were contained in a subgroup $\left[5^{3} 2^{5}\right]$, then B would contain an involution from some $U_{3}(5)$, which is not the case. Thus $B<(5: 4) \times A_{5}$, and in fact B lies in the normaliser $(5: 4) \times(5: 2)$ of a 5^{2} in this subgroup. Hence B contains a conjugate of every involution in $(5: 4) \times(5: 2)$. However this group contains an element of type $4 A$ that squares to an element of type $2 A$, which is a contradiction.

Thus B contains elements of order 4 . Now the only fixed point free elements of order 4 are of type $4 A$ or $4 F$, but the square of an element of type $4 A$ has type $2 A$. Thus all elements of order 4 in B must have type $4 F$, and in particular $G=H S .2$ (hence the * symbol in Table 16.3). We claim that there is a subgroup of order 100 in HS.2 acting regularly. Consider the factorization $H S=M_{22} 5.4 \times A_{5}$. mentioned above. The second factor contains a normal subgroup P of order 5 with non-trivial elements of type $5 B$. The normalizer of P in $H S .2$ is $5.4 \times S_{5}$. Let Q be a Sylow 5 -subgroup of the S_{5}, and let x be an element of order 20 centralizing P and normalizing Q. This must then be an element of type $20 C$, as it must square to an element of type $10 B$. It follows that all non-trivial powers of x are fixed-point-free,
and the group of order 100 generated by P, Q, x is the regular subgroup we want.

Case $H e$: The maximal factorizations here have one factor intersecting L in $S p_{4}(4) .2$ and the other either in $7^{2} S L_{2}(7)$ or $7^{1+2}\left(S_{3} \times 3\right)$. Since the intersection of the factors is smaller than the index of the largest proper subgroup of $S p_{4}(4) .4$, it follows that A must be the normalizer of $S p_{4}(4)$ and B is regular of order $2058=7^{3} 6$. It follows that B lies in the normalizer of a Sylow 7 -subgroup. By [33, p. 120], it follows that $G=H e .2$ (hence the ${ }^{*}$ symbol in the Table). We claim that $H e .2$ does have a subgroup B of order 2058 which is regular. It will suffice to show that an element of type $6 E$ normalizes a Sylow 7 -subgroup: for, its non-trivial powers are all fixed-point-free, as are also all the 7 -elements, as we see from the permutation character in [9, p. 104]. We refer to [33, p. 120]. The centre C of a Sylow 7 -subgroup P is a subgroup of order 7 with all 7 -elements of type $7 C$. We consider C as subgroup of the maximal subgroup $3 S_{7} \times 2$; there we see an element of type $3 B$ acting on C and an element of type $2 C$ centralizing $3 S_{7}$, yielding an element of type $6 E$ normalizing C and hence P, as required.

Case $R u$: The only maximal factorization has factors ${ }^{2} F_{4}(2)$ and $L_{2}(29)$, intersecting in a group of order 3. Hence there are no exact factorizations.

Case Suz: The maximal factorizations of $S u z$ here have one factor $G_{2}(4)$ and the other either $U_{5}(2)$ or $3^{5} M_{11}$, of indices 1782,32760 and 232960 , and similarly for $S u z .2$. Sylow theory shows that $S u z$ and $S u z .2$ have no subgroup of order $1782=2.3^{4} .11$, so $A \cap L$ is not $G_{2}(4)$. On the other hand, $G_{2}(4)$ has no exact factorizations.

Case $F i_{22}$: The maximal factorization to consider in this case is $F i_{22}=$ $2 U_{6}(2)^{2} F_{4}(2)^{\prime}$ and the corresponding factorization of $F i_{22} .2$. Now $A \cap L$ is not $2 U_{6}(2)$, since ${ }^{2} F_{4}(2)$ and ${ }^{2} F_{4}(2)^{\prime}$ have no proper factorizations. If $A \cap L={ }^{2} F_{4}(2)^{\prime}$, then B has order $2^{6} 3^{6} 77$. We see from [9, p. 115] that there is no suitable subgroup in $U_{6}(2)$.

Case $C o_{1}$: In the maximal factorizations here, one of the factors is a smaller Conway group while the other is the normalizer of one of $3 . S u z$ or $A_{4} \times G_{2}(4)$. Since the smaller Conway groups have no proper factorizations, it follows that A is a smaller Conway group, of index either $2^{3} .3^{3} .5 .7 .13$ or $2^{11} .3^{2}$.5.7.13. Inside $3 . S u z .2$, the only maximal subgroup of order divisible by either is $G_{2}(4)$. On the other hand, $G_{2}(4)$ has no subgroups of suitable orders - see [9, p. 97].

15 Proof of Theorem 1.4 and Corollary 1.3

Most of this section is concerned with proving Theorem 1.4. At the end can be found the very short proof of Corollary 1.3.

For the proof of Theorem 1.4, we make the following assumptions.
(1) $B<G \leq S_{n}$ with G primitive, and B regular on Ω, where $|\Omega|=n$;
(2) $T \leq B \leq \operatorname{Aut}(T)$, where T is a nonabelian simple group;
(3) N is a minimal normal subgroup of G, with $N=U_{1} \times \ldots \times U_{k} \cong U^{k}$, where U is simple and $k \geq 1$; and $\pi_{i}: N \rightarrow U_{i}$ is the natural projection map, for $i=1, \ldots, k$.

First we reduce to the case where $T \leq N$. We shall use the fact that $|\operatorname{Out}(T)|<|T|$, and we note that this implies that $n=|B|<|T|^{2}$.

Lemma 15.1 The simple group U is nonabelian, and either
(i) $G \leq D(2, T)$, with $\operatorname{soc}(G) \cong T^{2}$ and $B=T \cong U$; or
(ii) $T \leq N$, and N is the unique minimal normal subgroup of G.

Proof Since B is regular, $|T|$ divides n, and in particular n is not a prime power, so N is not elementary abelian. Thus U is a nonabelian simple group, and so G permutes $\left\{U_{1}, \ldots, U_{k}\right\}$ transitively by conjugation. Since G is primitive, its normal subgroup N is transitive, so $G=N G_{\alpha}$, where $\alpha \in \Omega$, and G_{α} is also transitive on $\left\{U_{1}, \ldots, U_{k}\right\}$.

Suppose first that T centralises N. Then $C_{G}(N)$ is a nontrivial normal subgroup of the primitive group G, and by the O'Nan-Scott Theorem [11, Chapter 4] it follows that $C_{G}(N)$ and N are both regular on Ω, are isomorphic to each other, and $G \leq D(2, U)$ \} S_{k} with $k \geq 1$. Thus we have $T \leq C_{G}(N) \cong N \cong U^{k}$. Since both T and U are simple, we have $|T| \leq|U|$. On the other hand, by the observation made before the proof, $\left|C_{G}(N)\right|=|U|^{k}=n<|T|^{2}$. It follows that $k=1$, and so $G \leq D(2, U)$. If $T=C_{G}(N)$, then T is regular on Ω, and so $B=T \cong U$ and part (i) holds. So suppose that T is a proper subgroup of $C_{G}(N)$. Now N is the centraliser in G of $C_{G}(N)$, and so $B \cap N=1$ and B is isomorphic to a subgroup of $G / N \leq \operatorname{Aut}(U)$. That is to say, we have a simple proper subgroup T of a nonabelian simple group U such that $M:=N_{\operatorname{Aut}(U)}(T)$ has order divisible
by $|B|=|U|$. Now $|M|$ divides $|\operatorname{Out}(U)| \cdot|M \cap U|$, and $M \cap U$ is a proper subgroup of U, so $|U: M \cap U|$ divides $|\operatorname{Out}(U)|$. However this does not hold for any nonabelian simple group U and proper subgroup $M \cap U$ (see for example [25, 5.2.2]).

Thus we may assume that T does not centralise N, and therefore $B \cap$ $C_{G}(N)=1$. Suppose that $T \not \leq N$. Then, since B is almost simple, $B \cap N=1$ and B is isomorphic to a subgroup of $\operatorname{Out}(N)=\operatorname{Out}(U) \imath S_{k}$. Since $\operatorname{Out}(U)$ is soluble, it follows that B is isomorphic to a subgroup of S_{k}. Thus n divides $k!$. Let $\alpha \in \Omega$ and $H:=N_{\alpha}$. As we noted above, G_{α} is transitive by conjugation on $\left\{U_{1}, \ldots, U_{k}\right\}$, and since G_{α} normalises H it follows that G_{α} permutes the projections $\pi_{i}(H)(1 \leq i \leq k)$ transitively. If the $\pi_{i}(H)=U_{i}$, then $H \cong U^{\ell}$ for some proper divisor ℓ of k, and so $n=|N: H|=|U|^{k-\ell}$ and $k-\ell \geq k / 2$. It follows that, for any odd prime divisor p of $|U|, p^{k-\ell}$ divides n, and hence divides k !. However the largest exponent of p that divides k ! is $[(k-1) /(p-1)]<k / 2$. Thus the projections $\pi_{i}(H)$ are all isomorphic to a proper subgroup R of U, and by the O'Nan-Scott Theorem [11, Chapter 4], $H \cong R^{k}$ and $n=m^{k}$ where $m=|U: R|$. In this case we deduce that p^{k} divides k ! for any prime p dividing m, and we have a contradiction as in the previous case. Thus $T \leq N$.

Suppose now that G has a second minimal normal subgroup M distinct from N. Then $T \leq C_{G}(M)$, and the argument of the first part of the proof, with N and M interchanged, shows that part (i) holds. Finally, if N is the unique minimal normal subgroup of G then part (ii) holds.

By Lemma 15.1, U is a nonabelian simple group and so G acts transitively by conjugation on $\left\{U_{1}, \ldots, U_{k}\right\}$. Let $\pi: G \rightarrow S_{k}$ be the homomorphism corresponding to this action.

Lemma 15.2 One of the following holds.
(i) $G \leq D(2, T)$, with $\operatorname{soc}(G)=T^{2}$ and $B=T \cong U$;
(ii) $G \leq H$ 2 S_{k} in product action, where $U \leq H \leq \operatorname{Aut}(U), k \geq 2$, $\pi(B) \neq 1$, and $B \neq T$;
(iii) $k=1$.

Proof Suppose that neither case (i) nor case (iii) holds. Then $k \geq 2$ and, by Lemma $15.1, T \leq N \cong U^{k}$ so that $|T| \leq|U|$, and N is the unique minimal normal subgroup of G. Also, as we observed above, $|T|>n^{1 / 2}$. If $n=|U|^{\ell}$ for some integer $\ell \geq k / 2$, then we have $|U| \geq|T|>|U|^{\ell / 2}$ which implies that $\ell=1$ and $k=2$. By the O'Nan-Scott Theorem, we have in
this case that $G \leq D(2, U)$. The argument in the second paragraph of the proof of Lemma 15.1 yields that part (i) holds, contrary to our assumptions. Thus n is not of this form.

Let $\alpha \in \Omega$. It now follows from the O'Nan-Scott Theorem that $N_{\alpha}=$ $R_{1} \times \ldots \times R_{k}=R^{k}$ with $R_{i}<U_{i}$ and $R_{i} \cong R$, a proper subgroup of U, and $G \leq H \imath S_{k} \leq S_{m} \imath S_{k}$ in product action on $\Omega=\Omega_{0}^{k}$, where $m=\left|\Omega_{0}\right|=|U: R|$ and $U \leq H \leq \operatorname{Aut}(U)$. Let $M=G \cap S_{m}^{k}$, and note that $N \leq M$.

Next we show that $\pi(B) \neq 1$. Suppose that this is not so. Then $B \leq$ M. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, and for $i=1, \ldots, k$, let M_{i} denote the setwise stabiliser in M of $\left\{\gamma \in \Omega \mid \gamma_{i}=\alpha_{i}\right\}$. Then $M_{\alpha}=\cap_{i=1}^{k} M_{i}$, and for each i, M factorizes as $M=M_{i}\left(\cap_{j \neq i} M_{j}\right)$. Since $B \leq M$ and B is transitive, we have also, setting $B_{i}:=B \cap M_{i}$, the equality $\left|B_{i}\right|=|B| /\left|\Omega_{0}\right|$ and the factorization $B=B_{i}\left(\cap_{j \neq i} B_{j}\right)$ for each i. If $k \geq 3$, these factorizations are called strong multiple factorizations, and all such factorizations of finite almost simple groups B have been classified in [3]; in none of the examples are the subgroups B_{i} all of the same size. Thus $k=2$. In this case we have $B=B_{1} B_{2}$ and $B_{1} \cap B_{2}=B_{\alpha}=1$. All factorizations of a finite almost simple group B in which the factors B_{1}, B_{2} have the same order have also been classified in [3], and for none of them do the factors intersect in the identity subgroup. This contradiction proves that $B \not \leq M$, or equivalently, that $\pi(B) \neq 1$. In particular, since $T \leq N \leq M$, this means that $B \neq T$.

Proof of Theorem 1.4.

Let T, B, G, N be as defined at the beginning of this section, and suppose first that $B=T$. If $G \leq D(2, T)$ with $\operatorname{soc}(G)=T^{2}$, then part (ii) of Theorem 1.4 holds. So we now assume that this is not the case. Then by Lemmas 15.1 and 15.2 , it follows that G is almost simple with socle N containing T. If $N=A_{n}$ then $|T|=n$, and part (i) of Theorem 1.4 holds, so assume that $N \neq A_{n}$. Then it follows from Theorem 1.1, and inspection of Tables 16.1 to 16.3 , that T, G satisfy one of the first three lines of Table 2 in part (iii) of Theorem 1.4.

Thus we may assume that $B \neq T$. Suppose first that G is almost simple. If G contains A_{n} then part (i) holds, so assume this is not the case. Then, by Theorem 1.1 and inspection of Tables 16.1 to $16.3, B, G$ are as in one of the lines of the second section of Table 2 in part (iii) of Theorem 1.4.

Assume now that $k \geq 2$. Then, by Lemma 15.2, $G \leq H \backslash S_{k}$ in product action on $\Omega=\Omega_{0}^{k}$, where $U \leq H \leq \operatorname{Aut}(U)$, and $N_{\alpha}=R^{k}$ where $m=$ $\left|\Omega_{0}\right|=|U: R|$. Further, $\pi(B) \neq 1$. Suppose that G is chosen to satisfy
these conditions, with k minimal subject to $k \geq 2$. Let $\alpha=(\delta, \ldots, \delta) \in \Omega$, where $\delta \in \Omega_{0}$.

We claim that $\pi(B)$ is transitive. Since $\pi(B) \neq 1, \pi(B)$ has an orbit of length $\ell \geq 2$. Without loss of generality we may suppose that this orbit is $\{1, \ldots, \ell\}$. If $\ell<k$, then $C:=\left\{\gamma \in \Omega \mid \gamma_{i}=\delta\right.$ for $\left.\ell<i \leq k\right\}$ is a block of imprimitivity for B in Ω, and the setwise stabiliser B_{C} is regular on C and is almost simple with socle T. Moreover, the setwise stabiliser in G of C induces on C a primitive subgroup of $H \backslash S_{\ell}$ in product action, and the group B_{C} projects onto a transitive subgroup of S_{ℓ}. This contradicts the minimality of k, and hence we conclude that $\pi(B)$ is transitive.

We claim that there is a prime p dividing $|T|$ such that p does not divide $|B: T|$ and such that a Sylow p-subgroup of T is cyclic. This follows from $[16,4.10 .3(\mathrm{a})]$ if T is of Lie type, and is clear if T is alternating or sporadic.

Let p be as in the previous paragraph, and let P be a Sylow p-subgroup of T. Write $|P|=p^{a}$ and let P_{0} be the subgroup of P of order p. Since p does not divide $|B: T|$ it follows that $P \leq T \leq B \cap H^{k}$. Suppose that p^{a} does not divide m. Then P_{0} fixes some point of Ω_{0}, say ω, and hence P_{0} fixes the point $(\omega, \ldots, \omega) \in \Omega$. This is a contradiction since $P_{0} \leq B$ and B is regular. Therefore p^{a} divides m and so $p^{a k}$ divides $n=|B|$. This, however, implies that $p^{a(k-1)}$ divides $|B: T|$ which is a contradiction. This completes the proof of Theorem 1.4.

Proof of Corollary 1.3

Let G be almost simple and primitive of degree n, and assume that G has a regular subgroup B. Suppose that $G<H<S_{n}$, where $\operatorname{soc}(G) \neq \operatorname{soc}(H)$ and $\operatorname{soc}(H) \neq A_{n}$. If H is almost simple then it follows from Theorem 1.1 that (iii) holds. So suppose that H is not almost simple. Then, by [40, Proposition 6.1], either $G=P S L_{2}(7), H=A G L_{3}(2)$ of degree 8 , or $\operatorname{soc}(G)=A_{6}, M_{12}$ or $P S p_{4}(q)$ (with q even), of degree m^{2} and $H \leq S_{m} 乙 S_{2}$, where $m=6,12$ or $q^{2}\left(q^{2}-1\right) / 2$ respectively. The group $P S L_{2}(7)$ contains a regular subgroup, giving case (ii) of the corollary. However, Theorem 1.1 shows that none of the above primitive groups of degree m^{2} possesses a regular subgroup (note that for $G=M_{12} \cdot 2, G_{\alpha}=L_{2}(11) .2$, we have $G_{\alpha} \cap \operatorname{soc}(G)$ non-maximal in $\operatorname{soc}(G)$, so this is not the example in line 4 of Table 16.3). This completes the proof.

16 The tables in Theorem 1.1

In this section we present the tables of regular subgroups referred to in our main result, Theorem 1.1. The first two columns of each table contain the possibilities for the simple group L and a point stabilizer in L. The third has the possibilities for the regular subgroup B, and in the fourth we give the number of possibilities for B up to conjugacy in Aut L. (We have not included this column in Table 16.2, where the numbers of classes are rather clear.) The last column contains any relevant extra information. This includes the use of the symbols $*$ and \dagger, which (as in [33]) have the following meaning. The symbol $*$ means that there is no regular subgroup B in the simple group L, but there is one in some almost simple group with socle L; and \dagger means that $G_{\alpha} \cap L$ is not maximal in L, but G_{α} is maximal in some almost simple group G with socle L.

Some of the numbers of classes in column 4 of Tables 16.1 and 16.3 were calculated by Michael Giudici using Magma, and more information about the sporadic group examples in Table 16.3 can be found in [15].

Table 16.1: L of Lie type

L	$G_{\alpha} \cap L$	B	no. of classes	Remark
$L_{n}(q)$	P_{1} or P_{n-1}	$\left[\frac{q^{n}-1}{q-1}\right]$	see (5.1)	B metacyclic,
$L_{2}(q)$	D_{q+1}	$\left[\frac{q(q-1)}{2}\right]$	see (5.5) (β)	$\begin{aligned} & q \equiv 3 \bmod 4, B \leq P_{1}, \\ & \dagger \text { if } q=7 \end{aligned}$
$L_{5}(2)$	P_{2} or P_{3}	31.5	1	
	31.5	P_{2} or P_{3}	2	
$L_{2}(11)$	P_{1}	A_{4}	1	
	A_{5}	11	1	
	A_{4}	11.5	1	$\dagger, G=L .2$
$L_{2}(23)$	P_{1}	S_{4}	1	
	S_{4}	$P_{1}=23.11$	1	
$L_{2}(29)$	A_{5}	29.7	1	
$L_{2}(59)$	P_{1}	A_{5}	1	
	A_{5}	$P_{1}=59.29$	1	
$L_{3}(3)$	13.3	$3^{2} .[16]$	1	
$L_{3}(4)$	7.3	$\left(2^{4} .\left(3 \times D_{10}\right) .2\right.$	1	*, $G \geq L . S_{3}$
$L_{4}(3)$	$\left(4 \times L_{2}(9)\right) .2$	3^{3}. $\Gamma L_{1}\left(3^{3}\right)$	1	*, $G=L .2=P G L_{4}(3)$
$L_{4}(4)$	$\left(5 \times L_{2}(16)\right) .2$	$2^{6} . \Gamma L_{1}\left(2^{6}\right)$	1	*, $G=L .2$
$U_{3}(8)$	P_{1}	3×19.9	1	*, $G \geq L .3^{2}$
	19.3	P_{1}	1	*, $G \geq L .3^{2}$
$U_{4}(2)$	P_{2}	[27]	2	
$U_{4}(3)$	$L_{3}(4)$	[$3^{4} .2$]	6	*, $G \geq L .2$
$U_{4}(8)$	P_{2}	$G U_{1}\left(2^{9}\right) .9$	1	*, $G \geq L .3$
$S p_{4}(4)$	$L_{2}(16) .2$	S_{5}	1	*, $G=L .2$
$S p_{6}(2)$	$G_{2}(2)$	S_{5}	2	
	$L_{2}(8) .3$	$2^{4} . A_{5}$	1	
$P S p_{6}(3)$	$L_{2}(27) .3$	$3^{1+4} .2^{1+4} .5 .4$	1	*, $G=L .2$
$S p_{6}(4)$	$G_{2}(4)$	$L_{2}(16) .4$	1	*, $G=L .2$
$S p_{8}(2)$	$O_{8}^{-}(2)$	S_{5}	1	
$\Omega_{8}^{+}(2)$	$\Omega_{7}(2)$			
	A_{9} A_{9}	$\begin{aligned} & 2^{4} \cdot A_{5} \\ & 2^{6} \cdot 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	A_{9} A_{9}	$\left(3 \times 2^{4} . D_{10}\right) .2$	1	
$\Omega_{8}^{+}(4)$	$\Omega_{7}(4)$	$L_{2}(16) .4$	1	*, $G \geq L .2$

Table 16.2: L alternating

L	$G_{\alpha} \cap L$	B	Remark
A_{n}	A_{n-1}	any $B,\|B\|=n$	$\begin{aligned} & q \equiv 3 \bmod 4 \\ & \dagger \text { if } p=7,11,23 \\ & * \text { if } p \equiv 1 \bmod 4 \\ & *, p \equiv 1 \bmod 4 \\ & p \equiv 3 \bmod 4 \end{aligned}$
A_{q} (q prime power)	S_{q-2}	$\mathbb{F}_{q} \cdot \frac{q-1}{2}<A G L_{1}(q)$	
$A_{p}, A_{p+1}(p$ prime $)$	p. $\frac{p-1}{2}, L_{2}(p)$ (resp.)	S_{p-2}	
		$A_{p-2} \times 2$	
$A_{p^{2}+1}(p$ prime $)$	$L_{2}\left(p^{2}\right) .2$	$A_{p^{2}-2}$	
A_{6}	$L_{2}(5)$	C_{6}, S_{3}	$*, G \not \leq S_{6}$
	$N\left(3^{2}\right)$	C_{10}, D_{10}	
A_{8}	$A G L_{3}(2)$		
	$\left(A_{5} \times A_{3}\right) .2$	$A G L_{1}(8)$	
A_{9}	$L_{2}(8) .3$	S_{5}	
A_{11}, A_{12}	M_{11}, M_{12} (resp.)	A_{7}	
A_{32}	$\left(A_{29} \times A_{3}\right) .2$	$A \Gamma L_{1}(32)$	
A_{33}	$L_{2}(32) .5$	$\left(A_{29} \times A_{3}\right) .2$	

Table 16.3: L sporadic

L	$G_{\alpha} \cap L$	B	no. of classes	Remark
M_{11}	M_{10}	11	1	
	$M_{9} \cdot 2$	11.5	1	
M_{12}	M_{11}	$[12]$	3	see $[15]$
	$L_{2}(11)$	$M_{9} \cdot 2$	1	
M_{22}	M_{21}	D_{22}	1	$*$
M_{23}	M_{22}	23	1	
	$M_{21} \cdot 2$	23.11	1	
	23.11	$M_{21} \cdot 2$	1	
	$2^{4} \cdot A_{7}$	23.11	1	
	23.11	$2^{4} \cdot A_{7}$	1	
M_{24}	M_{23}	$[24]$	8	see $[15]$
	$L_{2}(23)$	$M_{21} \cdot 2$	1	
	$L_{2}(23)$	$2^{4} \cdot A_{7}$	1	
J_{2}	$U_{3}(3)$	$5^{2} \cdot 4$	2	*, see $[15]$
$H S$	M_{22}	$5^{2} \cdot 4$	4	*, see [15]
$H e$	$S_{4}(4) .2$	$7^{1+2} \cdot 6$	3	*, see [15]

References

[1] H.H. Andersen, J. Jorgensen and P. Landrock, The projective indecomposable modules of $S L\left(2, p^{n}\right)$, Proc. London Math. Soc. 46 (1983), 38-52.
[2] M. Aschbacher and G.M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-91.
[3] R.W. Baddeley and C.E. Praeger, On classifying all full factorisations and multiple-factorisations of the finite almost simple groups, J. Algebra 204 (1998), 129-187.
[4] B. Baumeister, Primitive permutation groups of unitary type with a regular subgroup, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 657673.
[5] B. Baumeister, Primitive permutation groups with a regular subgroup, J. Algebra 310 (2007), 569-618.
[6] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
[7] P.J. Cameron and W.M. Kantor, 2-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra 60 (1979), 384-422.
[8] P.J. Cameron, P.M. Neumann and D.N. Teague, On the degrees of primitive permutation groups, Math. Z. 180 (1982), 141-149.
[9] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
[10] J. A. de Séguier, Éléments de la théorie des groupes abstraits, GauthierVillars, Paris, 1904.
[11] J.D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag, Graduate Texts in Mathematics 163, New York, 1996.
[12] P. Etingof, S. Gelaki, R.M. Guralnick amd J. Saxl, Biperfect Hopf Algebras, J.Algebra 232 (2000), 331-335.
[13] X.G. Fang, C.E. Praeger, and J. Wang, On the automorphism groups of Cayley graphs of finite simple groups, J. London Math. Soc. (2) 66 (2002), 563-578.
[14] D.A. Foulser, The flag-transitive collineation groups of the finite Desarguesian affine planes, Canad. J. Math. 16 (1964), 443-472.
[15] M. Giudici, Factorizations of sporadic simple groups, J. Algebra 304 (2006), 311-323.
[16] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups, Volume 3, Math. Surveys and Monographs, Vol. 40 , No. 3, American Math. Soc., 1998.
[17] P. Hegedüs, Regular subgroups of the affine group, J. Algebra 225 (2000), 740-742.
[18] A. Heinze, Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomic schemes, Dissertation, Oldenburg 2001.
[19] C.Hering, M.W. Liebeck and J. Saxl, The factorizations of the finite exceptional groups of Lie type, J. Algebra 106 (1987), 517-527.
[20] C. Jansen, K. Lux, R. Parker and R. Wilson, An atlas of Brauer characters, Oxford University Press, 1995.
[21] G.A. Jones, Cyclic regular subgroups of primitive permutation groups, J. Group Theory, 5 (2002), 403-407.
[22] L. K. Jorgensen, and M. Klin, Switching of edges in strongly regular graphs. I. A family of partial difference sets on 100 vertices, Electron. J. Combin. 10 (2003), Research Paper 17, 31 pp. (electronic).
[23] W.M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261-265.
[24] P.B.Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups $P \Omega_{8}^{+}(q)$ and of their automorphism groups, J. Algebra 110 (1987), 173-242.
[25] P.B. Kleidman and M.W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Series 129, Cambridge University Press, Cambridge, 1990.
[26] A.S. Kleshchev and A.A. Premet, On second degree cohomology of symmetric and alternating groups, Comm. Algebra 21 (1993), 583-600.
[27] W. Knapp, On Burnside's method, J. Algebra 175 (1995), 644-660.
[28] C.H. Li, The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc. 87 (2003), 725-747.
[29] C.H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
[30] C.H. Li and A. Seress, On vertex-transitive non-Cayley graphs of square-free order, Designs, Codes and Cryptography 34 (2005), 265281.
[31] M.W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. 54 (1987), 477-516.
[32] M.W. Liebeck, C.E. Praeger and J. Saxl, Distance transitive graphs with symmetric or alternating automorphism group, Bull. Austral. Math. Soc. 35 (1987), 1-25.
[33] M.W. Liebeck, C.E. Praeger and J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc. 86 (1990), no. 432.
[34] M.W. Liebeck, C.E. Praeger and J. Saxl, On factorizations of almost simple groups, J. Algebra 185 (1996), 409-419.
[35] M.W. Liebeck, C.E. Praeger and J. Saxl, Transitive subgroups of primitive permutation groups, J. Algebra 234 (2000), 291-361.
[36] P. W. Michor, Knit products of graded Lie algebras and groups, Proceedings of the Winter School on Geometry and Physics, Srni, 1988, Suppl. Rendiconti Circolo Matematico di Palermo, Ser. II, 22 (1989), 171-175. (ArXiv: math.GR/9204220)
[37] G. A. Miller, Groups Which are the Products of Two Permutable Proper Subgroups, Proceedings of the National Academy of Sciences 21 (1935), 469-472.
[38] B. H. Neumann, Decompositions of groups, J. London Math. Soc. 10 (1935), 3-6.
[39] B. H. Neumann, Commentary on Chapter 2, in Selected works of B. H. Neumann and Hanna Neumann. Editors: D. S. Meek and R. G. Stanton, Charles Babbage Research Centre, Winnipeg, Canada, 1988. Volume 1, pp. 65-67.
[40] C.E. Praeger, The inclusion problem for finite primitive permutation groups, Proc. London Math. Soc. 60 (1990), 68-88.
[41] J. Szep, On the structure of groups which can be represented as the product of two subgroups, Acta Sci. Math. Szeged 12 (1950), 57-61.
[42] G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1965), 1-62.
[43] J. Wiegold and A.G. Williamson, The factorization of the alternating and symmetric groups, Math. Z. 175 (1980), 171-179.
[44] H. Wielandt, Finite Permutation Groups, Academic Press, New YorkLondon 1964.
[45] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups, European J. Combin. 26 (2005), 133-143.
[46] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili traloro, Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, Edizioni Cremonense, Rome, 1942, 119125.
[47] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

Department of Mathematics, Imperial College, London SW7 2BZ, UK
School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB, UK

[^0]: Received by the editor January 17, 2006.
 2000 Mathematics Classification Numbers: 20B15, 05C25.
 Key words and phrases: primitive permutation groups, simple groups, Cayley graphs, regular subgroups.
 This paper forms part of a research project funded by an Australian Research Council Discovery Grant. Thanks are also due to Michael Giudici for his computational contributions to some of our proofs.

