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Abstract

We address the classical problem of determining finite primitive permu-
tation groups G with a regular subgroup B. The main theorem solves the
problem completely under the assumption that G is almost simple. While
there are many examples of regular subgroups of small degrees, the list is
rather short (just four infinite families) if the degree is assumed to be large
enough, for example at least 30!. Another result determines all primitive
groups having a regular subgroup which is almost simple. This has an ap-
plication to the theory of Cayley graphs of simple groups.
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1 Introduction

The problem of investigating finite primitive permutation groups containing
a regular subgroup goes back more than one hundred years. Burnside in-
vestigated first the groups of prime degree, and later showed that primitive
groups containing a cycle of prime-power degree pa are 2-transitive, except
in the case a = 1. (A minor error in his proof was noticed and corrected
independently by Peter Neumann and Wolfgang Knapp (see [27]).) Schur
generalized this to primitive groups containing a regular cycle of any com-
posite order. Burnside suggested that perhaps the existence of a regular
p-subgroup B forced the primitive group to be 2-transitive, except in the
case where B is elementary abelian. However, examples had already existed,
due to W. Manning, of simply primitive groups in product action, with reg-
ular subgroups which are direct products of cyclic subgroups of equal orders
(not necessarily prime – see [44, Theorem 25.7]). Wielandt investigated the
problem extensively. Section 25 of his book [44] is devoted to the prob-
lem. To mark the contribution of Burnside, he coined the term B-group
for any group B whose presence as a regular subgroup in a primitive group
G forces G to be 2-transitive. He gave a number of classes of examples of
groups which are B-groups [44, Section 25], some due to Bercov and Nagai.
Wielandt also gave the first examples of non-abelian B-groups, proving that
all dihedral groups are B-groups [44, Theorem 25.6].

With the classification of finite simple groups, one can make much further
progress. By a result of Cameron, Neumann and Teague [8], if S denotes the
set of natural numbers n for which there exists a primitive group of degree
n other than An and Sn, then S has zero density in N. Hence, for almost
all integers n, all groups of order n are B-groups. Moreover, the 2-transitive
permutation groups are known. It is natural to extend the problem and
ask also for a list of all pairs (G,B) with G a primitive permutation group
on a finite set Ω and B a regular subgroup. This is the problem we are
considering here.

Our main method of analysis is to view this situation as a group factor-
ization: for a pair (G,B) as above and a point α in the set Ω, the transitivity
of B implies that G = BGα, and since B is regular on Ω we have in addition
that B ∩ Gα = 1. The study of such factorizations was proposed by B. H.
Neumann in his 1935 paper [38]. He called a factorization G = AB, where
A,B are subgroups such that A ∩ B = 1, a general product, and viewed it
as a generalization of a direct product (without the requirement that A and
B be normal). In [38], among other things, the equivalence was pointed out
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between general products G = AB and transitive actions of G with point
stabiliser A and regular subgroup B. According to Neumann [39, p. 65],
general products were later called Zappa-Rédei-Szép products (see [41, 46]),
and moreover they had already occurred in the book of de Séguier [10] in
1904. Independently of [38] and in the same year, G.A. Miller wrote about
group factorizations in [37]. In particular he gave several examples of gen-
eral products in which G is a finite alternating group An and A is a Mathieu
group Mn with 8 ≤ n ≤ 12, and noted that A6 has no nontrivial expression
as a general product.

In the more recent literature, general products have come to be better
known as exact factorizations, and that is what we shall call them. Attempts
to construct them synthetically have been made by P. W. Michor [36], both
for groups and in the broader context of graded Lie algebras. (We thank
Rudolph Zlabinger for drawing this work to our attention.) In contrast to
this, our focus is analytical. We work from a given transitive (or primitive)
permutation group G with point stabiliser A, and determine the existence
or otherwise of a regular subgroup B.

Thus in our context the exact factorization G = GαB is such that the
subgroup Gα is maximal and core-free in G, since G acts primitively and
faithfully on the set Ω. An outline reduction theorem for such exact fac-
torizations, based on the Aschbacher-O’Nan-Scott theorem, was obtained
in [35, Corollary 3]. The main cases left outstanding there were the case
where G is almost simple and the case of G in product action. The former
is addressed here and solved completely. The latter remains open and we
hope to return to it in the future.

It should be mentioned that even for the types of primitive groups in [35,
Corollary 3] where regular subgroups always exist (namely, diagonal, twisted
wreath and affine types), the problem of determining all regular subgroups
remains open; some interesting examples of regular subgroups exist, very
different from the obvious ones (see, for example, [17] in the case of affine
groups).

Our main result is a classification theorem for almost simple primitive
permutation groups with a regular subgroup:

Theorem 1.1 Let G be an almost simple primitive permutation group on
a set Ω, with socle L. Suppose that G has a subgroup B which is regular
on Ω. Then the possibilities for G, Gα (α ∈ Ω) and B are given in Tables
16.1− 16.3 at the end of the paper.
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Remarks (1) All entries in the tables give examples of regular subgroups,
and this is verified for each entry as it arises in the proof. The fourth column
of each table gives the number of possibilities for B up to conjugacy (except
for Table 16.2, where this information is rather clear). Some of the details
concerning these numbers were verified by Michael Giudici, using Magma
[6]. More information about the sporadic group examples in Table 16.3 can
be found in [15].

(2) Some related results on regular subgroups have been obtained inde-
pendently by other researchers. Wiegold and Williamson [43] found all exact
factorizations of alternating and symmetric groups. Recent papers of Jones
and Li classify primitive permutation groups with regular cyclic subgroups
[21], regular abelian subgroups [28], and regular dihedral subgroups [29]. Li
and Seress [30, Theorem 1.2] handle the special case where the degree |Ω|
is square-free and the regular subgroup B lies in L. Regular subgroups of
two sporadic groups (HS.2 and J2.2) have been found in [18, 22], and all
factorizations of sporadic groups are determined in [15]. Finally, some fam-
ilies of almost simple primitive groups have been dealt with independently
by Baumeister in [4, 5]. In particular she handles unitary groups and 8-
dimensional orthogonal groups of plus-type; however, for completeness we
include our own proofs for these groups.

We remark also on a couple of features of our proof of Theorem 1.1,
which may be of independent interest. The first involves the classification
of antiflag transitive linear groups, presented in Section 3; this updates and
slightly generalizes the famous work of Cameron and Kantor [7] on such
groups. The second is the work in Section 4, which contains some detailed
results determining the subgroups of classical groups which are transitive on
various types of subspaces.

Despite the fairly long lists of regular subgroups in Tables 16.1 - 16.3,
there are essentially only four infinite families:

Corollary 1.2 Let G be an almost simple primitive permutation group of
degree n, with G 6≥ An and n > 3 ∙ 29!, and suppose that G has a regular
subgroup B. Then one of the following holds:

(i) B is metacyclic, of order (qm − 1)/(q − 1) for some prime power q;

(ii) B is a subgroup of odd order q(q − 1)/2 in AΓL1(q) for some prime
power q ≡ 3 mod 4;

(iii) B = Ap−2, Sp−2 (p prime), or Ap−2 × 2 (p prime, p ≡ 1 mod 4);

(iv) B = Ap2−2 (p prime, p ≡ 3 mod 4).
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Table 1: Almost simple primitive groups sharing a common regular subgroup

inclusions soc(G) < soc(H) common regular subgroup B

Ap < Ap+1 (p prime) Sp−2 or Ap−2 × 2
A10 < A11 < A12 A7
L2(11) < M11 < A11 11 or 11.5
L2(11) < M12 [12]
L2(23) < M24 [24]
M23 < A23 23.11
M23 < M24 L3(4).2 or 2

4.A7
A7 < A8 < {A9, Sp6(2)} < Ω

+
8 (2) < Sp8(2) S5

Sp4(4).2 < Sp8(2) S5
Sp6(2) < Ω

+
8 (2) 24.A5

Sp6(4).2 < Ω
+
8 (4).2 L2(16).4

Corollary 1.2 is an immediate consequence of Theorem 1.1.

Theorem 1.1 throws up some interesting containments between primitive
subgroups of Sn which share a common regular subgroup. In the next re-
sult we classify all such containments for which the smaller group is almost
simple. The proof can be found at the end of Section 15.

Corollary 1.3 Let G be an almost simple primitive permutation group of
degree n, not containing An, such that G contains a regular subgroup B.
Then one of the following holds:

(i) NSn(G) is maximal in An or Sn;

(ii) n = 8, G = L2(7) < AGL3(2), sharing a regular subgroup B = D8;

(iii) there is an almost simple group H such that G < H < Sn and
soc(G) < soc(H); the inclusion soc(G) < soc(H) and the common regular
subgroup B are as in one of the lines of Table 1, and the actions of G,H
can be read off from the tables in Section 16.

It can be seen from Table 1 that there are no fewer than seven primi-
tive groups of degree 120 sharing a common regular subgroup (namely S5).
Figure 1 gives the lattice of containments among these groups.
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Sp8(2)
↗ ↖

Sp4(4).2 O+8 (2)
↗ ↖

A9 Sp6(2)
↗ ↗

S7 S8

Figure 1: Groups of degree 120 sharing a regular subgroup S5

Some of the work discussed above was concerned with deciding whether
certain classes of groups are B-groups. In particular, the papers [21, 28, 29]
of Jones and Li deal with the cases of cyclic and dihedral regular subgroups.
At the opposite end, we classify in Theorem 1.4 below the primitive per-
mutation groups with regular almost simple subgroups. Burnside already
knew examples of simply primitive permutation groups with regular simple
subgroups. We discuss these next.

Any group T induces a regular permutation group acting on itself by
right multiplication; x ∈ T maps y 7→ yx (y ∈ T ). Identifying T with this
regular subgroup of Sym(T ), we define the holomorph of T as the normalizer
of T in Sym(T ), denoted Hol(T ). This group contains the centraliser C =
CSym(T )(T ) which is isomorphic to T , where each x ∈ T corresponds to the
element cx of C that maps y 7→ x−1y (y ∈ T ). In general the holomorph is
the semidirect product Hol(T ) = T ∙ Aut(T ) with Aut(T ) acting naturally,
both T and C are regular normal subgroups, and C ∩ T = Z(T ). Moreover
the permutation σ : y 7→ y−1 (y ∈ T ) normalizes Hol(T ), interchanges T and
C (σ : x↔ cx for each x ∈ T ), and centralizes Aut(T ). In the case where T
is a non-abelian simple group, the permutation group 〈Hol(T ), σ〉 ≤ Sym(T )
is denoted by D(2, T ). This is a primitive permutation group of diagonal
type, and C × T is its unique minimal normal subgroup.

The groups D(2, T ) form an important family of finite primitive groups
having simple regular subgroups, as demonstrated by the following theorem.
This theorem also shows that there are infinitely many finite primitive groups
with an almost simple regular subgroup that is not simple.

Theorem 1.4 Let G be a primitive permutation group on a finite set Ω of
size n, and suppose that G has a subgroup B which is almost simple and
acts regularly on Ω. Then one of the following holds:
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(i) G = An or Sn, and |B| = n;

(ii) there is a non-abelian simple group T such that G ≤ D(2, T ) with
soc(G) = T 2, and B ∼= T ;

(iii) G is almost simple, and B and G are as in Table 2 below.

In particular, if B is not simple, then G is almost simple, and either G
contains An, or B,G are as in the lower part of Table 2.

The proof of this theorem appears in Section 15. An immediate con-
sequence is the classification of the almost simple B-groups, recorded in
Corollary 1.5 below. In contrast with the situation for simple groups, the
non-simple almost simple groups are usually B-groups:

Corollary 1.5 If G is an almost simple group, then G is a B-group if and
only if both the following conditions hold:

(i) G is not simple;

(ii) G 6= Sp−2 (p prime), L2(16).4, or L3(4).2.

Theorem 1.4 has another immediate consequence, concerning the struc-
ture of Cayley graphs of finite simple groups. For any group G and subset
S ⊆ G\{1}, the Cayley digraph Cay(G,S) for G relative to S is the digraph
with vertex set G and with an edge from x to y whenever xy−1 ∈ S. If
S−1 := {x−1|x ∈ S} is equal to S, then the adjacency relation is symmetric,
so the Cayley digraph can be regarded as an undirected graph, called a Cay-
ley graph. In particular, if S = G \ {1}, then Cay(G,S) is a complete graph
on n = |G| vertices with automorphism group Sn. In all cases the group G,
acting by right multiplication, is admitted as a subgroup of automorphisms
which is regular on the set of vertices. Moreover, Cay(G,S) is connected if
and only if S generates G.

A general analysis was made in [13] of the possible structures of the
automorphism groups of Cay(T, S) for finite nonabelian simple groups T .
As a consequence of [13, Theorem 1.1], for generating sets S with S = S−1

and S 6= T \{1}, one does not expect the automorphism group of Cay(T, S)
to be vertex-primitive, a notable exceptional case being that in which S is
a union of T -conjugacy classes; in the latter case the automorphism group
has socle T 2, and is a primitive subgroup of D(2, T ). Restating Theorem 1.4
in the language of Cayley graphs, in the case where B = T is simple, gives
a classification of all vertex-primitive Cayley digraphs of finite nonabelian
simple groups. If the automorphism group contains An, where |T | = n, or
contains L2(59) with T = A5, then the automorphism group is 2-transitive
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Table 2: Almost simple regular subgroups

B soc(G) (soc(G))α (α ∈ Ω) Remark

A5 L2(59) 59 ∙ 29
A7 A11, A12 M11,M12 (resp.)
Ap2−2 Ap2+1 L2(p

2).2
(p prime ≡ 3 mod 4)

Sp−2 Ap, Ap+1 p.p−12 , L2(p) (resp.)
(p ≥ 7 prime)

S5 A9 L2(8).3
Sp4(4) L2(16).2 G = L.2
Sp6(2) G2(2)
Ω+8 (2) Ω7(2)
Sp8(2) O−8 (2)

L2(16).4 Sp6(4), Ω
+
8 (4) G2(4), Ω7(4) (resp.) G ≥ L.2

L3(4).2 M23, M24 23.11, L2(23) (resp.)
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on vertices, implying that the generating set S = T \ {1}. If we assume this
is not so, then these cases of Theorem 1.4 do not arise in the Cayley graph
setting. Thus we obtain Theorem 1.6 below as a consequence of Theorem 1.4.
This completes the results of [13] for vertex-primitive Cayley digraphs.

Theorem 1.6 Let T be a simple group, and suppose that T has a generating
set S = S−1 such that the Cayley graph Cay(T, S) has automorphism group
acting primitively on vertices, and is not a complete graph. Then one of the
following holds:

(i) S is a union of conjugacy classes of T ;

(ii) T = Ap2−2, with p prime, p ≡ 3 mod 4.

Remark In both (i) and (ii) there are examples of vertex primitive, non-
complete Cayley graphs. This was discussed in the preamble to the theorem
for case (i). For case (ii), observe from Table 16.2 that the group Ap2+1
acting primitively on the cosets of a maximal subgroup L2(p

2).2 possesses a
regular subgroup Ap2−2; hence any orbital graph for this Ap2+1 is necessarily
a Cayley graph for the regular subgroup Ap2−2. The smallest case is p = 3,
T = A7.

Cayley graphs for these groups have arisen also as exceptional examples
in a different context. In [45] a study of cubic, s-arc transitive, Cayley
graphs for finite non-abelian simple groups revealed that there are exactly
two such graphs for which s > 2, and these are both 5-arc transitive Cayley
graphs for A47 with automorphism group A48. However, neither of these
graphs is vertex-primitive.

There is one further application that we should mention. Exact factor-
izations of finite groups can be used to obtain semisimple Hopf algebras.
The construction, using bicrossproducts, goes back to Kac and Takeuchi,
and is outlined in the paper [12]. In that paper, the exact factorization
M24 = L2(23)(2

4A7) is used to construct a biperfect Hopf algebra of dimen-
sion |M24|. (A Hopf algebra H is biperfect if neither H nor H∗ has any
non-trivial 1-dimensional representations.) It is not known whether there
exist biperfect Hopf algebras of smaller dimension. For the bicrossproduct
construction, one needs an exact factorization of a group G with both factors
perfect and self-normalizing in G, see [12].

The layout is as follows. After some preliminaries in Section 2, we present
in Section 3 the classification of antiflag transitive linear groups, remarked
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upon earlier. Section 4 contains some detailed results determining the sub-
groups of classical groups which are transitive on various types of subspaces.
Sections 5 – 11 contain the proof of Theorem 1.1 for the classical groups,
which is by far the bulk of the proof; the proofs for the exceptional groups
of Lie type, the alternating groups and the sporadic groups are given in the
following much shorter Sections 12 – 14. Section 15 contains the proofs of
Theorem 1.3 and Corollary 1.2, and finally Section 16 comprises Tables 16.1
– 16.3, referred to in the statement of Theorem 1.1.

2 Preliminaries

In this section we collect various results from the literature which will be
needed in our proofs.

Notation First we introduce some notation for certain types of subgroups
in classical groups. Let G be a finite almost simple classical group with
socle L and associated vector space V . As usual, denote by Pi the parabolic
subgroup of G obtained by deleting the ith node of the standard Dynkin
diagram; so Pi is the stabilizer of a totally singular i-dimensional subspace of
V , except when L = PΩ+2m(q) and i = m− 1. In this last case there are two
L-orbits on totally singular m-spaces, Pm−1 and Pm being the stabilizers of
representatives of the different orbits. Also Pij denotes the intersection of
two parabolic subgroups Pi and Pj sharing a common Borel subgroup.

When L = Ln(q), denote by N1,n−1 the stabilizer of a pair of comple-
mentary subspaces of V of dimensions 1, n− 1.

When L = Spn(q) with q even, write O
ε for the normalizer in G of the

natural subgroup Oεn(q) of L.

Now assume G is unitary, symplectic or orthogonal, and let W be a
nonsingular subspace of V of dimension i. We denote the stabilizer GW of
W in G by Ni, N

+
i or N

−
i as follows:

GW = Ni, if G is unitary or symplectic, or if L = PΩ
±
2m(q) and i is odd;

GW = N
ε
i (ε = ±), if i is even, G is orthogonal and W has type O

ε;

GW = N
ε
i (ε = ±), if i is odd, L = PΩ2m+1(q) (q odd) and W

⊥ has type
Oε.

For a classical subgroup H of G, we will sometimes write Pi(H), Ni(H),
etc. for the relevant parabolic subgroup Pi or nonsingular subspace stabiliser
Ni in H. Also q will always denote a power q = p

a of a prime p, and when
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we write log q we will mean logp q = a. Finally for such a q = p
a, we denote

by qn a primitive prime divisor of q
n − 1, that is, a prime which divides

pan− 1 but not pi− 1 for 1 ≤ i < an. By [47], such a prime exists except in
the cases where (p, an) = (2, 6) or an = 2, p+ 1 = 2b.

The first two lemmas of this section concern the classification of involu-
tion classes in symplectic and orthogonal groups in characteristic 2, and are
taken from [2, Sections 7,8].

Let V be a vector space of even dimension 2m over a finite field of
characteristic 2, and let ( , ) be a non-degenerate symplectic form on V with
corresponding symplectic group Sp(V ). For an involution t ∈ Sp(V ), define

V (t) = {v ∈ V : (v, t(v)) = 0}.

The Jordan form of t is (J l2, J
2m−2l
1 ) for some l, where Ji denotes a Jordan

block of size i.

Lemma 2.1 Let V be a vector space of dimension 2m over a field of char-
acteristic 2. The conjugacy classes of involutions in Sp(V ) have represen-
tatives

al (l even, 2 ≤ l ≤ m),
bl (l odd, 1 ≤ l ≤ m),
cl (l even, 2 ≤ l ≤ m),

where al, bl, cl all have Jordan form (J
l
2, J

2m−2l
1 ), and

V (al) = V, V (bl) 6= V, V (cl) 6= V.

Now assume m ≥ 2 and let Oε(V ) be an orthogonal group on V of type
ε ∈ {+,−} lying in Sp(V ), with commutator subgroup Ωε(V ).

Lemma 2.2 (i) Involutions in Oε(V ) are conjugate in Oε(V ) if and only if
they are conjugate in Sp(V ).

(ii) al lies in Ω
+(V ) for all l, and in Ω−(V ) for all l except for l = m

(m even); for m even, am does not lie in O
−(V ).

(iii) bl lies in O
+(V ) and in O−(V ), but not in Ωε(V ).

(iv) cl lies in Ω
+(V ) and in Ω−(V ).

Corollary 2.3 If ε = +, or if ε = − and m is odd, then every involution
class representative al, bl, cl lies in O

ε(V ). If ε = − and m is even, then
every involution class representative except am lies in O

ε(V ).
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We shall also need some information about unipotent elements of sym-
plectic and orthogonal groups in odd characteristic, taken from [42, pp.36-
39].

Lemma 2.4 Let q be a power of an odd prime, and let u be a unipotent
element of GLn(q) with Jordan form (J

n1
1 , J

n2
2 , . . .). Then the following

hold.

(i) u is similar to an element of Spn(q) if and only if ni is even for each
odd i.

(ii) u is similar to an element of some orthogonal group On(q) if and
only if ni is even for each even i.

(iii) Assume that n is even, and also that ni is even for each even i. If
nj > 0 for some odd j, then u is similar to elements of both O

+
n (q) and

O−n (q). Otherwise, u is similar to an element of O
+
n (q) but not of O

−
n (q).

The next lemma gives some basic information on the representations of
G = SL2(q) (q even) in characteristic 2. If V is an FqG-module, denote
by V (2

i) the FqG-module V with G-action twisted by a Frobenius 2i-power
automorphism (i.e. with action v ∗ g = vg(2

i) for v ∈ V, g ∈ G).

Lemma 2.5 Let G = SL2(2
e) with e ≥ 2, and letW = V2(2e) be the natural

2-dimensional module for G. Write F = F2e , and let V be an irreducible
FG-module.

(i) Then V ∼=W (2
i1 )⊗∙ ∙ ∙⊗W (2

ik ) for some i1, . . . , ik satisfying 0 ≤ i1 <
∙ ∙ ∙ < ik < e.

(ii) If H1(G,V ) 6= 0 then V ∼=W (2
i) for some i, in which case H1(G,V )

has dimension 1.

Proof Part (i) is immediate from Steinberg’s tensor product theorem, and
(ii) follows from [1, 4.5].

We conclude this section with a lemma (essentially the main theorem of
[34]) that relates our exact factorization G = BGα, with G almost simple
and Gα maximal, with a maximal factorization of G or a closely related
subgroup. For an almost simple group G with socle L, and a subgroup
A of G, we write Amax−G to mean that A is maximal among core-free
subgroups of G (so that all overgroups of A in G contain L), and we write
Amax+G to mean that A is both core-free and maximal in G. Note that,
for any subgroup B of G it is always possible to choose an overgroup B∗
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of B such that B∗max−G. An expression G = AB is called a maximal
factorization if both Amax+G and Bmax+G, and a max− factorization if
both Amax−G and Bmax−G.

In the next result, notation in the table is as defined at the beginning of
this section.

Lemma 2.6 Let G be a finite almost simple group with socle L, and let
G = AB, where Amax+G. Let B∗ satisfy B ≤ B∗ ≤ G and B∗max−G,
and set G∗ := B∗L, A∗ = A ∩G∗.

Then G∗ = A∗B∗, and either this is a maximal factorization (determined
by [33]), or L,A∩L,B∗ ∩L are as in one of the lines of the following table.

L A ∩ L B∗ ∩ L

L2m(q) (with (q − 1,m) 6= 1) N1,2m−1 NL(PSp2m(q))
PΩ+2m(q) (q odd,m odd) NL(GLm(q)/〈−1〉) N1

PΩ+8 (3) Ω7(3) Ω+6 (3).2
PΩ+8 (3) Ω+8 (2) Pij (i, j ∈ {1, 3, 4})
PΩ+8 (3) 26.A8 Pi (i ∈ {1, 3, 4})
M12 A5 M11

Proof Since Amax+G, we have G = AL. Moreover, G = AB∗ is a max−

factorization. Now the result follows directly from [34, Theorem].

3 Transitive and antiflag transitive linear groups

Let V = Vn(q) be a vector space of dimension n over Fq. An antiflag of V is
an unordered pair {α,H}, where α is a 1-space in V and H is a hyperplane
not containing α. A subgroup of ΓLn(q) is antiflag transitive if it is tran-
sitive on the set of all antiflags. An important role in our proofs is played
by the classification of all antiflag transitive subgroups of ΓLn(q), achieved
by Cameron and Kantor in [7]. However, a few errors in their conclusion
have come to light over the years (see for example [33, Proposition B, p.45]).
The source of the error is [7, p.401, line 2], and it can presumably be eas-
ily corrected, though such a correction has not appeared in the literature.
Moreover, for our purposes we require a slightly more general version of their
result, allowing the possibility that the antiflag transitive subgroup contains
an element in the coset of a graph automorphism ι of Ln(q) (where ι is the
inverse-transpose automorphism if n ≥ 3, and is the identity if n = 2). Here
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we extend the definition of antiflag transitive groups to include subgroups
of ΓLn(q).〈ι〉, which is justified since ι acts on the set of antiflags.

In view of all this, we include in this section a full proof of this slightly
generalised form of the classification of antiflag transitive groups. Note
however that our proof uses the classification of finite simple groups, whereas
[7] does not.

We shall need the following well known result of Hering, classifying the
subgroups of ΓLn(q) which are transitive on 1-spaces - see [31, Appendix]
for a short proof of this result.

Lemma 3.1 Let H ≤ ΓLn(q) be transitive on the set of 1-spaces of Vn(q).
Then one of the following holds:

(i) H .SLa(q
b) (ab = n, a > 1), Spa(q

b) (ab = n, a even) or G2(q
b)′ (6b =

n, q even);

(ii) H ≤ ΓL1(qn);

(iii) one of:

n = 2, q ∈ {5, 7, 11, 23} : H . Q8
n = 2, q ∈ {9, 11, 19, 29, 59} : H . SL2(5)
n = 4, q = 2 : H = A6 or A7
n = 4, q = 3 : 21+4 / H ≤ 21+4.S5 or H . SL2(5)
n = 6, q = 3 : H = SL2(13).

Now we are ready to prove the main result of this section, classifying the
antiflag transitive subgroups of Aut(Ln(q)).

Theorem 3.2 Suppose that H ≤ ΓLn(q).〈ι〉 is antiflag transitive.Then one
of the following holds:

(i) H . SLn(q), Spn(q) (n even) or G2(q)
′ (n = 6, q even);

(ii) q = 2 or 4, n ≥ 4 is even, and H .SLn/2(q
2), Spn/2(q

2) or G2(q
2) (n =

12); moreover H contains a full group of field automorphisms in each case;

(iii) n = 4, q = 2 and H = A6 or A7;

(iv) n = 2, q = 4 and H = ΓL1(q
2) = 15.4.

Conversely, each of the possibilities in (i)-(iv) does give rise to examples of
antiflag transitive subgroups.

Proof Let H0 = H∩ΓLn(q). Then H0 has t orbits (t ≤ 2) of equal size on
the set of antiflags, which has size qn−1. q

n−1
q−1 . If t = 2 the two H0-orbits are
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interchanged by an element of the coset ιΓLn(q) normalizing H
0 (where ι is

as defined above); in particular we have n ≥ 3 when t = 2. By [33, 4.2.1],
H0 is transitive on P1(V ), the set of 1-spaces of V = Vn(q).

Fix a point α = 〈v〉 ∈ P1(V ). For a hyperplane W not containing α we
have Hα,W = (H

0)α,W . If H{α,W} interchanges α and W then t = 1, H
0

is transitive on antiflags, and (H0)α is transitive on the hyperplanes W not
containing α. Alternatively if H{α,W} = Hα,W , then t = 2 and (H

0)α has 2
orbits of equal size on the hyperplanes W not containing α, of which there
are qn−1. In particular it follows that if t = 2 then q is even.

Being transitive on P1(V ), the possibilities forH
0 are given by Lemma 3.1.

The groups A6, A7 < L4(2) are listed in the conclusion. The other possi-
bilities for H0 in 3.1(iii) have q odd; hence if H0 were one of them, then t
would be 1 and |H0| would be divisible by qn−1, which is not the case.

Hence we may assume that either H0 . SLa(q
b), Spa(q

b) (ab = n, a ≥ 2)
or G2(q

b)′ (6b = n), or H0 ≤ ΓL1(qb) (b = n).

Write F = Fq and K = Fqb , so that α = Fv. Clearly H
0
α = H

0
Fv fixes

Kv, a 1-space over Fqb , and, writing J = (H
0
α)
Kv, we have J ≤ ΓL1(qb).

Moreover, J fixes α = Fv, so cannot contain any scalars in K∗\F ∗, and
therefore |JF∗q/F

∗
q | divides b logp q.

Any F -hyperplane W not containing α intersects Kv in an F -space of
dimension b−1. Consequently J has at most t orbits on such (b−1)-spaces,
of which there are qb−1. If t = 1 this implies that qb−1 divides b log q, hence
either b = 1 or b = 2, q = 2 or 4. Both these possibilities are listed in the
conclusion. (Note that ΓL1(4) = SL2(2) and occurs in (i).)

Now assume that t = 2. Then q is even, and we have

qb−1 ≤ 2b log q. (1)

Hence the possibilities for b, q are

b = 1
b = 2, q = 2, 4, 8 or 16
b = 3, q = 2
b = 4, q = 2.

The cases b = 1 and b = 2, q = 2, 4 are listed in the conclusion. It remains
to exclude the other cases.

Consider the case where H0 ≤ ΓL1(qb) (b = n). Since t = 2 we must
have ι 6= 1, hence n = b ≥ 3 and q = 2. If n = 3 then H0 has odd
order so H cannot be transitive on the 28 antiflags. And if n = 4 then
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|ΓL1(24)| = 23.3.5 is equal to the number of antiflags, so H = 3.2 × 5.4 <
L4(2).2 ∼= S8; however H then contains a conjugate of an involution in the
antiflag stabilizer L3(2).2, so cannot be antiflag transitive.

Assume from now on that H0 . SLa(q
b), Spa(q

b) (ab = n, a ≥ 2) or
G2(q

b)′ (6b = n). Consider first the case where b = 2, q = 16. Here equality
holds in (1), so we must have

H0 = ΓLa(q
2), ΓSpa(q

2) or ΓG2(q
2) < ΓL2a(q) = ΓLn(q).

By assumption, H0 is normalized by an element in the coset ιΓL2a(q).
When H0 = ΓLa(q

2) or ΓG2(q
2), it is clear from the structure of Aut(H0)

that any group of the form H0.2 contains an outer involution; and the same
holds when H0 = ΓSpa(q

2), noting that for a = 4, the graph automor-
phism of (H0)′ is not induced (indeed, (H0)′ is centralized by an element of
ιΓL2a(q)).

We conclude that H0 is normalized by an involution τ ∈ ιΓL2a(q). By
[2, 19.8], there are two GL2a(q)-classes of involutions in this coset, with
representatives ι (the inverse-transpose map) and ιJ , where

J =

(
0 Ia
Ia 0

)

.

We have CSL2a(q)(ιJ) = Sp2a(q), while CSL2a(q)(ι) is the centralizer of a long
root element in Sp2a(q), hence in particular lies in a parabolic subgroup of
Sp2a(q).

Of the two involution class representatives above, ι clearly normalizes
an antiflag stabilizer, while ιJ does not (it sends G〈v〉 to Gv⊥ , where G =
GL2a(q) and the perp is relative to the symplectic form defined by J).

We aim to show that H0 is normalized by a conjugate of ι. This will
give a contradiction, since by assumption, the 2 orbits of H0 on antiflags
are interchanged by an element of the coset ιΓLn(q) normalizing H

0; this
clearly cannot be the case for a conjugate of ι, since ι fixes an antiflag.

Consider the case where (H0)′ = SLa(q
2). Write L = (H0)′. Suppose

a is even. Then the coset Lτ contains an involution, which we may as
well label as τ , such that CL(τ) = Spa(q

2). This is not contained in the
centralizer of ι, and hence τ must be GL2a(q)-conjugate to ιJ . Replacing
H by a conjugate, we may take τ = ιJ .

Now CSL2a(q)(ιJ) = Sp2a(q), the symplectic group fixing the form ( , )
defined by J . Clearly J itself lies in this centralizer, has Jordan form Ja2 ,
and satsifies (v, vJ) 6= 0 for some v ∈ V . By Lemma 2.1, the subgroup
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CL(τ) = Spa(q
2) contains an involution t which is Sp2a(q)-conjugate to J .

(Recall that a is even.) Then tιJ is Sp2a(q)-conjugate to JιJ = ι. Thus tιJ
is a conjugate of ι normalizingH0, giving a contradiction as explained above.
For (H0)′ = Spa(q

2) or G2(q
2), we apply the same argument, starting with

an involution τ centralizing (H0)′.

To complete this case (b = 2, q = 16), suppose now that (H0)′ = SLa(q
2)

with a odd and a ≥ 3. Here we have

SLa(q
2) 〈φ, τ〉 < SL2a(q) 〈τ〉,

where φ ∈ SL2a(q) is an involution inducing a field automorphism on
L = SLa(q

2) and τ is an involutory graph automorphism of G = SL2a(q)
normalizing L and commuting with φ.

We shall show that τ isG-conjugate to ι. Observe that CL(φτ) = SUa(q),
hence CG(φτ) = Sp2a(q). Hence as above we can take φτ = ιJ . Now
J ∈ CG(ιJ), and φ ∈ CG(φτ) = CG(ιJ). Hence J, φ ∈ CG(ιJ) = Sp2a(q).
Both J and φ have Jordan form Ja2 on V , and as a is odd they are conjugate
in CG(ιJ) (see Lemma 2.1); say φ = J

c with c ∈ CG(ιJ). Then

ιc = (ιJJ)c = ιJφ = φτφ = τ.

Therefore τ is conjugate to ι, as claimed. As before this gives a contradiction.
This completes the proof for the case b = 2, q = 16.

The remaining cases (b, q) = (2, 8), (3, 2), (4, 2) are excluded in entirely
the same fashion, and we leave this to the reader.

To complete the proof we justify the last sentence of the statement of
the theorem, asserting the existence of antiflag transitive examples in each
of conclusions (i)-(iv).

The examples in (i) are easy to justify. This is done in [7] but we give a
different argument. Clearly SLn(q) is antiflag transitive. As for Spn(q), any
antiflag is of the form (〈v〉, w⊥) with w 6∈ v⊥, and Spn(q) is transitive on such
pairs (by Witt’s lemma for example). Finally, for q even we have G2(q) <
Sp6(q). Since an antiflag (〈v〉, w⊥) as above is stabilized by a subgroup
Sp4(q) fixing 〈v, w〉 pointwise, it is enough to demonstrate the factorization
Sp6(q) = G2(q)Sp4(q). Now G2(q) has a subgroup L2(q) × L2(q) acting
on the natural 6-dimensional module V6 as V4 ⊥ V2 (it acts as Ω

+
4 (q) on

V4 and as Sp2(q) on V2). Hence, if we take our subgroup Sp4(q) to fix
V2 pointwise, we have G2(q) ∩ Sp4(q) ∼= L2(q), and now arithmetic shows
that Sp6(q) = G2(q)Sp4(q), as required. For completeness, we remark that
when q = 2, while G2(2) is antiflag transitive, in fact G2(2)

′ is not; on the



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 17

other hand G2(2)
′ × 〈τ〉 is antiflag transitive, where τ is a suitable graph

automorphism of L6(2) (all this can be seen using [9, p.14,46]).

Next we justify the examples in (ii) and (iv). First, [33, Prop. B, p.45]
and its proof show that ΓLm(q

2) < ΓL2m(q) is antiflag transitive for q = 2
or 4 (and also that the full group of field automorphisms must be present, as
asserted in (ii)). Given this, the antiflag transitivity on V2m(q) of ΓSpm(q

2)
(m even) and ΓG2(q

2) (m = 6) follows from the antiflag transitivity of these
groups on Vm(q

2).

Finally the examples A6, A7 < L4(2) ∼= A8 in (iii) are well known and
follow immediately from the 2-transitivity (on 8 points) of the antiflag sta-
bilizer L3(2).

4 Subgroups of classical groups transitive on sub-
spaces

In this section we study subgroups of classical groups G which are transitive
on a G-orbit of subspaces of the natural module for G. The basic starting
point is [33], which determines all such maximal subgroups of G.

Our first lemma classifies those types of subspace which admit transitive
proper subgroups of G. Recall the subgroup notations Pi, Ni, O

ε, N1,n−1
from Section 2.

Lemma 4.1 Let G be an almost simple classical group with socle G0, and
let M be one of the following maximal subgroups of G:

Pi, Ni, O
ε, N1,n−1.

Suppose that G contains a subgroup H which is transitive on the coset space
G/M and does not contain G0. Then one of the following holds:

(i) G0 = Ln(q): M = P1, Pn−1 or N1,n−1;

(ii) G0 = U2m(q): M = Pm or N1;

(iii) G0 = PSp2m(q): M = P1, Pm, N2 or O
ε;

(iv) G0 = Ω2m+1(q) (q odd, m ≥ 3): M = Pm, N
−
1 , N

+
1 (m = 3) or

N ε2 (m = 3);

(v) G0 = PΩ
−
2m(q) (m ≥ 4): M = P1, N1 or N

+
2 ;

(vi) G0 = PΩ
+
2m(q) (m ≥ 4): M = P1, Pm−1, Pm, N1, N

ε
2 or N3 (m = 4);
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(vii)exceptional cases:

G0 = L5(2) :M = P2, P3
G0 = U3(q), q = 3, 5, 8 :M = P1
G0 = U4(3) :M = P1
G0 = U9(2) :M = P1

Proof By hypothesis we have G = HM . Hence the possibilities for M are
given by the tables of maximal factorizations in [33, Tables 1-4], together
with Lemma 2.6. The conclusion follows.

In the rest of the section we prove lemmas which give lists of possibilities
for the transitive subgroups H such that G = HM in the following cases:

G0 M reference

PSp2m(q) N2, O
− Lemmas 4.2,4.6

Un(q) N1 Lemma 4.3
PΩε2m(q) N1 Lemmas 4.4,4.5

Note that the cases where G0 = Ln(q) and M = P1 or N1,n−1 are covered
by the results of the previous section, since in these cases the factorization
G = HM is equivalent to saying that H is transitive on 1-spaces or antiflags,
respectively.

The results in the rest of this section are less precise than those in the
previous one, since we make no claim that all subgroups listed in the conclu-
sions are actually transitive on the relevant G-orbit of subspaces. We note
also that the results of Lemmas 4.4 and 4.5 cover in addition possibilities
for transitive subgroups for the G-action on nondegenerate quadratic forms
of type −ε, where G0 = Ωε2m(q) and ε = ±, since this action is equivalent
to the G-action on cosets of N1.

Lemma 4.2 Let B be a subgroup of ΓSp2m(q) (m ≥ 2) not containing
Sp2m(q), such that B is transitive on the cosets of N2. Then one of the
following holds:

(i) B . Spm(q
2) (m even, q = 2 or 4) or Spm/2(q

4) (m/2 even, q = 2);

(ii) B . G2(q)
′ (m = 3, q even), G2(q

2) (m = 6, q = 2 or 4), or G2(q
4)

(m = 12, q = 2);

(iii) B . SL2(q
2) (m = 2, q even).
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Proof We have a factorization G = BN2, where G is a group with
Sp2m(q) ≤ G ≤ ΓSp2m(q). Hence by [33] together with Lemma 2.6, one
of the following holds:

(α) B ≤ ΓSpm(q2) (q = 2 or 4)

(β) B ≤ ΓG2(q) (m = 3, q even)

(γ) m = 2.

Case (α) By [33], N2 ∩ Spm(q2) = Sp2(q) × Spm−2(q2), which fixes an
N2-space in Vm(q

2). Hence B is transitive on N2-spaces in Vm(q
2), and it

follows inductively that either B is as in the conclusion, or one of:

(a) B . SL2(q
4) with m = 4,

(b) m = 2.

In (a), the full normalizer of SL2(q
4) in ΓSp8(q) is SL2(q

4).[4 log q], while

|G : N2| = q6.
q8−1
q2−1 , hence q

2 divides 4 log q, forcing q = 2, as in conclusion

(i). In (b) we have a factorization of type SL2(q
2) = B SL2(q). By [33] this

forces |B| ≤ 17.8 for q = 4, whereas |G : N2| = 42 ∙ 17. And for q = 2 we
have G = Sp4(2) ∼= S6, N2 = S3×S3 and B = 5.4; but then B∩N2 contains
an involution, so G 6= BN2.

Case (β) In the factorization Sp6(q) = G2(q)N2, we have G2(q) ∩ N2 =
L2(q)

2 by [33]. Hence if B 6≥ G2(q)′, then there must be a factorization
of type G2(q) = BL2(q)

2. There is no such factorization for q > 2, and
for q = 2 we get U3(3).2 = B(S3 × S3), forcing B ≤ L2(7).2, again by
[33]. However |B|2 = 24 and U3(3) has only one class of involutions, so
B ∩ (S3 × S3) contains an involution, showing the above factorization does
not exist.

Case (γ) Here we have a factorization of type Sp4(q) = B Sp2(q)
2. Assume

q > 2. By [33], q is even and B ≤ N(Sp2(q2)) or N(Sz(q)). The latter is
out, as from [33, 5.17b] we see that Sz(q)∩O+4 (q) ≤ Ω

+
4 (q), hence Sp4(q) 6=

Sz(q)Ω+4 (q). Consequently B ≤ N(Sp2(q
2)). The normalizer of Sp2(q

2)
in ΓSp4(q) is Sp2(q

2).2 log q, and |G : N2| = q2(q2 + 1). Hence either
B . Sp2(q

2), giving conclusion (iii), or q2 divides 4 log q, contrary to our
assumption that q > 2.

Finally, if q = 2 then we have a factorization S6 = B(S3×S3). As above,
B = 5.4 does not work, so we must have B ≥ A5 = SL2(4), again giving
(iii).

This completes the proof of the lemma.
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Remark As remarked earlier, the lemma by no means asserts that all
subgroups B satisfying (i) , (ii) or (iii) in the conclusion give examples which
are transitive on N2-spaces. Indeed, with a rather more delicate analysis it
is possible to show that the Spm/2(2

4) and G2(2
4) possibilities in (i) and (ii)

do not yield transitive subgroups, but we shall not need this information.

In the next result we use the usual notation for ΓUn(q) as a subgroup of
ΓLn(q

2).

Lemma 4.3 Let B be a subgroup of ΓUn(q) (n ≥ 3) not containing SUn(q),
such that B is transitive on the cosets of N1. Then n = 2m is even, and
one of the following holds:

(i) B . Sp2m(q), Spm(q
2) (m even, q = 2 or 4) or Spm/2(q

4) (m/2 even,
q = 2);

(ii) B . SLm(q
2) (q = 2 or 4) or SLm/2(q

4) (m > 2 even, q = 2);

(iii) B . G2(q)
′ (m = 3, q even), G2(q

2) (m = 6, q = 2 or 4), or G2(q
4)

(m = 12, q = 2);

(iv) one of:
m = 3, q = 2 : B . U4(3) or M22
m = 6, q = 2 : B . 3.Suz

(v) B ≤ Pm, and modulo the unipotent radical of Pm, B induces a sub-
group of ΓLm(q

2) which is transitive on 1-spaces.

Proof There is a factorization G = BN1, where SUn(q) ≤ G ≤ ΓUn(q). If
n is odd there are no such factorizations, so n is even, say n = 2m. By [33]
together with Lemma 2.6, one of the following holds:

(α) B ≤ Pm
(β) B ≤ NG(Sp2m(q))

(γ) B ≤ NG(SLm(q2)) (q = 2 or 4)

(δ) one of:

m = 3, q = 2 : B ≤ N(U4(3)) or N(M22)
m = 6, q = 2 : B ≤ N(3.Suz)

Case (α) Write Pm = GW , where W is a totally isotropic m-space. From
[33, p.53], we see that N1 ∩ Pm fixes an (m− 1)-subspace of W , and hence,
modulo the unipotent radical of Pm we have a factorization ΓLm(q

2) =
B̄Pm−1. Hence conclusion (v) holds.
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Case (β) Assume B 6≥ Sp2m(q). Then from [33, p.56] we see that N1 ∩
Sp2m(q) is contained in an N2-subgroup of Sp2m(q), and hence B is given
by Lemma 4.2. All these groups are in the conclusion, apart from the case

B . SL2(q
2) (m = 2, q even, q > 4).

We rule this out. Write S for the normal subgroup SL2(q
2) of B.

First observe that |CSU4(q)(S)|2 = 1: for otherwise, if t is an involution
in this centralizer then 〈t〉 × S lies in a parabolic subgroup, which must
be q4.GL2(q

2); however a Levi subgroup acts irreducibly on the unipotent
radical of this parabolic, so this is not possible.

It follows that |B|2 divides |SL2(q2)|2 ∙ 2 log q, and hence as |G : N1|2 =
q3, we have q | 2 log q. This is impossible as q > 4.

Case (γ) By [33, p.54], N1 ∩SLm(q2) fixes an antiflag of the space Vm(q2).
Hence B is antiflag transitive on this space, so is given by Theorem 3.2. All
the possibilities for B are in the conclusion, except for

B = 5.4× 2 < SL2(4).2× 2 < G = U4(2).2.

We rule out this possible factorization U4(2).2 = BN1 with B = 5.4 × 2.
Note that if such a factorization existed then |B ∩N1| would be odd, since
|G : N1|2 = 8.

Observe that B < S6 × 2 = Sp4(2)× 〈σ〉 < G, where σ is an involutory
field automorphism of U4(2) and σ ∈ B. We write the natural G-module
V = V4(2

2) as the heart of the permutation module for S6 - that is, as

V = {(a1, . . . , a6) :
∑
ai = 0}/T,

where T = 〈(1, 1, . . . , 1)〉. This space has standard Sp4(2)-basis

e1 = (1, 1, 0, 0, 0, 0) + T, e2 = (0, 0, 1, 1, 0, 0) + T,
f1 = (1, 0, 0, 0, 0, 1) + T, f2 = (0, 0, 1, 0, 1, 0) + T.

Taking this also to be a standard U4(2)-basis of V , we may take σ to be the
field automorphism fixing e1, e2, f1, f2.

We may take t = (12)(34) ∈ B ∩ S6. Then t sends

e1 → e1, e2 → e2, f1 → f1 + e1, f2 → f2 + e2.

Now taking ω to be an element of F4\F2, we check that tσ fixes the vector
v = ωe1 + f1. This vector is nonsingular with respect to the unitary form
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on V , so tσ ∈ B ∩ N1. Thus B ∩ N1 has even order, and it follows that
G 6= BN1.

Case (δ) First suppose m = 3, q = 2. If B ≤ N(U4(3)), then since by [33]
we have N1 ∩ U4(3).22 = 34.S5, we get a factorization U4(3).22 = BP2, and
hence (again by [33]), either B . U4(3) or B ≤ L3(4).22. In the latter case
we get L3(4).2

2 = B(A5.2), hence either B .L3(4) or B ≤ L3(2).2× 2. Any
A5 in L3(4) is reducible, so B is transitive on 1-spaces or antiflags in L3(4),
so the L3(2).2

2 possibility does not occur. We conclude that in this case,
B . U4(3) or L3(4), as in the conclusion.

Likewise, when B ≤ N(M22) = M22.2, we get a factorization M22.2 =
B(L2(11).2), giving either B . M22 or B ≤ L3(4).2. In the latter case we
have (L2(11).2) ∩ (L3(4).2) = A5 and we see as above that B must contain
L3(4).

Finally, consider the case where m = 6, q = 2 and B ≤ N(3.Suz) =
3.Suz.2. Here we get a factorization Suz.2 = B(35.L2(11).2), hence either
B ≥ Suz or B ≤ G2(4).2 with G2(4) ∩ 35.M11 = 3.A6. In the latter case
G2(4).2 = B(3.A6.2), and this forces B ≥ G2(4). This completes the proof.

Lemma 4.4 Let B be a subgroup of ΓO−2m(q) (m ≥ 2) not containing Ω
−
2m(q),

such that B is transitive on an orbit of N1-spaces. Then one of the following
holds:

(i) B . SUm(q) (m odd), SUm/2(q
2) (m/2 ≥ 3 odd, q = 2 or 4) or

SUm/4(q
4) (m/4 ≥ 3 odd, q = 2);

(ii) B . Ω−m(q
2) (m even, q = 2 or 4) or Ω−

m/2(q
4) (m/2 even, q = 2);

(iii) one of:

m = 2, q = 3 : B . A5
m = 3, q = 3 : B . L3(4)
m = 3, q = 2.

Proof Assume first that m ≥ 4. By [33] (and Lemma 2.6), either B ≤
N(SUm(q)) with m odd, or B ≤ N(Ω−m(q

2)) with m even, q = 2 or 4. In
the first case there is a factorization of type ΓUm(q) = BN1, which forces
B ≥ SUm(q), as in (i). In the second case we get N(Ω−m(q

2)) = BN1, and
then inductively, B satisfies (i) or (ii).

It remains to handle m < 4. If m = 2 then ΓO−2m(q) = ΓL2(q
2) and

N1 = N(SL2(q)). For a factorization of type L2(q
2) = BL2(q), [33] gives
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q = 2, 3 or 4. If q = 2 or 4 we have B . Ω−2 (q
2), as in (ii). And for q = 3 we

get B . A5 as in (iii).

Finally, let m = 3. Here the factorization ΓO−6 (q) = BN1 becomes
ΓU4(q) = BN(Sp4(q)), and hence either B ≤ N(SU3(q)) or B ≤ N(L3(4))
with q = 3. In the first case we get a factorization of type U3(q) = BN1,
hence either B ≥ SU3(q) or q = 2, as in (i) or (iii). And in the second we
get B . L3(4) as in (iii) (no proper subgroups of L3(4) arise, as there is no
relevant factorization of N(L3(4))).

Lemma 4.5 Let B be a subgroup of ΓO+2m(q) (m ≥ 3) not containing Ω
+
2m(q),

such that B is transitive on an orbit of N1-spaces. Then one of the following
holds:

(i) B.Xm(q), Xm/2(q
2) (q = 2 or 4) or Xm/4(q

4) (m ≥ 8, q = 2), where
X ∈ {SL, SU, Sp}; moreover m is even for Xm(q) = Spm(q) or SUm(q);

(ii) B . G2(q)
′ (m = 6, q even), G2(q

2) (m = 12, q = 2 or 4), or G2(q
4)

(m = 24, q = 2);

(iii) B . Ω+m(q
2) (m even, q = 2 or 4), or Ω+

m/2(q
4) (m/2 ≥ 2 even,

q = 2);

(iv) B . SL2(q
2) (m = 4, q even), SL2(q

4) (m = 8, q = 2 or 4), or
SL2(q

8) (m = 16, q = 2);

(v) one of:

m = 4 : B . Ω7(q) or Ω
−
8 (q

1/2)
m = 8, q = 2 or 4 : B . Ω7(q

2) or Ω−8 (q)
m = 16, q = 2 : B . Ω7(q

4) or Ω−8 (q
2)

(vi) one of:
m = 8 : B . Ω9(q)
m = 16, q = 2 or 4 : B . Ω9(q

2)
m = 32, q = 2 : B . Ω9(q

4)

(vii) one of:

m = 4, q = 2 : B . A6, A7 or A9
m = 4, q = 3 : B . Ω+8 (2), Sp6(2), U4(2), A9 or A6
m = 6, q = 2 : B . U4(3) or M22
m = 12, q = 2 : B . 3.Suz or Co1

(viii) B ≤ Pm or Pm−1, and modulo the unipotent radical, B induces a
subgroup of ΓLm(q) which is transitive on 1-spaces.
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Proof We begin with the observation that if B ≤ Pm or Pm−1, then
conclusion (viii) holds. To see this, suppose B ≤ P = stab(W ) = Pm or
Pm−1, where W is a totally singular m-space, and take N1 = stab(v). Then
v⊥ ∩ W has dimension m − 1, so modulo the unipotent radical of P , we
have a factorization ΓLm(q) = B̄Pm−1. In other words B̄ is transitive on
hyperplanes of W , hence also on 1-spaces, proving (viii).

Now assume that m = 3. Then we have a factorization of type SL4(q) =
BSp4(q), and so by [33] and Lemma 2.6, B stabilizes either a 1-space, or a
hyperplane, or an antiflag of V4(q). In the first two cases B ≤ Pi(SL4(q))
(i = 1 or 3), so B ≤ P3(Ω

+
6 (q)) or P2(Ω

+
6 (q)), and so conclusion (viii) holds.

In the third case the antiflag stabilizer GL3(q) intersects N(Sp4(q)) in a
subgroup of an antiflag stabilizer of V3(q), and so B is antiflag transitive on
this space. Hence B . SL3(q), as in (i).

Now assume m ≥ 4. We have a factorization G = BN1 with Ω
+
2m(q) ≤

G ≤ ΓO+2m(q), so [33] (and Lemma 2.6) gives one of

(α) B ≤ Pm or Pm−1
(β) B ≤ NG(SUm(q)) (m even)

(γ) B ≤ NG(Sp2(q)⊗ Spm(q)) (m even, q > 2)

(δ) B ≤ NG(SLm(q))

(ε) B ≤ NG(Ω+m(q
2)) (m even, q = 2 or 4)

(φ) B ≤ NG(Ω7(q)) (m = 4)

(κ) B ≤ NG(Ω
−
8 (q

1/2)) (m = 4, q square)

(ι) B ≤ NG(Ω9(q)) (m = 8)

(λ) B ≤ NG(A9) (m = 4, q = 2)

(μ) B ≤ NG(Ω
+
8 (2)) or NG(Ω

+
6 (3)) (m = 4, q = 3)

(ν) B ≤ NG(Co1) (m = 12, q = 2).

Case (α) In this case conclusion (viii) holds (the transitivity assertion fol-
lows from the first paragraph of this proof).

Case (β) Here N(SUm(q)) ∩N1 is contained in the stabilizer in SUm(q) of
a nonsingular 1-space, giving a factorization of type ΓUm(q) = BN1. Hence
B is given by Lemma 4.3, and all possibilities are listed in the conclusion
under (i) or (ii).

Case (γ) Here (Sp2(q) ⊗ Spm(q)) ∩ N1 ≤ Sp2(q) ⊗ N2(Spm(q)). Hence
B contains a subgroup of ΓSpm(q) transitive on N2-spaces, so is given by
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Lemma 4.2. All possibilities are in the conclusion under (i), (ii) or (iv).

Case (δ) Here [33, p.63] shows that NG(SLm(q)) ∩ N1 fixes an antiflag
of Vm(q), hence B is antiflag transitive and is given by Theorem 3.2. The
possibilities appear in (i), (ii), (vii).

Case (ε) Here [33, p.64] shows that NG(Ω
+
m(q

2)) ∩N1 lies in a nonsingular
1-space stabilizer of NG(Ω

+
m(q

2)), so we have a factorization NG(Ω
+
m(q

2)) =
BN1. For m ≥ 6, B is given inductively, and appears in the conclusion.
Note that this is where the SUm/2(q

2) and SUm/4(q
4) possibilities arise in

(i).

Now assumem = 4. We have Ω+4 (q
2) ∼= L2(q2)2, andN1 of this group is a

diagonal subgroup L2(q
2). Hence by [33], either B.L2(q

2) as in (iv), or B lies
in a parabolic, hence is as in (viii), or B ≤ N((q2+1)×(q2−1)) = N(Ω+2 (q

4)).
This is in (iii) for q = 2, and we exclude it for q = 4 as follows. Write
L = Ω+8 (4). By [24] we have N = NL(Ω

+
4 (16)) = (L2(16)

2).22, with one
of the outer automorphisms interchanging the two L2(16) factors. Hence
|NN (17 × 15)|2 = 23. It follows that |NΓO+8 (4)

(17 × 15)|2 ≤ 25. However

|G : N1|2 = 26, so this is impossible.

Case (φ) In this case N1 ∩ Ω7(q) = G2(q), so we get a factorization
NG(Ω7(q)) = BNG(G2(q)). Hence by [33] one of the following holds: B ≥
Ω7(q); or B lies in a parabolic, in NG(Ω

ε
6(q)), or in NG(Ω5(q)); or q = 3 and

B ≤ Sp6(2) or S9. In the first case we have conclusion (v); in the second
and third we are back in cases (α, β, δ) (applying triality); in the fourth,
applying triality we have B ≤ N(Sp4(q) ⊗ Sp2(q)), which is case (γ). Fi-
nally consider the last case, where q = 3 and B ≤ Sp6(2) or S9. By [33] we
have S9∩G2(3) = L2(7).2, so if B ≤ S9 then S9 = B (L2(7).2), which forces
B . A9, as in (vii). Likewise, Sp6(2) ∩ G2(3) = 23.L3(2), so if B ≤ Sp6(2)
then Sp6(2) = B (2

3.L3(2)) ≤ BP3; this implies that either B = Sp6(2)
or B ≤ O−6 (2), and in the latter case we have O

−
6 (2) = BP2, which forces

B . Ω−6 (2)
∼= U4(2), as in (vii).

Case (κ) Here we have a factorization NG(Ω
−
8 (q

1/2)) = BNG(G2(q
1/2)) ≤

BN1(O
−
8 (q

1/2)). Hence by Lemma 4.4, B . Ω−4 (q) with q = 4 or 16, as in
conclusion (iv).

Case (ι) Here we see from [33, p.144] that there is a factorization NG(Ω9(q)) =
BN+1 , and hence B . Ω9(q), as in (vi).

Case (λ) In this case we have A9 = B(L2(8).3), which by [33, Theorem D]
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forces B . Ac (5 ≤ c ≤ 9), as in (vii) (the A5 and A8 are elsewhere as L2(4)
and L4(2) in (iv), (i)).

Case (μ) The Ω+6 (3) case has been handled in (δ), so assumeB ≤ NG(Ω
+
8 (2)).

Here N1 ∩ Ω
+
8 (2) = 2

6.A7, so N(Ω
+
8 (2)) = BN(2

6.A7) ≤ BP4. If B 6≥
Ω+8 (2), then by [33] this implies B ≤ N(Ω7(2)), N(Ω

−
6 (2)) or A9. Also

|G : N1| = 33 ∙ 40 divides |B|. Inspection of these groups in [9] now yields
B . Ω7(2), U4(2), A9 or A6, as in conclusion (vii).

Case (ν) Here N1 ∩ Co1 = Co3, so Co1 = BCo3. If B 6≥ Co1 this gives
B ≤ 3.Suz.2 or (A4 × G2(4)).2. Also |G : N1| = 211(212 − 1). Hence from
the factorizations of G2(4) and Suz, we see that B . G2(4) or 3.Suz, as in
(ii), (vii).

Lemma 4.6 Let B be a subgroup of ΓSp2m(q) (m ≥ 2, q even, (m, q) 6=
(2, 2)) not containing Sp2m(q), such that B is transitive on the coset space
Sp2m(q)/O

−
2m(q). Then one of the following holds:

(i) B . Sp2a(q
b) or G2(q

b)′ (ab = m or 3b = m, resp.);

(ii) B.Spc(q
d)2 or (G2(q

d)′)2 (d ≥ 1, cd = m, c even; or 6d = m, resp.);

(iii) B . Sp2c(q
d/2) or G2(q

d/2)′ (d ≥ 1, cd = m or 3d = m, resp.);

(iv) q = 2 or 4, and B is as in (i) - (vii) of Lemma 4.5;

(v) one of:

m = 2, q = 4 : B . A6
m = 3, q = 4 : B . J2
m = 4, q = 2 : B . A6 or A10
m = 6, q = 2 : B . J2

(vi) B ≤ Pm, and modulo the unipotent radical, B induces a subgroup of
ΓLm(q) which is transitive on 1-spaces.

Proof We have a factorization G = BNG(O
−
2m(q)), where Sp2m(q) ≤ G ≤

ΓSp2m(q). Hence by [33] and Lemma 2.6, one of the following holds:

(α) B ≤ Pm
(β) B ≤ NG(Sp2a(qb)) (ab = m)

(γ) B ≤ NG(Spm(q)2) (m even)

(δ) B ≤ NG(Ω
+
2m(q)) (q = 2 or 4)

(ε) B ≤ NG(Sp2m(q1/2)) (q = 4 or 16)

(φ) B ≤ NG(G2(q)) (m = 3)
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(κ) B ≤ S10 (m = 4, q = 2).

Case (α) This gives conclusion (vi) (the transitivity assertion follows in the
usual way, as Pm ∩O

−
2m(q) fixes an (m− 1)-space, by [33, p.49]).

Case (β) Here we have a factorization N(Sp2a(q
b)) = BN(O−2a(q

b)), so B is
given inductively. For a ≥ 2 all such groups are in the conclusion. For a = 1
we have N(SL2(q

b)) = BN(qb+1) with qb ≥ 8 (we excluded (m, q) = (2, 2)
in the hypothesis). Then by [33], either B lies in a parabolic, giving (vi), or
qb = 16 and B . L2(4), giving (iii).

Case (γ) In this case we have O−2m(q)∩ (Spm(q) o S2) = O
+
m(q)×O

−
m(q), so

we have a factorization

N(Spm(q)
2) = BN(O+m(q)×O

−
m(q)).

In particular B must contain an element interchanging the two Spm(q) fac-
tors.

Let V = V2m(q), and let V = W1 ⊥ W2 be the decomposition preserved
by Spm(q) o S2, where W1,W2 are non-degenerate m-spaces. Write H =
NG(Spm(q)

2), A = NG(O
−
2m(q)), and let B0 be the subgroup of index 2 in

B fixing W1 and W2. Then as H ∩A fixes W1,W2, we have

HWiWi = B
Wi
0 (H ∩A)

Wi (i = 1, 2),

giving factorizations of type

Spm(q) = B
W1
0 O

+
m(q) = B

W2
0 O

−
m(q).

As BW10
∼= BW20 , it follows using [33] that B

Wi
0 ≤ N(Spc(q

d)) or N(G2(q
d))

with cd = m or 6d = m respectively, giving further factorizations of type
Spc(q

d) = BW10 O
+
c (q

d) = BW20 O
−
c (q

d) or G2(q
d) = BW10 (SL3(q

d).2) =
BW20 (SU3(q

d).2). From this and [33], taking d maximal, we conclude that

BW10
∼= BW20 . Spc(q

d) or G2(q
d)′ (cd = m or 6d = m).

Thus B . Spc(q
d)a or G2(q

d)a with a = 1 or 2, as in (ii) or (iii).

Case (δ) Here O−2m(q) ∩ O
+
2m(q) ≤ N1(O

+
2m(q)), so we have a factorization

N(O+2m(q)) = BN1. Thus B is given by Lemma 4.5 (with q = 2 or 4), as in
(iv) or (vi).

Case (ε) In this case O−2m(q) ∩ Sp2m(q
1/2) normalizes O2m−1(q

1/2), so we
have a factorization N(Sp2m(q

1/2)) = BP1. Thus B is given by Lemma 3.1.
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We cannot have B ≤ ΓL1(qm), as ΓL1(qm) ∩ N(Sp2m(q1/2) does not have
order divisible by |Sp2m(q) : O

−
2m(q)| = q

m(qm − 1)/2. Also the case where
m = 2, q = 4, B .A7 is out, as A7 6≤ Sp4(2). The remaining possibilities for
B are in the conclusion.

Case (φ) HereO−6 (q)∩G2(q) = SU3(q).2, so we haveN(G2(q)) = BN(SU3(q)).
If B 6≥ G2(q), it follows that q = 4 and B ≤ J2.2 or G2(2) × 2. In the first
case we get a factorization J2.2 = B(5

2.(4×S3), which implies either B .J2
as in (v), or B ≤ G2(2). Finally, if B ≤ G2(2)× 2 then the fact that |B| is
divisible by 27 ∙ 63 forces B . U3(3) = G2(2)′, as in (iii).

Case (κ) Here N1 ∩ S10 = S7 × S3. Hence S10 = B(S7 × S3), so B is
3-homogeneous of degree 10, whence B . A6 or A10, as in (v).

5 Proof of Theorem 1.1: linear groups

In this section we prove Theorem 1.1 in the case where the simple group L
is a linear group Ln(q) which is not isomorphic to an alternating group (so
we assume (n, q) 6= (2, 4), (2, 5), (4, 2)). Write Z = Z(SLn(q)).

Suppose then that G has socle L = Ln(q), acts primitively on a set Ω,
and possesses a subgroup B which acts regularly on Ω. Let α ∈ Ω and write
A = Gα, so that we have

G = AB, A ∩B = 1, and A max G.

By [33] together with Lemma 2.6, one of the following holds:

(5.1) n ≥ 3 and A = P1, Pn−1 or N1,n−1;

(5.2) A . PSpn(q) (n even, n ≥ 4) and B ≤ P1, Pn−1 or N1,n−1;

(5.3) A . SLa(q
b)/Z (ab = n, a ≥ 2, b prime), and either B ≤ P1, Pn−1,

or b = 2, q ∈ {2, 4} and B ≤ N1,n−1;

(5.4) A ≤ ΓL1(qn)/Zq−1 (n odd prime) and B ≤ P1, Pn−1;

(5.5) L = L2(q), L3(4) or L5(2).

Case (5.1) If A = P1 or Pn−1 then |B| = |G : A| =
qn−1
q−1 , and B is

transitive on the set of 1-spaces in V = Vn(q). Hence by Lemma 3.1 we have
B ≤ ΓL1(qn)/F∗q , as in line 1 of Table 16.1. A complete description of the
regular subgroups in this case can be deduced from [14].

If A = N1,n−1 then |B| = |G : A| = qn−1.
qn−1
q−1 and B is antiflag transitive

on V , hence is given by Theorem 3.2. By arithmetic the only possibility
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occurs when n = 4, q = 2, but this was excluded by assumption (because
L4(2) ∼= A8).

Case (5.2) Here

|B| = |G : A| =
1

d
q(n

2−2n)/4(qn−1 − 1)(qn−3 − 1) . . . (q3 − 1),

where d divides (n, q − 1) (see [25, 4.8.3]).

Suppose first that B ≤ P1. Since G = AB we have P1 = B(A ∩ P1).
Write P1 = QR where Q = (Fq)n−1 is the unipotent radical and R.SLn−1(q)
a Levi subgroup. Working modulo Q, and writing B̄ = BQ/Q, we obtain a
factorization N(SLn−1(q)) = B̄ N(Spn−2(q)). In particular B̄ is transitive
on 1-spaces in Vn−1(q), and so by Lemma 3.1 (noting that n − 1 is odd)
we have either B̄ . SLc(q

d) (cd = n − 1, c ≥ 3) or B̄ ≤ ΓL1(qn−1). Since
|B| = |G : A| is divisible by qn−3− 1, this is clearly impossible unless n = 4.
In this case B ≤ Q.ΓL1(q3) with |Q| = q3 and |B| = 1

dq
2(q3−1). As q2 does

not divide 3 log q this forces B ∩ Q 6= 1. However this is impossible, as B̄
acts irreducibly on Q. The same argument deals with B ≤ Pn−1.

A very similar argument applies when B ≤ N1,n−1: the factorization
N1,n−1 = B(A ∩N1,n−1) gives N(SLn−1(q)) = BN(Spn−2(q)), which leads
to a contradiction using the above argument.

Case (5.3) Suppose first that B ≤ P1 = QR as above (the argument below
also deals with the case where B ≤ Pn−1). Now A ∩ P1 fixes an Fqb 1-space
containing the Fq 1-space fixed by P1. Hence, working modulo Q with the
factorization P1 = B(A ∩ P1) yields a factorization

N(SLn−1(q)) = B̄Pb−1

where B̄ = BQ/Q and Pb−1 is the stabilizer of a (b−1)-space in Vn−1(q). By
[33] this implies that either b = 2 or L = L6(2), b = 3 and |B̄| = 31 ∙5. In the
latter case |B| divides 26 ∙ 31 ∙ 5, which is less than |G : A|, a contradiction.

Hence b = 2 and n = 2a is even. Moreover, Lemma 3.1 implies that
B̄ ≤ ΓLc(qd) with cd = n− 1. As |G : A| is divisible by qn−3 − 1 this forces
n = 4 and B ≤ Q.ΓL1(q3). Here

|B| = |G : A| =
1

2
q4(q3 − 1)(q − 1).

Hence q must divide 6 log q, forcing q = 2, 3 or 4. The first case is out
as we are assuming L 6= L4(2). In the second and third cases we get the
possibilities
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(a) q = 3 : G = L4(3).2 = PGL4(3), A = (4× L2(9)).22, B = 33.13.3.2

(b) q = 4 : G = L4(4).2 (field aut.), A = (5×L2(16)).4, B = 26.ΓL1(26).

Each of these gives examples in Table 16.1. To see this in case (a), note
first that the elements of order 3 in A have Jordan form J22 , whereas those
in B do not; hence |A ∩ B|2′ = 1. Furthermore A ≥ PΓL2(9), A ∩ L ≥
PΣL2(9), and PΓL2(9)\PΣL2(9) contains no involution, whereas B does.
Hence A ∩B = 1, and we have an exact factorization G = AB.

The argument for (b) is quite similar. Since the normal 26 in B consists
of transvections (and the identity), it intersects A trivially. The elements
of B of order dividing 3 form an elementary abelian subgroup, generated
by the matrix diag(1, ω, ω, ω) and a field automorphism acting on the ω-
eigenspace viewed as F64 (where ω3 = 1). Hence the elements of order
3 in B have 1 as an eigenvalue, whereas those in A do not. Therefore
A ∩B ∩ L = 1. Finally, A ∩B cannot contain an involution since there are
no involutions in L2(16).4\L2(16).2. Consequently A ∩ B = 1 and we have
an exact factorization G = AB.

Now suppose that B ≤ N1,n−1 with b = 2 and q = 2 or 4. Then A∩N1,n−1
fixes an antiflag in Vn−1(q) (see [33, p.46]), and so B is antiflag transitive
on this space. As n − 1 is odd, by Theorem 3.2 this forces B ≥ SLn−1(q).
But then it is impossible that |B| = |G : A|.

Case (5.4) Here A ≤ ΓL1(qn)/Zq−1 with n an odd prime, and we can take
B ≤ P1. Write P1 = QR as above. Observe that |A ∩ P1| divides n log q.

Assume first that B contains the subgroupQS of P1, where S = SLn−1(q).
For the moment identify V = Vn(q) with the field F = Fqn . Taking
A ≤ ΓL1(F ), it is then the case that A contains the Frobenius map φ
of order n sending x → xq for all x ∈ F . As an element of GLn(q), φ has
determinant 1 and fixes the vector 1 ∈ F . Hence φ lies in the subgroup QS,
and it follows that φ ∈ A ∩B, which is a contradiction.

Hence B does not contain QS. Since P1 = B(A∩P1), it follows that S =
SLn−1(q) has a proper subgroup of index dividing n log q. Using [25, 5.2.2],
we see that this forces n = 3 and q = 2, 3, 4 or 9, giving the possibilities

G A B

L3(2) 7.3 D8
L3(3) 13.3 32.[16]
L3(4).S3 7.3× S3 24.(3×D10).2
L3(9).2 91.3.2 34.(8 ◦ 2A5).22

The first two lines are examples; the first is recorded as L2(7) = P1D8 in
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Table 16.1, and in the second, the normal 32 is the unipotent radical of
a parabolic P1 = 3

2.GL2(3), the subgroup [16] being a Sylow 2-subgroup
of GL2(3). The fourth line is not an example, as 2A5 < SL2(9) is not
normalized by an involutory field automorphism. The third line does give an
example in Table 16.1. To see this, take G = PΓL3(4) = L.3.22 (notation of
[9, p.23]). There is a factorization PGL3(4) = (7.3×3)P1 with P1 = 24.(3×
A5), and the two factors intersect in a group of order 3 (not centralizing A5
in P1). Hence we see that (7.3×3)∩24.(3×D10) = 1. Moreover, the quotient
B/24 = (3×D10).2 is of index 2 in S3×F20 (where F20 is a Frobenius group
of order 20), and contains no involution lying outside 3×D10. Consequently
A ∩B = 1 and we have an exact factorization G = AB.

Case (5.5) If L = L5(2), then the maximal factorization not yet considered
has factors 31.5 and P2 (or P3). This gives the exact factorizations in Table
16.1, with A and B either factor:

L5(2) = Pi (31.5) = (31.5) Pi (i = 2, 3)

If L = L3(4), the maximal factorization not yet considered is

L3(4).21 = (L3(2).2) (A6.2).

The intersection of the factors has order 6. Now the factor A6.2 is M10, so
has no subgroup of index 6. On the other hand, the index of M10 in G is
56, and L3(2).2 has no subgroup of order 56. Hence no exact factorizations
arise in this case.

It remains to deal with L = L2(q), q > 5. The maximal factorizations of
groups with socle L are given by [33], and in particular one of the following
holds:

(α) A = P1

(β) A ∩ L = D2(q+1)/(2,q−1), B ≤ P1
(γ) A ∩ L = A5, S4 or A4.

Consider (α), where A = P1. Here B has order q+1. We can assume B is not
as in line 1 of Table 16.1, so B∩L ≤ A5, S4 or A4. If B∩L ≤ A5, then q is one
of 59, 29, 19, 11. For q = 59, we get the exact factorization L2(59) = P1 A5,
as in Table 16.1. For q = 29, there is no suitable subgroup B. If q = 19, the
only possibility is the exact factorization PGL2(19) = P1 (5.4) – but this
is as in line 1 of Table 16.1. And if q = 11, we get the exact factorization
L2(11) = P1 A4 in Table 16.1.
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If B ∩L ≤ S4 then q is either 7 or 23, and we get the exact factorization
L2(23) = P1 S4 (the only q = 7 examples are in line 1 of Table 16.1). Finally,
if B ∩ L ≤ A4 then q = 11, leading again to the example L2(11) = P1 A4.

Next consider (β): A ∩ L = D2(q+1)/(2,q−1), B ≤ P1. Note that |G :
A| = q(q − 1)/2 = |B|. If q ≡ 3 mod 4 then A ∩ P1 ∩ L = 1 and we
have exact factorizations as in Table 16.1. Note that if q = 7, then A only
becomes maximal in PGL2(7). If q 6≡ 3 mod 4, for an exact factorization, no
involution of PGL2(q) can be contained in B. Hence the Sylow 2-subgroup
of B, of order equal to the 2-part of q(q−1)/2, would have to consist of field
automorphisms. An easy calculation shows this is only possible for q = 4, a
case excluded here.

Finally consider case (γ). If A = A5 then either G = L with q one of
59, 29, 19, 11 andB ≤ P1, orG = L2(16).4. The former leads to the examples
L2(59) = A5 (59.29), L2(29) = A5 (29.7), and L2(11) = A5 11. There is no
regular subgroup in the cases q = 19 and q = 16, since the elements of order
3, respectively 2 in L are not fixed point free. This argument also disposes
of the possibility that q = 16 and A ∩ L = D34, since the degree is 120.

If A∩L = S4 then q is 7 or 23. The former leads to the example L3(2) =
P1 7 in line 1 of Table 16.1, while the latter gives the exact factorization
L2(23) = S4 (23.11) in the table.

Finally, if A ∩ L = A4, then q = 11 and G = PGL2(11). We get the
example PGL2(11) = S4 (11.5), which is recorded in the table with the sign
† indicating that outer automorphisms are needed in G for maximality of A
in G (see the beginning of Section 16).

6 Proof of Theorem 1.1: unitary groups

In this section we prove Theorem 1.1 in the case where the simple group
L is a unitary group Un(q) with n ≥ 3 and (n, q) 6= (3, 2). Suppose then
that G has socle L = Un(q), acts primitively on a set Ω, and possesses a
subgroup B which acts regularly on Ω. Let α ∈ Ω and write A = Gα, so
that G = AB, A∩B = 1 and A max G. By [33] and Lemma 2.6, one of the
following holds:

(6.1) n is even and A = N1;

(6.2) n is even and B ≤ N1;

(6.3) L = U3(3), U3(5), U3(8), U4(2), U4(3) or U9(2).
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Case (6.1) In this case we have, writing n = 2m,

|B| = |G : N1| = q
2m−1.

q2m − 1
q + 1

. (2)

Moreover, B satisfies the conclusion of Lemma 4.3. None of the possibilities
given in (i), (ii), (iii) or (iv) of the lemma can satisfy (2). So suppose
B ≤ Pm, as in (v) of Lemma 4.3. Write Pm = QR, with Q the unipotent
radical and R . SLm(q

2), so that B̄ = BQ/Q is transitive on the 1-spaces
in Vm(q

2). Then by Lemma 3.1, one of the following holds:

(a) B̄ . SLa(q
2b) (ab = m, a ≥ 2), Spa(q2b) (ab = m, a even) or G2(q2b)

(6b = m, q even)

(b) m = 2, q = 3 and B̄ . A5

(c) B̄ ≤ GL1(q2m).

Case (a) is not possible by (2). And case (b) is out, as there is no subgroup
32.A5 in P2 = 3

4.L2(9).

Now consider case (c), B̄ ≤ GL1(q2m). Assume for the time being that
(q, 2m) 6= (2, 6), and let t ∈ B be an element of order q2m (see Section 2
for notation). Now |Q| = qm

2
, and as an SLm(q

2)-module over Fq, we have
Q ∼= V ⊗V (q) realised over Fq, where V = Vm(q2). Obviously any t-invariant
subgroup of Q on which t acts nontrivially has order at least q2m, and hence
by (2), we have B ∩Q ≤ CQ(t).

If λ denotes a primitive q2mth root of unity in the algebraic closure F̄q,
then since it is fixed by the Frobenius q2-power map, t acts on V ⊗ F̄q as
diag(λ, λq

2
, . . . , λq

2m−2
). As Q ∼= V ⊗ V (q), it follows that |CQ(t)| is 1 if m

is even, and is qm if m is odd.

If m is even, then B ∩ Q = 1, so it follows from (2) that q2m−1 divides
2m log q. This is impossible as m ≥ 2. Likewise, if m is odd then |B ∩Q| ≤
qm, so qm−1 divides 2m log q, which is impossible as m ≥ 3.

It remains to handle the excluded case (q, 2m) = (2, 6). In this case let
t ∈ B be an element of order 7. As above we calculate that CQ(t) = 1, and
the composition factors of Q ↓ 〈t〉 have order 23. As |B| = 25 ∙21, this forces
22 to divide 2m log q = 6, a contradiction.

Case (6.2) Again write n = 2m. In this case B ≤ N1 and by [33], one of
the following holds:

(a) A = Pm;

(b) A . PSp2m(q) or SLm(q
2) (q = 2 or 4);

(c) L = U6(2), A . U4(3) or M22; or L = U12(2), A . Suz.
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We have a factorization N1 = B(A ∩ N1), and N1 . SU2m−1(q). Since
|B| = |G : A|, we have B 6≥ SU2m−1(q) by arithmetic. Hence it follows from
the factorizations of unitary groups of odd dimension in [33] that

L = U4(q) (q = 2, 3, 5, 8) or U10(2).

The last case L = U10(2) is not possible, as it requires A∩N1 ≤ N(J3) (see
[33, Table 3]), whereas from the proofs of the factorizations G = AN1 in [33]
it is clear that this cannot be the case.

Now consider L = U4(2). If A = P2 then |B| = |G : A| = 27, and
there are examples of such regular subgroups in N1 = GU3(2), as recorded
in Table 16.1: for example, relative to an orthonormal basis of V = V4(2

2),
define

a =







0 1 0 0
0 0 1 0
ω 0 0 0
0 0 0 ω2





 , b = diag(1, ω, ω

2, 1),

where ω3 = 1. Then a3 = (ωI3, 1) and a
b = a4, so 〈a, b〉 = 9.3. Elements of

order 3 in A are conjugate to (ω, ω, ω2, ω2), whereas elements of order 3 in
〈a, b〉 are in 〈a3, b〉. Hence 〈a, b〉 is regular on (L : A).

Now suppose A . Sp4(2) (still with L = U4(2)). Then |B| = 36; however
we see from [9] that A contains representatives of all classes of involutions
in U4(2).2, so there is no regular subgroup B in this case.

Next let L = U4(3). The only proper factorization of U3(3) is L2(7)P1.
Hence A = P2, |B| = |G : A| = 112, and from [9, p.52] we see that B ≤
(L2(7)× 4).2. But this group has no subgroup of order 112.

Now consider L = U4(5). The only factorization of U3(5) is A7P1, so
A = P2, |B| = 756 and B ≤ 2× 3.S7. However 2× 3.S7 has no subgroup of
order 756.

Finally, let L = U4(8). Again A = P2 so |B| = 35 ∙ 19, and B ≤ N1. In
order to have a subgroup B of this order in N1 = N1(G) we require G = L.3
and the only possibility for B is GU1(29).9 < N1 = GU3(8).3. This is an
example in Table 16.1: arguing as in the case above where L = U4(2), A =
P2, we see that no element of order 3 in B ∩ L = (29 + 1).3 is conjugate to
an element of order 3 of P2; hence A∩B∩L = 1. Finally B\((B∩L) has no
element of order 3, hence also A ∩B = 1, so we have an exact factorization
G = AB.

Case (6.3) There are six possible socles to consider here:

L = U3(3), U3(5), U3(8), U4(2), U4(3) or U9(2).
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We consider possible maximal factorizations of G containing our factoriza-
tion AB.

Let L = U3(3). The maximal factorization of L to consider has factors
P1 and L2(7), intersecting in a subgroup of order 6. An inspection of the
permutation characters of G = U3(3).2 of degrees 28 and 36 shows that there
are no fixed-point-free involutions in either action.

Let L = U3(5). The maximal factorization of L to consider has factors
P1 and A7, intersecting in a subgroup of order 20. If A = P1 then A7 must
have a proper subgroup of order divisible by 63 - not so. Hence A normalizes
A7 and B is regular of order 50. This is not possible, since an inspection
of the permutation character shows that all involutions fix points in this
action.

Let L = U3(8). Here the maximal factorization to consider is in fact
exact:

U3(8).3
2 = P1 (3× 19.9) = (3× 19.9) P1

as in Table 16.1.

Let L = U4(2). Here the maximal factorization of L not already con-
sidered (in (6.1), (6.2)) has factors 33.S4 and P2, of index 40 and 27. From
the permutation character of degree 40 we see that all involutions in G fix
a point in this action. Hence A = P2, of index 27. We have seen an exact
factorization

U4(2) = P2 [27]

in the above case (6.2). The Magma computations of Michael Giudici (men-
tioned in the remarks after Theorem 1.1) show that up to L-conjugacy there
are two regular examples B = [27], which are in fact non-isomorphic.

Let L = U4(3). Here one of the factors of a maximal factorization
containing AB intersects L in L3(4), the other in one of P1, P2 and PSp4(3).
Assume A normalizes L3(4), so B has order 162. Since L has a unique class
of involutions, G must contain some outer involutory automorphisms. We
claim that there is an exact factorization

U4(3).2 = (L3(4).2) (3
4.2).

This follows from the argument in [33, p. 113]: let G = U4(3).21 in the
notation of [9, p. 52], and A = NG(L3(4)) = L3(4).22. Now G = AP2,
and P2 = 3

4.(2 × A6), with A ∩ P2 = A6. It is then clear that the normal
subgroup B = 34.2 of P2 is an example of a regular subgroup of degree 162.
In fact there are more examples — the computations of Giudici show that
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there are 6 classes of regular subgroups B of order 162 in G = U4(3).2
2, all

pairwise non-isomorphic.

If A is one of the other factors (namely P1, P2 or PSp4(3)), then the
degree |G : A| is 280, 112 or 126, and B is a subgroup of NG(L3(4)) of this
order. However, L3(4).2

2 has no subgroups of any of these orders, since the
only maximal subgroup of L3(4) of order divisible by 7 is L2(7).

Finally let L = U9(2). The relevant maximal factorization of L has
factors P1 and J3, with intersection 2

2+4.(3 × S3). Since J3 has no proper
factorizations, A must be NG(J3) and L has index at most 2 in G. Now
the derived subgroup of the Levi subgroup of P1 is U7(2); since this has no
proper factorizations, it must be involved in B. Considering the power of 3,
this is impossible as B is regular.

7 Proof of Theorem 1.1: orthogonal groups in odd
dimension

In this section we prove Theorem 1.1 in the case where G has socle L =
Ω2m+1(q) (m ≥ 3, q = pa odd).

Suppose G = AB, A ∩ B = 1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

(7.1) A = N−1 ;

(7.2) A = Pm, B ≤ N
−
1 ;

(7.3) m = 3 and either A = NG(G2(q)) or B ≤ NG(G2(q));

(7.4) q = 3e, L = Ω13(q) or Ω25(q) and A = N(PSp6(q)) or N(F4(q)),
respectively;

(7.5) L = Ω7(3).

Case (7.1) Here |B| = |G : N−1 | =
1
2q
m(qm − 1). For any involution

t ∈ SO2m+1(q), either the 1-eigenspace or the −1-eigenspace of t is a non-
degenerate subspace of dimension at least 4, and hence t lies in a conjugate
of N−1 . In other words A = N

−
1 contains representatives of all involution

classes of G∩SO2m+1(q), and hence B∩SO2m+1(q) has odd order. It follows
that |B|2 divides logp q. This is only possible if |B| is odd - in other words,
m is odd and q ≡ 3 mod 4.

By [33], the factorization G = BN−1 implies that either B ≤ Pm or
B ≤ N(G2(q)) (m = 3). In the latter case we get an exact factorization
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N(G2(q)) = B (N
−
1 ∩N(G2(q)). However there is no such exact factorization

by [33, Theorem B].

Hence B ≤ Pm. Write Pm = QR, where Q is the unipotent radical and
the Levi subgroup R . SLm(q). Working modulo Q with the factorization
Pm = B(A ∩ Pm), we get a factorization of type SLm(q) = B̄Pm−1, where
B̄ = BQ/Q. As |B| is odd, it follows by Lemma 3.1 that B̄ ≤ ΓL1(qm).

Relative to a standard basis e1, . . . , em, d, f1 . . . , fm of V = V2m+1(q) (see
[25, 2.5.3]), Q consists of matrices of the form




Im 0 0
x 1 0
Y −xT Im



 ,

where x is 1×m, Y is m×m, and Y + Y T = −xTx. Denote such a matrix
by M(x, Y ). The conjugation action of an element g in the Levi subgroup
GLm(q) sends M(x, Y )→M(xg, gTY g).

We have Q′ = Z(Q) = {M(0, Y ) : Y +Y T = 0}. Moreover, Q′ and Q/Q′

are irreducible FqSLm(q)-modules, isomorphic to ∧2V ∗ and V respectively,
where V = Vm(q).

Let t ∈ B be an element of prime order qm = pme, where q = pe, and let
Q0 = B ∩Q. Now CQ(t) = 1, and hence every composition factor of Q ↓ 〈t〉
has order qm. Since Q0 is t-invariant, and |B| = 1

2q
m(qm−1), it follows that

Q0 has order q
m. Also Q0 is abelian (as Z(Q0) is t-invariant). Moreover

Q0 ≤ Q′, since otherwise the irreducibility of 〈t〉 on Q/Q′ would imply that
Q = Q0Q

′ = Q0Z(Q), which is a contradiction as Q is non-abelian.

Let u = M(0, Y ) ∈ Q0. Under the action of the Levi GLm(q), u is
conjugate to M(0, Z), where

Z =




0 0 Ir
0 0m−2r 0
−Ir 0 0





for some r. Then u has Jordan form (J2r2 , J
2m−4r+1
1 ). As m is odd, we have

2m− 4r+1 ≥ 3. But then Lemma 2.4(iii) implies that a conjugate of u lies
in A = N−1 , contradicting the exactness of the factorization G = AB.

Case (7.2) Here |B| = |G : A| =
∏m
i=1(q

i + 1), and writing N−1 = G〈v〉,

we see from [33, p.57] that A∩N−1 fixes a totally isotropic (m− 1)-space in
v⊥. Hence the factorization N−1 = B(A ∩N

−
1 ) gives N(Ω

−
2m(q)) = BPm−1.

By [33] there is no such factorization, except for m = 3, in which case this
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becomes N(U4(q)) = BP1, which yields q = 3 and B ≤ N(L3(4)). However
the fact that 5 and 7 divide |B| then implies that B ≥ L3(4) (see [9, p.23]),
which is clearly not the case.

Case (7.3) Suppose first that A = N(G2(q)). By [33, Lemma A, p.105], if
we embed L = Ω7(q) irreducibly in H = PΩ

+
8 (q) via a spin representation,

then we have H = LN1 and L∩N1 = G2(q). Hence the action of G on G/A
is contained in that of H on H/N1. In Section 9 we prove that the latter
action has no regular subgroups for q odd (see the proof of Lemma 9.4).

Now suppose that B ≤ NG(G2(q)). Then we have an exact factorization
NG(G2(q)) = B (A ∩ NG(G2(q)). However, G2(q) and its automorphism
groups have no exact factorizations, by [33, Theorem B]. Hence there are no
regular subgroups in this case.

Case (7.4) Here B ≤ N−1 and we have a factorization N
−
1 = B(A ∩N

−
1 ).

But it is easy to see using [33] that there is no such factorization with
|B| = |G : A|.

Case (7.5) Here L = Ω7(3). The relevant maximal factorizations are
discussed in detail in [33, pp. 100-103].

If A = N+1 then the degree |G : A| is 378 = 2.3
3.7, and relevant maximal

factorizations of L have the other factor either Sp6(2) or S9. In the first of
these, the interesection of the factors is a subgroup of a parabolic subgroup
P1 of Sp6(2). This gives rise to a factorization of Sp6(2), so B must be
contained in G2(2) or L2(8).3; however, there is no subgroup of the right
order. In the second case, S9 has no subgroup of order 378: this would have
to be transitive, containing a 7-cycle and hence 3-transitive, not so.

The case where A = G2(3) has been handled in (7.3) already.

If A = P3, the degree is 1120 = 2
5.5.7 and the relevant maximal factor-

izations of L have the other factor one of S9, Sp6(2) and 2
6.A7. Now S9 has

no subgroup of order 1120: a subgroup of order divisible by both 7 and 5
has to involve A7. The same is true for Sp6(2): the only maximal subgroup
of order divisible by 35 is S8, and the above applies. And the same is true
also for the remaining possibility, 26.A7.

If A = Sp6(2), the degree is 3
513 and the relevant maximal factorizations

of G have the other factor one of G2(3), N
+
1 and P3. Now G2(3) has no exact

factorizations, so the first possibility is out. In the second case, B must be
contained in the parabolic 33L3(3) of L4(3); that however has no subgroup
of order 3513. Similarly P3 = 3

3+3L3(3) has no subgroup of order 3
513.
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If A = S9, the degree is 12636 = 2
23513 and the relevant maximal

factorizations of G have the other factor one of G2(3), N
+
1 and P3. Now

G2(3) has no exact factorization. Next, N
+
1 = L4(3).2; the only maximal

subgroups of L4(3) of order divisible by 13 are the parabolic subgroups
33L3(3), from which we see there is no subgroup of the required order. The
same applies for P3 = 3

3+3L3(3).

If finally A ∩ L = 26.A7, the degree is 3713 and B is a subgroup of
P3. Regarding L as a subgroup N1 of PΩ

+
8 (3), there is a factorization

PΩ+8 (3) = LΩ
+
8 (2) such that L ∩ Ω

+
8 (2) = 2

6.A7 = A ∩ L (see [33, p.
106]). However, we show in Section 11 (see case (a) of the PΩ+8 (3) part
in (11.10)) that N1 has no subgroup B which is regular on the coset space
PΩ+8 (3)/Ω

+
8 (2), so there is no regular subgroup B in the case under current

consideration.

8 Proof of Theorem 1.1: orthogonal groups of mi-
nus type

In this section we prove Theorem 1.1 in the case where G has socle L =
PΩ−2m(q) (m ≥ 4).

Suppose G = AB, A ∩ B = 1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

(8.1) A = N1;

(8.2) A = P1 or N
+
2 (q = 4), B ≤ NG(SUm(q)) (m odd);

(8.3) A = NG(SUm(q)) (m odd), B ≤ P1, N1 or N
+
2 ;

(8.4) A = NG(Ω
−
m(q

2) (m even, q = 2 or 4), B ≤ N1;

(8.5) L = Ω−10(2).

Case (8.1) Here G = BN1 and |B| = |G : N1| = 1
(2,q−1)q

m−1(qm + 1).
Moreover B is given by Lemma 4.4, from which we check that the only
possibility is m = 4, q = 2 and B .Ω−

m/2(q
4) = Ω−2 (16). However in this case

L = Ω−8 (2) and it follows from Lemma 2.2 that every involution class in G
is represented in N1, so no regular subgroup occurs.

Case (8.2) If A = P1 then |B| = |G : A| = (qm+1)(qm−1− 1)/(q+1) and
we have a factorization N(SUm(q)) = B(A∩N(SUm(q)) ≤ BP1. For m ≥ 5
odd, the only factorization of Um(q) (or an automorphism group) with P1 as
a factor is U9(2) = J3P1. However, it is easily seen using [9] that J3 and J3.2
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have no subgroups of order (29 + 1)(28 − 1)/3. A similar argument handles
the case where A = N+2 .

Case (8.3) Here A = NG(SUm(q)) with m ≥ 5 odd, and

|B| = |G : A| = qm(m−1)/2(qm−1 + 1)(qm−2 − 1) ∙ ∙ ∙ (q2 + 1)(q − 1). (3)

Suppose first that B ≤ P1, and write P = QR where Q is the unipotent rad-
ical and the Levi subgroup R .Ω−2m−2(q). Then A ∩ P1 lies in P1(A), hence
modulo Q we have a factorization R = B̄P̄1 (where bars denote image mod-
ulo Q). There are no such factorizations of Ω−2m−2(q) or an automorphism
group thereof (note m− 1 is even).

Next suppose that B ≤ N1. Then N1 = B(A ∩N1) ≤ BNG(SUm−1(q)).
For q odd there is no such factorization of N1, so q is even and we have

N(Sp2m−2(q)) = BN(SUm−1(q)) ≤ BN(Ω
+
2m−2(q)).

ClearlyB 6≥ Sp2m−2(q) by (3). Hence [33] implies that either B ≤ N(Sp2a(qb))
(ab = m − 1, b > 1), or B ≤ N(Ω−2m−2(q)) (q = 2 or 4), or B ≤ N(L2(17))
(m = 5, q = 2). The first and third cases are out by (3). In the second case
we have a factorization of the form N(Ω−2m−2(q)) = BN1. Then [33] forces
B . Ω−2m−2(q) or Ω

−
m−1(q

2), neither of which is possible by (3). The same
observation rules out the last possibility in (8.3), namely B ≤ N+2 .

Case (8.4) In this case A ∩ N1 . Ωm−1(q2), so the factorization N1 =
B(A ∩N1) gives

NG(Sp2m−2(q)) = BN(Ωm−1(q
2)) ≤ BP1.

As m− 1 ≥ 3 is odd, Lemma 3.1 now implies that either B .Sp2a(qb) (ab =
m− 1) or m = 4 and B . G2(q). Since |B| = |G : A|, arithmetic shows that
only the second possibility can hold.

If q = 4 then from [25, 4.3.16] we have A ∩ L = Ω4(16).2, while B ∩
L = G2(4), so |L|2/(|A|2|B|2) = 23. This is impossible as |G : L| divides
|Out(L)| = 4.

Finally, if q = 2 then our potential exact factorization of G is Ω−8 (2).2 =
(L2(16).4) (G2(2) × 2). However, we claim that this is not a factorization,
and prove this by showing that the subgroups L2(16) and G2(2) meet the
same involution class of L. To see this, we refer to [9, p.88]. All classes of
involutions in L meet Sp6(2). The irreducible character of degree 34 splits as
a sum of two irreducibles of Sp6(2), one of degree 7 and the other of degree
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27. We deduce that the class 2B of L contains involutions from both classes
2A and 2C in Sp6(2). From the permutation character we see that these
involutions are not contained in G2(2). On the other hand, the other two
classes of involutions in L therefore have to be represented in G2(2). Next,
considering possible restrictions of the character of degree 34 to L2(16), we
see that the value on involutions there has to be 2, so the class in L to which
these belong is either 2A or 2C (in fact it is the latter). This establishes the
claim.

Case (8.5) Here L = O−10(2). The factors in L are P1 and A12, intersecting
in a subgroup (S4×S8)+ of A12. The index of A12 in L is 211.51, whereas it
is quite easy to see (cf. [9, p. 89]) that any subgroup of O−8 (2) (and hence
P1) of order divisible by 51 involves L2(16) and hence has order divisible by
5. On the other hand, if A = P1 of index 495, then A12 does not have a
suitable exact factorization.

9 Proof of Theorem 1.1: some special actions of
symplectic and orthogonal groups

In this section we prove Theorem 1.1 in the following two special cases:

L Ω |Ω|
Sp2m(q) (q even,m ≥ 2) L/O

−
2m(q)

1
2q
m(qm − 1)

PΩ+2m(q) (m ≥ 4) L/N1
1

(2,q−1)q
m−1(qm − 1)

(4)

It will turn out that the main candidates for regular subgroups in these
cases contain normal subgroups L2(q

m/2). It is convenient to begin by clas-
sifying such subgroups.

Proposition 9.1 Let L,Ω be as in (4). Suppose m is even, and let S ≤ L
with S ∼= L2(qm/2) and S semiregular on Ω. If q is odd, assume that S is
contained in a parabolic Pm or Pm−1 of L. Then the following hold.

(i) S is a factor of L2(q
m/2)× L2(qm/2) = PΩ

+
4 (q

m/2) < L; conversely,
such a factor is indeed semiregular on Ω.

(ii) S is contained in a Levi subgroup of a parabolic subgroup Pm (or
Pm−1in the orthogonal case) of L.

(iii) CL(S) ∼= L2(qm/2).

(iv) If q is even, u is an involution in CL(S) and s is an involution in
S, then su fixes a point of Ω.



42 M.W. LIEBECK, C.E. PRAEGER AND J. SAXL

Proof (A) Suppose first that q is even. Let V = V2m(q) be the natural
module for L. Let t ∈ S be an element of order 3 so that V is completely
reducible as 〈t〉-module. If W = CV (t) is nonzero then it is non-degenerate
and so t lies in Sp(W⊥)× 1W or Ω(W⊥)× 1W , from which it follows easily
that t fixes a point of Ω, contrary to our semiregularity assumption. Hence
CV (t) = 0.

By Lemma 2.5, the FqS-composition factors of V are sums of field twists

of tensor products V2⊗V
(2i1 )
2 ⊗ . . .⊗V (2

il )
2 , realised over Fq, where V2 is the

natural module for S. If l ≥ 1 then t has nonzero fixed point space on such
a tensor product. It follows that l = 0 and the FqS-composition factors of V

are m-dimensional modules of the form V2 ⊕ V
(q)
2 ⊕ . . .⊕ V (q

m/2−1)
2 , realised

over Fq.

Thus S has two m-dimensional composition factors on V of the above
form. In particular S fixes an m-dimensional subspace U of V , and U is
either totally singular or non-degenerate.

Suppose U is non-degenerate. Now S fixes an Fqm/2-symplectic form [ , ]

on V2 = V2(q
m/2), unique up to Fqm/2-scalar multiplication. Identifying the

vectors in U with those of V2, we see that S fixes the Fq-symplectic form on

U defined by (u, v) = Tr
F
qm/2

Fq
[u, v]. If we take an involution s ∈ S sending

e→ e, f → f +e for some Fqm/2-basis e, f of V2, then s has Jordan form J
m
2

on V , and satisfies (v, s(v)) 6= 0 for some v ∈ V (for example take v = λf
(λ ∈ Fqm/2), where Tr(λ

2[e, f ]) 6= 0). Hence by Lemma 2.1, some conjugate
of s fixes a point of Ω, a contradiction.

Hence U , and indeed every S-invariant m-subspace of V , is totally sin-
gular. In particular S < LU = Pm, a parabolic subgroup of L. Write
Pm = QR, where Q is the unipotent radical and R ∼= GLm(q) is a Levi
subgroup. Then Q is elementary abelian, and has the structure of an FqR-
module, with composition factors Vm, ∧2Vm, if L = Sp2m(q), and just ∧2Vm
if L = PΩ+2m(q) (where Vm denotes a natural module for R).

The Levi subgroup R has a subgroup T ∼= SL2(qm/2) acting as above on

Vm (namely, as V2 ⊕ V
(q)
2 ⊕ . . .⊕ V (q

m/2−1)
2 , realised over Fq). Observe that

this subgroup T acts semiregularly on Ω: for semisimple elements of T are
clearly semiregular, while an involution t ∈ T acts on V with Jordan form
Jm2 and satisfies (v, t(v)) = 0 for all v ∈ V , hence is fixed point free on Ω by
Lemmas 2.1 and 2.2.

We next aim to prove that

S is Q-conjugate to T. (5)
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We first claim that in Pm there are at most two conjugacy classes of
subgroups SL2(q

m/2) which project to T (via the canonical map QR→ R).
If L = PΩ+2m(q), then as an FqT -module we have

Q ↓ T = ∧2Vm ↓ T ∼=
∑

i<j

V
(qi)
2 ⊗ V (q

j)
2 + trivm/2

(realised over Fq). Hence from Lemma 2.5(ii) we see that H1(T,Q) = 0,
whence the semidirect product QT has just one class of complements to Q,
giving the claim. If L = Sp2m(q) this is no longer the case: here we have

Q ↓ T =
m/2∑

i=1

V
(qi)
2 /

∑

i<j

V
(qi)
2 ⊗ V (q

j)
2 / trivm/2

(realised over Fq). Hence we see from Lemma 2.5(ii) that H1(T,Q) has

dimension at most m/2 over Fq, arising from the fact that H1(T, V
(qi)
2 ) has

dimension 1 for each i. As a module over Fq for a subgroup GL2(qm/2) of R

containing T ,
∑
iH
1(T, V

(qi)
2 ) is of the form V1+V

(q)
1 +. . .+V

(qm/2−1)
1 realised

over Fq, where V1 is a 1-dimensional module over Fqm/2 for GL2(q
m/2).

In particular GL2(q
m/2) acts transitively on the nonzero elements of this

module, and it follows that there are at most two classes of complements
to Q in the semidirect product QT , which establishes our claim in this case
also.

We now deduce the assertion (5). If L = PΩ+2m(q) then as shown above,
the semidirect product QT has just one class of complements to Q. Since
QS is conjugate to QT , (5) follows in this case.

Now assume L = Sp2m(q). We first produce a complement to Q in QT
which is not conjugate to T . Let X be a non-degenerate m-subspace of V ,
and let S1 ∼= SL2(qm/2) be a subgroup of L fixing X and X⊥, such that

X ↓ S1 ∼= X
⊥ ↓ S1 ∼=

m/2−1∑

i=0

V
(qi)
2

(realised over Fq). If φ : X → X⊥ is an S1-isomorphism, then S1 fixes the
subspaceW = {x+φ(x) x ∈ X}, which is a totally singular m-space. Hence
we may take S1 ≤ Pm. Replacing S1 by a suitable Pm-conjugate, we may
assume that S1 ≤ QT . Further, S1 is not conjugate to T , since it follows
from the above observations that an involution in T is fixed point free on
Ω, while an involution in S1 is not.
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It now follows that our subgroup S is Q-conjugate to either T or S1.
However, as just noted, S1 is not semiregular on Ω. Hence S is conjugate to
T . This establishes (5), and also proves conclusion (ii) and the last part of
(i) of the proposition.

Now consider a subgroup Ω+4 (q
m/2) < Ω+2m(q) ≤ L. Write Ω

+
4 (q

m/2) =
T1 × T2 with Ti ∼= SL2(qm/2). This acts on V4(qm/2) as a tensor product
of two 2-dimensional spaces, say V1 ⊗ V2. Then for v ∈ V2, the subspace
V1 ⊗ v is a totally singular m-space in V fixed by T1, and it follows that T1
fixes a pair of complementary totally singular m-spaces, hence lies in a Levi
subgroup GLm(q) of a parabolic Pm. Thus we see that S is conjugate to T1,
proving (i).

To prove (iii), let P be a Sylow 2-subgroup of CL(T1). Then P × T1
lies in a parabolic subgroup of L, which must be Pm. Hence P ≤ CPm(T1),
whence P = CQ(T1). The composition factors of Q ↓ T1 are given above,
and there are at most m/2 trivial ones, whence |P | ≤ qm/2. Since T2 lies in
CL(T1), it follows that |P | = qm/2. Moreover the composition factors of T1
on V ⊗ F̄q are all 2-dimensional and have multiplicity 2. Hence we see that
CL(T1) = T2, giving (iii).

Finally we establish (iv). As above take T1 × T2 to act on V1 ⊗ V2, a
tensor product of 2-dimensional spaces over Fqm/2 . Let Ti fix a symplectic
form ( , )i on Vi, and let ei, fi be a basis of Vi with (ei, fi)i = 1. Then T1×T2
fixes the quadratic form Q0 on V1 ⊗ V2 which has associated bilinear form
[ , ] equal to the product of ( , )1 and ( , )2, and satisfies Q0(v1 ⊗ v2) = 0 for
all vi ∈ Vi (see [25, p.127]). For i = 1, 2, let ti ∈ Ti be the involution which
sends ei → ei, fi → ei + fi. Then the involution t1t2 sends

f1 ⊗ f2 → e1 ⊗ e2 + e1 ⊗ f2 + f1 ⊗ e2 + f1 ⊗ f2.

Hence t1t2 acts on V1⊗V2 with Jordan form J22 , and if we write v = f1⊗ f2
then [λv, t1t2(λv)] = λ

2 for λ ∈ Fqm/2 . Now regarding V1 ⊗ V2 as the 2m-

dimensional space over Fq with symplectic form ( , ) = Tr
F
qm/2

Fq
[ , ], we see

that t1t2 acts on V as J
m
2 and, taking u = λv with Tr(λ

2) 6= 0, we have
(u, t1t2(u)) 6= 0. Hence t1t2 fixes a point of Ω by Lemma 2.1, and (iv) is
proved.

(B) Now assume that q is odd, so that L = PΩ+2m(q) and Ω = L/N1.
Again write V = V2m(q). Let Ŝ be the preimage of S in L̂ = Ω

+
2m(q). If t is

an involution in Ŝ then CV (t) is non-degenerate, so the semiregularity of S
on Ω forces CV (t) = 0 and t = −1V . In particular Ŝ ∼= SL2(qm/2).
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By hypothesis, Ŝ is contained in a parabolic P = Pm or Pm−1 of L̂. This
parabolic P is the stabilizer of a totally singular m-subspace W of V . As
before write P = QR, where Q is the unipotent radical and R ≤ GLm(q) is
a Levi subgroup.

Consider the action of Ŝ ∼= SL2(qm/2) on the m-space W . This action
is realised over Fq, so the set of composition factors of Ŝ on W is invariant
under a Frobenius q-power morphism. Simple arithmetic shows that the

only possible sets of composition factors are {V (q
i)

2 : 0 ≤ i ≤ m
2 − 1} and

{(V2 ⊗ V
(q0)
2 )(q

i) : 0 ≤ i ≤ m
4 − 1}, where V2 is the natural 2-dimensional

module for Ŝ and q0 is a power of p. In fact the latter set is impossible, as

Z(Ŝ) acts trivially on V2⊗V
(q0)
2 , whereas we showed above that it must act

as 〈−1V 〉 on V . It follows that

W ↓ Ŝ ∼=
m/2−1∑

1

V
(qi)
2 ,

realised over Fq.

We next establish that Ŝ acts completely reducibly on V . Assume for
a contradiction that this is not the case. As an Ŝ-module, V/W ∼= W ∗ ∼=
∑m/2−1
1 V

(qi)
2 , so it must be the case that ExtŜ(V2, V

(qi)
2 ) 6= 0 for some

i. By [1, 4.5], for this to be the case we must have qi = 3, and V ↓ Ŝ
the sum of field twists of a 4-dimensional indecomposable with composition

factors V2, V
(3)
2 . Such an indecomposable can be viewed as the space of

homogeneous polynomials of degree 3 in two variables or its dual, from
which we see that the action of an element u ∈ Ŝ of order 3 has Jordan form
(J3, J1). Hence the action of u on the whole of V is (J

m/2
3 , J

m/2
1 ). However,

such an element fixes pointwise a non-degenerate subspace of dimension m/2
(see [42, p.38]), and hence fixes a point of Ω, contradicting the semiregularity
of S.

Hence V ↓ Ŝ is completely reducible, and is
∑m/2−1
1 V

(qi)
2 +

∑m/2−1
1 V

(qi)
2 .

In particular Ŝ fixes an m-subspace W ′ of V such that V = W ⊕W ′. As-
sume W ′ is non-degenerate, so that Ŝ ≤ Ω(W ′) ∼= Ωεm(q). Consideration
of primitive prime divisors of qm − 1 shows that for |SL2(qm/2)| to divide
|Ωεm(q)| we must have 4|m and ε = −. However in this case Ω

−
m(q) does not

contain −Im (see [25, 2.5.13]), giving a contradiction as Ŝ contains −1V . It
follows that W ′ is totally singular. Thus Ŝ fixes the complementary totally
singular m-spaces W,W ′, and hence Ŝ lies in a Levi subgroup of P , giving
conclusion (ii) of the lemma.
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Finally, conclusions (i) and (iii) are proved by similar arguments to those
given above for these in part (A) of this proof.

Next we establish the existence of the examples in Table 16.1 for this
case (i.e. L,Ω as in (4)).

Proposition 9.2 Regular subgroups B of G exist in each of the following
cases:

G Gα B

Sp4(4).2 O
−
4 (4).2 S5

Sp8(2) O−8 (2) S5
Ω+8 (2) N1 S5
Ω+8 (4).2 N1 L2(16).4

where in lines 1 and 4, G/L is generated by an involutory field automor-
phism. Moreover, in each case the subgroup B′ is unique up to G-conjugacy.

Proof First consider the last two lines. Here L = Ω+8 (q) with q = 2 or
4. By Lemma 9.1 there is a subgroup S = SL2(q

2) of a Levi GL4(q) in L
which acts semiregularly on Ω. In fact there is a subgroup S.2 = SL2(q

2).2
in this GL4(q), and any outer involution t of this has Jordan form J

4
2 on

V = V8(q) and satisfies (v, t(v)) = 0 for all v ∈ V (since GL4(q) fixes a pair of
complementary totally singular 4-spaces), and hence t is fixed point free on
Ω by Lemma 2.1. It follows that this subgroup S.2 is semiregular on Ω. For
q = 2 this gives a regular subgroup B ∼= S5, as required. For q = 4, adjoin a
field automorphism τ to L. Then the normalizer of S in G = L〈τ〉 contains
S.4 = L2(16).4. If this intersects N1 nontrivially, the intersection must have
order 2. However elements in L2(16).4 \L2(16).2 have order divisible by 4,
so this is not possible, and it follows that this subgroup L2(16).4 is regular
on Ω, giving the example in line 4 of the table in the conclusion.

Observe that the action of Ω+8 (2) on N1-spaces is contained in the action
of Sp8(2) on the cosets of O

−
8 (2), and hence the latter also has a regular

subgroup S5.

Now consider line 1. Let G = Sp4(4).2. By Lemma 9.1 there is a
semiregular subgroup S = SL2(4). Its normalizer in G contains a subgroup
S5. This must intersect Gα = L2(16).4 trivially, since as above, elements of
Gα\L have order divisible by 4. Hence this S5 is regular.

Finally, the uniqueness statement in the proposition follows from Propo-
sition 9.1.
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Remark The proof shows that the indicated outer automorphisms of L are
necessary in lines 1 and 4 of the table in 9.2, hence the ∗ in the corresponding
entries of Table 16.1.

Now we embark upon the proof of Theorem 1 for the special actions
given in (4). Let G,L,Ω be as in (4), and suppose B < G acts regularly on
Ω.

Lemma 9.3 One of the following holds:

(i) m is even and B has a normal subgroup S ∼= L2(qm/2), where S is
contained in a Levi subgroup SLm(q)/〈−1〉 in L;

(ii) (m, q) = (4, 3), B lies in a parabolic subgroup Pi (i = 3 or 4) of G,
and B . A5, where this A5 lies in a Levi subgroup L4(3) of Pi.

Proof We know that |B| = 1
2q
m(qm − 1) or 1

(2,q−1)q
m−1(qm − 1), accord-

ing as L = Sp2m(q) or PΩ
+
2m(q). Moreover B satisfies the conclusion of

Lemma 4.6 or 4.5, respectively. It follows by arithmetic that one of the
following holds:

(α) B . L2(q
m/2) with q even or (m, q) = (4, 3);

(β) B ≤ Pm (or Pm−1 in the orthogonal case), and modulo the unipotent
radical B induces a subgroup of ΓLm(q) which is transitive on 1-spaces.

Consider case (α). If q is even then conclusion (i) holds by Proposition 9.1.
Now assume (m, q) = (4, 3) and B .L2(9) = A6. We have |B| = 1080, hence
B = 3 × A6, and so B lies in a maximal parabolic P , which must be P3 or
P4 (since G = BN1). Hence conclusion (i) holds by 9.1 again.

Now consider case (β). Let Pm = QR as in the proof of Proposition 9.1,
and let B̄ denote the subgroup of ΓLm(q) induced by B. Then B̄ is given
by Lemma 3.1. Since |B| = |Ω| is as in (4), one of the following holds:

(a) B̄ . L2(q
m/2);

(b) B̄ . L2(13) with (m, q) = (6, 3);

(c) B̄ . A5 or B̄ ≤ 24.S5 with (m, q) = (4, 3);

(d) B̄ ≤ ΓL1(qm).

Consider (a). Since |B|p < qm, B̄ must act trivially on B ∩ Q, and hence
the preimage of L2(q

m/2) in B is a central extension of B ∩Q by L2(qm/2).
Now the Schur multiplier of L2(q

m/2) is a p′-group, with the exception of
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L2(4) and L2(9) (see [16, 6.1]). Therefore, apart from these exceptions, we
have B ≥ L2(qm/2), and conclusion (i) now follows by Proposition 9.1. The
exceptional possibilities are that B contains a cover 2.L2(4) or 3.L2(9) (with
m = 4, q = 2 or 3). However, there is no such cover in Pm in these cases: for
example, when q = 2 we have Pm = P4 = 2

6.L4(2) or 2
4+6.L4(2) according

as L = Ω+8 (2) or Sp8(2). The group B̄, being transitive on 1-spaces, is an
L2(4) centralizing an element of order 3 in L4(2), hence acting completely
reducibly on 26 as 22 ⊕ 24. The derived group of 26.B̄ is therefore 24.B̄,
which does not contain a cover 2.L2(4) as B̄ is fixed point free on 2

4. The
argument for q = 3 is similar.

In case (b) the fact that |B| = 1
23
5(36 − 1) forces B = 34.L2(13). We

have Q = ∧2V6(3) as a module for R′ = L6(3), and hence using [20] we see
that Q ↓ L2(13) has composition factors of orders 37, 37 and 3. Hence P6
has no subgroup 34.L2(13), a contradiction.

Now consider (c). Here |B| = 1080 and B ≤ Pi ≤ 36.L4(3).D8, where
i ∈ {3, 4}. If |B̄|3 = 1 then |B ∩Q| = 33. However since B has an element
of order 5, there is no B-invariant subgroup of order 33 in Q, so this is
impossible. Hence |B̄|3 = 3, B̄ . A5 and B ∩ Q = 32 = CQ(A5). Since the
Schur multiplier of A5 has 3

′-order, it follows that B . A5. Arguing as in
part (B) of the proof of Proposition 9.1, we see that this A5 lies in a Levi
subgroup of Pi (using [26, Lemma 1] instead of [1] for the relevant fact about
Ext groups). Hence conclusion (ii) of the lemma holds.

Finally, consider (d), in which B̄ ≤ ΓL1(qm). Assume first that (m, q) 6=
(6, 2), so that B contains an element t of prime order qm (a primitive prime
divisor of qm− 1). The non-trivial composition factors of Q ↓ 〈t〉 have order
qm; in addition we have |CQ(t)| = 1 or qm/2, according as m is odd or even,
respectively. Since |B|p < qm, it follows that B∩Q ≤ CQ(t), and so m logp q
is divisible by |B|p/|CQ(t)|. Hence one of the following holds:

m = 2, q = 4 or 16
m = 4, q = 2, 4 or 16
m = 8, q = 2.

In the m = 2 case we have L = Sp4(q) and B ∩ L ≤ NP2(t) = [q.(q − 1)] ×
[(q + 1).2] ≤ L2(q) × L2(q) = Ω

+
4 (q). By Proposition 9.1(iv), no involution

from the second factor can be present in B. Hence for q = 16 we have
B ≤ ([q.(q − 1)] × (q + 1)).4, whereas |B|2 = 27, a contradiction. And for
q = 4 we have G = L.2 and B = (22.3× 5).2; however, any 2-element in the
outer coset of this group would have to have order 4, since NL2(4).2(5) = 5.4,
so this is also impossible.
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In the m = 4 case, we similarly have B∩L ≤ ([q2.(q2−1)]×(q2+1)).2 ≤
Ω+4 (q

2), and again any outer 2-element must have order greater than 2,
leading to a contradiction. The m = 8 case yields to an entirely similar
argument.

To complete the proof, observe that in the excluded case (m, q) = (6, 2)
we take t ∈ B to be an element of order 7; then all composition factors of
Q ↓ 〈t〉 have order 23. This yields a contradiction since |B|2 = 25.

Lemma 9.4 q is even.

Proof Suppose q is odd. Then L = PΩ+2m(q) (m ≥ 4) and Ω = L/N1. Say
N1 is the stabilizer of a 1-space 〈w〉 with (w,w) = 1.

Assume first that case (i) of Lemma 9.3 holds. By Lemma 9.1, the
normal subgroup S ∼= L2(qm/2) of B is a factor of a subgroup S × T =
L2(q

m/2) × L2(qm/2) = PΩ
+
4 (q

m/2) < L, and moreover CL(S) = T . Hence
B normalizes S×T . Since |B|p = qm−1 it follows that B contains an element
t2 ∈ T of order p.

However, we claim that we can choose t1 ∈ S of order p such that t1t2
fixes a point of Ω. To see this, rewrite S × T = T1 × T2 and take this to act
on V1⊗V2, a tensor product of 2-dimensional spaces over Fqm/2 . Let Ti fix a
symplectic form ( , )i on Vi, and let ei, fi be a basis of Vi with (ei, fi)i = 1.
Then T1 × T2 fixes the symmetric form [ , ] on V1 ⊗ V2 which is the product
of ( , )1 and ( , )2, and we may assume the Fq-form ( , ) on V preserved
by L to be TrkK [ , ], where K = Fqm/2 , k = Fq. We may take ti to send
ei → ei, fi → αiei + fi for i = 1, 2 and some αi ∈ Fqm/2 . Then t1t2 fixes the
vector

v = α1e1 ⊗ f2 − α2f1 ⊗ e2.

Now [v, v] = 2α1α2, and so for a suitable choice of α1 (recall that we can
choose t1 to be any element of order p in S), we have (v, v) = Tr

k
K [v, v] = 1,

so the Fq-1-space spanned by v is in Ω and is fixed by t1t2 ∈ B, as claimed.
This contradicts the fact that B acts semiregularly on Ω.

Finally, consider case (ii) of Lemma 9.3. As in the fifth paragraph of
the proof of that lemma (case (c)), we have B ∩ Q = CQ(A5) = 32, and
the subgroup 32 × A5 of B lies in a subgroup A6 × A6 = PΩ

+
4 (9) < L.

Then B contains an element t1t2, where t1, t2 are elements of order 3 in the
two factors A6, and as above, this element fixes a point of Ω, which is a
contradiction.
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At this point we can complete the proof of Theorem 1 for the actions
in (4). Let G,L,Ω be as in (4), and suppose B < G is regular on Ω. By
Lemmas 9.3 and 9.4, m and q are even, and B has a normal subgroup
S ∼= L2(qm/2). Moreover, S satisfies (i)-(iv) of Proposition 9.1.

Let T = CL(S), so T ∼= L2(qm/2) by Proposition 9.1(iii). Now |B|2′ =
qm − 1 = |S|2′ , while |B ∩ T |2 = 1 by Proposition 9.1(iv). It follows that
B ∩ T = 1. Since S is centralized by no nontrivial field automorphism of L,
we have CG(S) = CL(S) = T , whence CB(S) = 1. Consequently B/S has
order dividing |Out(S)| = m

2 log2 q. Since |B/S| =
1
2q
m/2 if L = Sp2m(q),

and |B/S| = qm/2−1 if L = Ω+2m(q), this forces one of the following to hold:

L = Sp2m(q) : m = 2, q = 4 or m = 4, q = 2
L = Ω+2m(q) : m = 4, q = 2 or 4.

In all these cases examples of regular subgroups B exist, and are unique up
to conjugacy, by Proposition 9.2. Finally, we see using Proposition 9.1(iv)
that there are no further examples of regular subgroups.

This completes the proof of Theorem 1 for the actions in (4).

10 Proof of Theorem 1.1: remaining symplectic
cases

In this section we prove Theorem 1.1 in the case where G has socle L =
PSp2m(q) (m ≥ 2, (m, q) 6= (2, 2)).

Suppose G = AB, A ∩ B = 1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

(10.1) A = NG(Ω
ε
2m(q)) (q even, ε = ±);

(10.2) A = P1;

(10.3) A = NG(PSp2a(q
b)), B ≤ P1 (ab = m, b prime);

(10.4) A = NG(PSp2a(q
b)), B ≤ NG(Ωε2m(q)) (q even, ab = m, b prime);

(10.5) A = Pm, B ≤ NG(Ω
−
2m(q)) (q even);

(10.6) A = NG(Spm(q) o S2), B ≤ NG(Ω
−
2m(q)) (m even, q even);

(10.7) A = N2, B ≤ NG(Spm(q2)) (m ≥ 4 even, q = 2 or 4);

(10.8) A = NG(Spm(q
2)), B ≤ N2 (m ≥ 4 even, q = 2 or 4);

(10.9) A = NG(Sp2m(q
1/2)), B ≤ NG(Ω

−
2m(q)) (q = 4 or 16);
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(10.10) m = 2, A = N(Sz(q)) or B ≤ N(Sz(q)) (q = 22a+1 ≥ 8);

(10.11) m = 3, A = N(G2(q)) or B ≤ N(G2(q)) (q even);

(10.12) L = PSp4(3), PSp6(3) or Sp8(2).

Case (10.1) For ε = − this case has been handled in Section 9. So assume
ε = +. Then A = NG(Ω

+
2m(q)) and |B| =

1
2q
m(qm + 1). By Lemma 2.3,

A contains representatives of all involution classes in L, and hence, as B is
regular on Ω, B can contain no such involutions; in other words, |B ∩ L| is
odd. It follows that |B|2 = 1

2q
m divides |G : L|, hence divides log2 q. This

is impossible.

Case (10.2) Here A = P1, |B| = (q2m − 1)/(q − 1), and by Lemma 3.1
we have B ≤ ΓL1(q2m)/〈−1〉. Now ΓL1(q2m) ∩ Sp2m(q) = (qm + 1).2m
(see for example the proof of [25, 4.3.15]), and hence (q2m − 1)/(q − 1)
must divide (qm + 1).2m log q. This forces m = 2, q = 3. In this case
L = PSp4(3) ∼= U4(2), which was handled in (6.3).

Case (10.3) Here B ≤ P1 and A = NG(PSp2a(qb)) (ab = m, b prime),
and we have

|B| = |L : A| =
1

b
qm(m−a)

∏

i≤m−1,i 6=kb

(q2i − 1). (6)

Write P1 = QR where Q is the unipotent radical and R a Levi subgroup, so
R.Sp2m−2(q). As usual set B̄ = BQ/Q. If P1 = G〈v〉 then A∩P1 stabilizes
the 1-space spanned by v over Fqb , and hence we have a factorization R =
B̄Pb−1. By [33] this forces one of the following to hold:

(1) B̄ . Sp2m−2(q)

(2) b = m > 2

(3) b = 2.

Consider first case (1). Here (6) forces b = m, and |B|/|Sp2m−2(q)| =
qm−1/m. Hence asm is prime, m = p. Moreover Sp2m−2(q) has composition
factors on Q of orders q and q2m−2, and so B ∩ Q ≤ Q0, where Q0 =
CQ(Sp2m−2(q)), a group of order q. Thus q

m−1/m divides q log q. If m = 2
then p = 2 and A = NG(Sp2(q

2)) is conjugate under a graph automorphism
of L to N(O−4 (q)), a case already handled in Section 9. The only other
possibility is that m = p = 3, in which case q2 divides 3q log q, forcing q = 3,
and A ∩ L = PSp2(27).3, B ∩ L = Sp4(3) × 3. But then A and B contain
conjugate elements of order 3 and Jordan form J32 .
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For the rest of the proof we may assume that B̄ 6≥ Sp2m−2(q).

Consider case (2): b = m > 2. Here the factorization R = B̄Pm−1
implies using [33] that one of the following holds:

(2i) B̄ ≤ N(O−2m−2(q)), q even

(2ii) m = q = 3, B̄ ≤ 21+4.S5
(2iii) m = 3, q = 2.

In case (2i) we have B ≤ Q.(O−2m−2(q) × (q − 1)). log q, and hence by (6),
qm−1 − 1 divides m(q − 1) log q. This forces m = 3, q = 2 or 8. For q = 2
the only possibility for B is 24.A5, and we claim there is indeed an exact
factorization

Sp6(2) = (Sp2(8).3) (2
4.A5),

as in Table 16.1. To prove this claim, we start with the factorization
Sp6(2) = (Sp2(8).3)O

−
6 (2) given by [33]. The intersection of the two fac-

tors is O−2 (8).3, which is not contained in Ω
−
6 (2), and hence we also have

Sp6(2) = (Sp2(8).3)Ω
−
6 (2), the factors intersecting in Ω

−
2 (8).3 = 9.3. Now

take B = 24.A5 = P1(Ω
−
6 (2). Then B is also P2(U4(2)). From Section 6 we

have an exact factorization of U4(2) which interpreted for Ω
−
6 (2) takes the

form Ω−6 (2) = P1Ω
−
2 (8).3, and the claim follows.

Finally, for m = 3, q = 8 we assert that no example arises: for here
the relevant exact factorization must be Sp6(8).3 = (Sp2(8

3).9)B, where
B = (F8)4.(Ω

−
4 (8)×7).3, and B is unique up to P1-conjugacy. Hence B is the

stabilizer of a singular 1-space in Ω−6 (8). Since Sp6(8) = (Sp2(8
3).3)Ω−6 (8),

with factors intersecting in Ω−2 (8
3).3, this leads to a factorization Ω−6 (8).3 =

P1 (Ω
−
2 (8

3).3.3). However there is no such factorization, by [33].

Next consider case (2ii): m = q = 3, B̄ ≤ 21+4.S5. Under the action of
a subgroup of order 5 in B, the radical Q = 31+4 contains no invariant 34,
and hence the only possibility is B = Q.(21+4.5.4). We claim that there is
an example of this form, i.e. an exact factorization

PSp6(3).2 = AB = (PSp2(27).3.2) (3
1+4.21+4.5.4),

as in Table 16.1. To see this, observe first that |A∩B|3 = 1: for the elements
of order 3 in A have Jordan form J32 or J

2
3 , whereas those in B (hence in

Q) do not. Next, |A ∩ B ∩ L|2 = 1: for involutions in P1 lift to involutions
in Sp6(3), whereas involutions in the subgroup PSp2(27) lift to elements of
order 4. Finally, |A ∩ B|2 = 1 also, since, working in B/O2,3(B) = 5.4, we
see that every 2-element of B ∩ (L.2\L) has order divisible by 4 and has a
power which is an involution in L. This proves the existence of the above
exact factorization.
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Now consider case (2iii): m = 3, q = 2. Here the factorization R =
Sp4(2) = B̄P2 implies that B̄ ≥ A5 by [33]. Moreover |B| = 24 ∙ 60, so the
only possibility is given by the exact factorization Sp6(2) = (Sp2(8).3) (2

4.A5),
the existence of which was established above. This completes our analysis
of case (2).

To complete this subsection (10.3), consider case (3): b = 2. Herem = ab
is even and

|B| =
1

2
qm

2/2(q2m−2 − 1)(q2m−6 − 1) . . . (q2 − 1).

The factorization R = B̄P1 implies by Lemma 3.1 that one of the following
holds:

(3i) B̄ . Sp2c(q
d) with cd = m− 1, d ≥ 3

(3ii) B̄ . G2(q
d) with q even, 3d = m− 1

(3iii) m = 4, q = 3 and B̄ . SL2(13) (< Sp6(3))

(3iv) m = 2, q ∈ {5, 7, 9, 11, 19, 23, 29, 59}, B̄ . Q8 or SL2(5)

(3v) B̄ ∩ Sp2m−2(q) ≤ ΓL1(q2m−2).

In case (3i), the fact that |B| is divisible by q2m−6 − 1 forces m = 4 and
B̄ . Sp2(q

3). Now B acts on Q with composition factors of order q and
q6. Since |B|p = q8/(2, q), it follows that |B ∩ Q| divides q. However this
means that |B ∩ L|p ≤ q4, hence q4/(2, q) divides |Out(L)|, which is clearly
impossible.

Now consider (3ii). Here again the divisibility of |B| by q2m−6− 1 forces
d = 1 and m = 4, and as above |B ∩Q| divides q. We claim that A and B
both contain conjugates of an element of order q + 1, which will contradict
the factorization G = AB. To see the claim, consider G2(q) < Sp6(q) < L.
A subgroup S = SL2(q), generated by long root elements of G2(q), acts on
the natural module V8 as V

2
2 + V

4
1 , and hence S has an element s of order

q + 1 acting on V8 as (A,A, 1
4), where A stands for a 2× 2 matrix of order

q + 1. Then B contains a conjugate of s. Moreover, so does A, within a
natural subgroup Sp2(q

2) of Sp4(q
2) / A. This proves the claim.

Next consider (3iii). Here |B|2 ≤ 2|SL2(13)|2 = 24, whereas |B| =
1
23
8(36 − 1)(32 − 1) has 2-part 25, a contradiction.

In case (3iv) we have |B| = 1
2q
2(q2− 1), and as before |B ∩Q| divides q.

Hence q divides |B̄|, which is not possible.

Finally consider (3v). We have |Sp2m−2(q) ∩ ΓL1(q2m−2)| = (qm−1 +
1)(m−1) ∙ (2, q) (contained in a subgroup Sp2(qm−1).(m−1) - see the proof
of [25, 4.3.15]. Hence |B| divides 2(qm−1+1)(m− 1)(q− 1) log q. This must
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be divisible by qm−1 − 1, which forces m = 2. Then |B| = 1
2q
2(q2 − 1),

and as usual |B ∩ Q| divides q. Hence 12q divides 2 log q, so q = 4 or 16
(recall q 6= 2 since by assumption L 6= Sp4(2) ∼= S6). Now applying a graph
automorphism of L = Sp4(q) to A and B, we have A = N(O

−
4 (q)) and

B ≤ P2. Hence we are done by Section 9.

Case (10.4) Here A = NG(PSp2a(q
b)), B ≤ NG(Ωε2m(q)) (q even, ab = m,

b prime), and |B| is as in (6). There is a factorization

NG(Ω
ε
2m(q)) = BN(O

ε
2a(q

b)), (7)

and B 6≥ Ωε2m(q) (by (6)). Hence by [33], one of the following holds:

(1) m ≥ 4, b = 2, q = 2 or 4, and B ≤ N1 (or an image of N1 under
triality if m = 4, ε = +)

(2) m ≤ 3.

Consider first case (1). Here |B| = 1
2q
m2/2(q2m−2−1)(q2m−6−1) . . . (q2−1),

so B 6≥ Ω2m−1(q). From [33] we see that N1 ∩ Oεm(q
2) fixes a 1-space of

the natural module for Sp2m−2(q) ∼= Ω2m−1(q), and hence (7) leads to a
factorization

N(Sp2m−2(q)) = BP1.

By Lemma 3.1 together with the fact that m ≥ 4 is even, it follows that
either B ≤ N(Sp2c(qd) (cd = m− 1, d ≥ 3), or m = 4 and B .G2(q). In the
former case |B|p < 1

2q
m2/2, a contradiction. And in the latter case, we see as

in the case (3ii) of (10.3) above, that A and G2(q) both contain conjugates of
an element of order q+1, which contradicts the exact factorization G = AB.

Now consider case (2): m ≤ 3. If m = 2 we can apply a graph au-
tomorphism of L to take A = N(O−4 (q)), and we are done by Section 9.
So assume that m = 3. Then |B| = 1

3q
6(q4 − 1)(q2 − 1), and (7) gives a

factorization NG(O
ε
6(q)) = BN(O

ε
2(q
3)). For q > 2 there is no possible

such factorization, by [33]; neither is there for q = 2, ε = + (note that
O+6 (2)

∼= S8). For q = 2, ε = −, the only possibility is the factorization
arising from U4(2) = (9.3)P2 which we have seen in Section 6, leading to
the example

Sp6(2) = (Sp2(8).3) (2
4.A5),

seen in case (2i) of (10.3) above.

Case (10.5) Here A = Pm and B ≤ NG(Ω
−
2m(q)) (q even). We have

|B| = |G : A| =
∏m
i=1(q

i + 1). From [33] we see that A ∩ O−2m(q) fixes a
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totally singular (m− 1)-space, and hence we get a factorization

NG(Ω
−
2m(q)) = BPm−1.

There is no such factorization for m ≥ 3, by [33] (note that for m = 3 it
translates into a factorization of type U4(q) = BP1). Finally, m = 2 is also
not possible as Aut(L2(q

2)) has no subgroup of order (q2 + 1)(q + 1).

Case (10.6) Here A = NG(Spm(q) o S2) and B ≤ NG(Ω
−
2m(q)) (m even, q

even), and we get a factorization

NG(Ω
−
2m(q)) = BN(O

+
m(q)×O

−
m(q)).

Clearly B 6≥ Ω−2m(q), so there is no such factorization for m ≥ 4, by [33].
And for m = 2 we have |B| = 1

2q
2(q2 + 1), and the above factorization is

N(L2(q
2)) = BN(q2 − 1), which is not possible for q > 2.

Case (10.7) Here A = N2, B ≤ NG(Spm(q2)) (m ≥ 4 even, q = 2 or
4), and |B| = |G : A| = q2m−2(q2m − 1)/(q2 − 1). From [33] we see that
A ∩NG(Spm(q2)) normalizes Sp2(q)× Spm−2(q2), so we get a factorization

NG(Spm(q
2)) = BN(Sp2(q)× Spm−2(q

2)) ≤ BN2.

Hence by [33], one of the following holds:

(1) q = 2, B ≤ N(Spm/2(16))

(2) m = 6, B ≤ N(G2(q2)).

In case (1), repetition of the above considerations yields a factorization
NG(Spm/2(16)) = BN(Sp2(4) × Spm/2−2(16)), which implies by [33] that
either m = 12, B ≤ N(G2(16)), or m = 4, B ≤ N(17). In the latter case
|B| cannot be divisible by 5, a contradiction. In the former, as G2(16) and
its automorphism groups have no proper factorizations (see [33, Theorem
B]), we have B ≥ G2(16), contrary to the above formula for |B|.

In case (2), the factorizations of G2(q
2) imply that q = 2 and B .

SU3(4), G2(2) or J2. None of these are possible by the formula for |B|.

Case (10.8) Here A = NG(Spm(q
2)), B ≤ N2 (m ≥ 4 even, q = 2 or 4),

and projecting to the Sp2m−2(q) factor of N2, we get a factorization

N(Sp2m−2(q)) = B̄ N(Sp2(q)× Spm−2(q
2))

where B̄ is the projection of B. As in the previous case this forces m = 4
and B̄ . G2(q). However, as in case (3ii) of (10.3) above, A and G2(q)
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both contain conjugates of an element of order q + 1 in G, which gives a
contradiction.

Case (10.9) Here A = NG(Sp2m(q
1/2)), B ≤ NG(Ω

−
2m(q)) (q = 4 or 16),

and

|B| = |G : A| = qm
2/2

m∏

i=1

(qi + 1). (8)

From [33] we have A∩O−2m(q) = O2m−1(q
1/2)× 2, so there is a factorization

NG(Ω
−
2m(q)) = BN(O2m−1(q

1/2)) ≤ BN1.

For m = 2 or 3, neither Aut(L2(q
2)) nor Aut(U4(q)) has a subgroup of the

order required by (8). And for m ≥ 4, the above factorization implies by
[33] that either B ≤ N(SUm(q)) with m odd, or B ≤ N(Ω−m(q

2)) with m
even, q = 4. Neither of these is possible, again by (8).

Case (10.10) As Sz(q) and its automorphism groups do not have proper
factorizations, the only possibility here is that A = N(Sz(q)) and B ≤
N(O+4 (q)) (see [33]). Then |B| = |G : A| = q

2(q2 − 1)(q + 1). However
it is easy to see that there is no subgroup of this order in N(O+4 (q)) (≤
Aut(L2(q)

2)) for q = 22a+1 ≥ 8.

Case (10.11) As G2(q) and its automorphism groups do not have proper
exact factorizations, we must have A = N(G2(q)). By [33] we have Ω

+
8 (q) =

Sp6(q)N1 (where the Sp6(q) factor acts irreducibly), and the intersection
of the two factors is G2(q). Hence the action of L = Sp6(q) on the cosets
of G2(q) is contained in that of Ω

+
8 (q) on N1. The possibilities for regular

subgroups of Ω+8 (q) in this action are determined in Section 9; they are given
in the last two rows of the table in Proposition 9.2. Inspection of the proof
of this proposition shows that the subgroups B = S5, L2(16).4 in these rows
lie in an irreducible subgroup Sp6(q) of Ω

+
8 (q), and hence these examples

carry over to this case, and are recorded in Table 16.1.

Case (10.12) We have already dealt with L = PSp4(3) ∼= U4(2) in Section
6. In the remaining cases L is either PSp6(3) or Sp8(2). We consider
maximal factorizations of G containing AB which have not already been
considered in previous cases.

Let L = PSp6(3). The maximal factorization of L to be considered
here has factors L2(13) and P1, intersecting in a subgroup of order 3. If
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A = L2(13) then G = L; however P1 has no subgroup of index 3. And, A
cannot be P1 either, since L2(13) has no subgroup of index less than 14.

Now let L = Sp8(2). There are two factorizations to consider here. In
one, the factors are S10 and O

−
8 (2).2, intersecting in a subgroup S7 × S3.

Now S10 does not have a suitable exact factorization, so A = S10 and B is a
proper subgroup of O−8 (2).2. Since 17 divides the order of B, it follows from
[9, p. 89] that B is a subgroup of L2(16), which is clearly impossible by
considering the power of 2. In the other factorization, the factors are L2(17)
and O+8 (2).2, intersecting in a subgroup D18. Now O

+
8 (2).2 has no subgroup

of index 18, so A = O+8 (2).2, of index 136. However, L2(17) does not have
a suitable exact factorization, as it has a unique class of involutions.

11 Proof of Theorem 1.1: orthogonal groups of
plus type

In this section we prove Theorem 1.1 in the case where G has socle L =
PΩ+2m(q) (m ≥ 4).

Suppose G = AB, A ∩ B = 1 and A max G. By [33] and Lemma 2.6,
one of the following holds (if necessary replacing A by its image under some
automorphism of L):

(11.1) A = N1;

(11.2)B ≤ N1 andA = Pm, Pm−1, NG(SLεm(q)), NG(PSp2(q)⊗PSpm(q))
(m even, q > 2), NG(Ω

+
m(q

2)) (m even, q = 2, 4), or NG(Ω
−
8 (q

1/2)) (m = 4,
q square);

(11.3) A = N−2 and B ≤ Pm, Pm−1 or NG(SLm(q)) (q = 2, 4);

(11.4) A = P1 and B ≤ NG(SUm(q)) (m even);

(11.5) A = NG(SUm(q)) and B ≤ P1 (m even);

(11.6) A = N+2 and B ≤ NG(SUm(q)) (q = 4, m even);

(11.7) A = NG(SUm(q)) and B ≤ N
+
2 (q = 4, m even);

(11.8) L = PΩ+16(q), A = NG(Ω9(q)) and B ≤ N1;

(11.9) L = Ω+24(2), A = Co1 and B ≤ N1;

(11.10) L = PΩ+8 (q) (q = 2, 3, 4), and the factorization G = AB is
contained in one in the bottom half of [33, Table 4].

Note that when m = 4 some apparently missing cases are omitted above
because of the presence of the triality automorphism of L = PΩ+8 (q) — for
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example, the case where A = P1, B ≤ Ω7(q) is in fact included under (11.2),
since triality sends P1 to P3 or P4 and sends Ω7(q) to N1; likewise, the cases
where A = N+2 or N

−
2 , and B ≤ Ω7(q), are also under (11.2) as triality

sends N+2 to NG(SL4(q)), and N
−
2 to NG(SU4(q)). (For ε = + or − we

write SLεm(q) for SLm(q) or SUm(q) respectively.)

Case (11.1) This has been handled in Section 9.

Case (11.2) Here B ≤ N1 and we have a factorization

N1 = B (N1 ∩A). (9)

By arithmetic, B does not contain Ω2m−1(q), so the possibilities are given
by the factorizations of Ω2m−1(q) in [33].

If A = Pm or Pm−1, then |B| = |G : A| =
∏m−1
i=1 (q

i + 1) and (9) gives
NG(Ω2m−1(q)) = B Pm−1. Hence by [33], one of the following holds:

(1) B ≤ NG(Ω
−
2m−2(q))

(2) m = 4, q = 3 and B lies in the normalizer of S9, Sp6(2) or 2
6.A7.

In case (1) we get a factorization NG(Ω
−
2m−2(q)) = B Pm−2, which forces

m = 4, q = 3 and B ≤ NG(L3(4)) (the L3(4) lying in a subgroup N
−
2 of

L). But NG(L3(4)) has no subgroup of order (3+ 1)(3
2+1)(33+1) (see for

example [9]). Likewise, neither do the normalizers of S9, Sp6(2) or 2
6.A7,

so case (2) is also out.

Next consider A = N(SLεm(q)). Then

|B| =
1

t
qm(m−1)/2

m−1∏

i=1

(qi + εi),

where t ≤ 4. Now (9) gives a factorization of type O2m−1(q) = BN(SLεm−1(q)) ≤
BN ε1. By [33], the only maximal factorizations of O2m−1(q) with one factor
N ε1 and the second divisible by |B| have the second factor equal to N

−ε
1 ,

with q = 2 or 4. This leads to a factorization of type N(O−ε2m−2(q)) = BN1.
However, Lemma 4.4 implies that there is no factorization of O−ε2m−2(q) with
one factor N1 and the other divisible by |B|. This forces B ≥ Ω

−ε
2m−2(q), but

this contradicts the formulae given above for |B|.

Now suppose that A = NG(PSp2(q)⊗ PSpm(q)) (m even, q > 2). Here

|B|p′ = (
∏m

2
−2

i=0 (q
m+2i − 1))/(q2 − 1), and (9) gives rise to a factorization of

type O2m−1(q) = BN(PSp2(q)⊗PSpm−2(q)) ≤ BN
+
1 . However, [33] shows

that there is no such factorization with the given value of |B|p′ .
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Next let A = NG(Ω
+
m(q

2)) (m even, q = 2, 4). Here |B| = 1
4q
m2/2(q2m−2−

1)(q2m−6 − 1) ∙ ∙ ∙ (q2 − 1), and (9) gives a factorization of type Sp2m−2(q) =
BO+m−1(q

2) < BP1. Clearly B 6≥ Sp2m−2(q), so from [33] we see that either
B ≤ N(Sp2a(qb)) (ab = m− 1, b > 1) or B ≤ N(G2(q)) (m = 4). The first
case is impossible since |N(Sp2a(qb))| is not divisible by the above expression
for |B|. In the second case we must have B ≥ G2(q)′, and now we see as in
the case (3ii) of (10.3) above, that A and G2(q) both contain conjugates of
an element of order q+1, which contradicts the exact factorization G = AB.

To complete this case (11.2), assume now that A = NG(Ω
−
8 (q

1/2)) (m =
4, q square). Then |B| = q6(q + 1)(q3 + 1)(q4 − 1) and A ∩ N1 / G2(q1/2),
so (9) gives a factorization of type O7(q) = BG2(q

1/2) < BG2(q). Hence
[33] implies that B ≤ N(Ω−6 (q)). However |Ω

−
6 (q)| = |B| ∙ (q − 1) and q > 2

(since q is square), so this is impossible.

Case (11.3) Here |B| = 1
2q
2m−2(qm − 1)(qm−1 − 1)/(q + 1). If B ≤ P

with P = Pm or Pm−1, the stabilizer of a totally singular m-space W ,
then A ∩ B fixes an (m − 2)-subspace of W , so writing B̄ = BQ/Q we
get a factorization of type GLm(q) = B̄Pm−2. By [33] this forces either
B̄ ≥ SLm(q) or m = 5, q = 2 and B̄ ≤ ΓL1(25), both of which possibilities
conflict with the above formula for |B|. Similarly if B ≤ NG(SLm(q)) we
get a factorization NG(SLm(q)) = BN2,m−2, which forces B ≥ SLm(q), a
contradiction.

Case (11.4) Here |B| = (qm − 1)(qm−1 + 1)/(q − 1) and we have a fac-
torization NG(SUm(q)) = BP1, which by [33] forces m = 4, q = 3 and
B ≤ N(L3(4)). But N(L3(4)) has no subgroup of order 28 ∙ 40, a contradic-
tion.

Case (11.5) Here |B| = 1
t q
m(m−1)/2∏m−1

i=1 (q
i + (−1)i) with t ≤ 4, and

writing B̄ = BQ/Q (where Q is the unipotent radical of P1), we have a
factorization of type O+2m−2(q) = B̄P1. This forces B̄ ≥ Ω

+
2m−2(q) by [33],

which is impossible.

Case (11.6) Here |B| = 1
2q
2m−2(qm − 1)(qm−1 + 1)/(q − 1) and we have a

factorization NG(SUm(q)) = BN2, giving a contradiction using [33].

Case (11.7) Here |B| is as in (11.5) and the factorization N+2 = B(A∩N
+
2 )

gives rise to a factorization of type O+2m−2(4) = BN(SUm−2(4)) ≤ BN
+
2 .

This leads to the usual contradiction using [33].
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Case (11.8) Here L = PΩ+16(q), A = NG(Ω9(q)) and B ≤ N1. From
[33, Appendix 3] we see that A ∩ N1 . Ω7(q), fixing a non-degenerate 8-
dimensional subspace of the underlying 16-dimensional orthogonal space for
G. Thus (9) gives rise to a factorization of type O15(q) = BN8. However
there is no such factorization unless B ≥ Ω15(q), which is a contradiction.

Case (11.9) Here A ∩ N1 = Co3 by [33, Lemma B, p.79], so (9) gives a
factorization Sp22(2) = BCo3. However there is no such factorization with
B proper in Sp22(2), a contradiction.

Case (11.10) Consider first L = Ω+8 (2). Then, adjusting A,B by a triality
automorphism of L if necessary, and noting that the case A = N1 has been
done in Section 9, we may assume that one of the following holds:

(a) A = A9, B ≤ N1, P1 or N
−
2 ;

(b) A = P1 or N
−
2 , B ≤ A9;

(c) A = A25.2
2, B ≤ N1.

Consider (a). If B ≤ N1 then since A ∩N1 = L2(8).3 (see [33]), we have a
factorization N1 = Sp6(2) = B(L2(8).3). This is considered in case (2i) of
(10.3), where it is shown that there is a unique possible such exact factor-
ization with B = 24.A5; hence we have the example

Ω+8 (2) = A9 (2
4.A5)

in Table 16.1.

When B ≤ P1 (still in case (a)), apply triality to take A = A9 to be
embedded in Ω+8 (2) with the natural module V = V8(2) being an irreducible
constituent of the permutation module for A over F2, and B ≤ P3 or P4 (see
[9, p.85]). Write vectors of V as subsets of {1, . . . , 9} of even size (addition
being symmetric difference), and define W to be the 4-space spanned by
the vectors 1234, 1256, 1278, 1357. Then W is totally singular and an easy
check shows that CA(W ) = 1. We know from [33] that L = ALW and
A∩LW = 23.L3(2); moreover if we write LW = QR where Q = CL(W ) = 26

is the unipotent radical, and R ∼= L4(2) a Levi subgroup, then A ∩ Q = 1.
Hence (9) gives a factorization LW = B(A ∩ LW ), which forces B to be of
the form Q.F , where F ≤ R is a group of order 15 such that R = L4(2) =
(23.L3(2))F . Hence we have the example

Ω+8 (2) = A9 (2
6.15)

in Table 16.1.
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To complete case (a), suppose B ≤ N−2 . Note that |B| = |L : A| = 2
6 ∙3∙5

and N−2 = (3 × U4(2)).2. It follows using [9, p.26] that B ≤ (3 × 2
4.A5).2

with index 6, and hence that B = 24.A5 or (3 × 24.D10).2. The first case
has been handled above, so assume B = (3 × 24.D10).2. By the 24.A5 case
above, the subgroup 3 × 24.D10 is semiregular on L/A with 2 orbits. The
normalizer of the D10 in A5.2 = S5 is 5.4, and hence there are no involutions
in B\(3× 24.D10). It follows that B is regular on L/A, giving the example

Ω+8 (2) = A9 (3× 2
4.D10).2

in Table 16.1.

Now consider case (b). If A = P1, then |B| = 135 and A∩A9 = 23.L3(2).
But A9 has no exact factorization of the form B(2

3.L3(2)). And if A = N
−
2 ,

then |B| = 1120 and A ∩ A9 = 33.S3, but there is no exact factorization
A9 = B(3

3S3), a contradiction.

Finally consider (c): A = A25.2
2, B ≤ N1. Here B ≤ Sp6(2) and |B| =

12096, which forces B = G2(2), giving a possible exact factorization Ω
+
8 (2) =

(Ω+4 (4).2
2)G2(2). However the two factors in fact share an element of order

3, as in (3ii) of (10.3), which gives a contradiction.

This completes the analysis for L = Ω+8 (2).

Now suppose that L = PΩ+8 (3). Again adjusting A,B by a triality
automorphism of L if necessary, and noting that the case A = N1 has been
handled in Section 9, we may assume that one of the following holds:

(a) A = NG(Ω
+
8 (2)), B ≤ N1, P1 or P13;

(b) A = P1 or P13, B ≤ NG(Ω
+
8 (2));

(c) A = N(26.A8), B ≤ P1;

(d) A = P1, B ≤ N(26.A8).

Consider case (a). Here |B| = |G : A| = 37 ∙ 13. Suppose B ≤ P1 = QR,
where Q = 36 and R = L4(3).[2

a] (a ≤ 3). From [33, p.107] we have
A ∩ P1 ∩ L = (3 × PSp4(3)).2, and hence, writing bars for images modulo
Q, we have a factorization of type L4(3) = B̄ PSp4(3). It follows that
B∩Q = 33 and B = 33.(33.13.3). However a computation using Magma [6],
kindly carried out for us by Michael Giudici, showed that no such regular
subgroups exist for this action.

If B ≤ P13 then as B has odd order it also lies in P1, a case already
considered. And if B ≤ N1 then by [33] we have A∩N1 ∩L = 26.A7, giving
a factorization of type O7(3) = B (2

6.A7). Hence from [33] we see that B
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lies in a parabolic subgroup of N1, hence in a parabolic of G, which we have
already excluded.

Now consider (b). If A = P13 then |B| = 28 ∙ 5 ∙ 7; however O
+
8 (2) has

no subgroup of this order, so this is impossible. Now assume that A = P1.
Then |B| = 1120 and A ∩ Ω+8 (2) = (3 × U4(2)).2. Hence the factorization
NG(Ω

+
8 (2)) = B (A ∩ NG(Ω

+
8 (2)) implies that B lies in the normalizer of

either Sp6(2) or A9. The latter is impossible as neither A9 nor S9 has
a subgroup of order 1120. The former case gives a factorization of type
Sp6(2) = BN(SU3(2)) ≤ BO

−
6 (2). Hence, using [33] and the fact that

|B| = 1120, we see that B ≤ N(Ω+6 (2)) = N(A8). However this does not
have a subgroup of order 1120.

In case (c), we have |B| = 310 ∙5∙13; but the Levi factor L4(3) of P1 has no
subgroup of odd order divisible by 5 ∙13; similarly, in case (d), |B| = 25 ∙5 ∙7,
but N(26.A8) has no subgroup of this order.

This completes the analysis for L = PΩ+8 (3).

Finally, note that for L = Ω+8 (4), the factorizations given at the bottom
of [33, Table 4] have already been considered in versions adjusted by triality,
under (11.2) and (11.3).

The proof of Theorem 1.1 for classical groups is now complete.

12 Proof of Theorem 1.1: exceptional groups of
Lie type

In this rather brief section, we note that when L is an exceptional group
of Lie type, all (maximal or non-maximal) factorizations of L and its auto-
morphism groups are given in [33, Table 5] (taken from [19]), and it is clear
from the short list of factorizations in this table that none of them is exact.
Theorem 1.1 for exceptional groups follows immediately.

13 Proof of Theorem 1.1: alternating groups

A complete description of the exact factorizations of the alternating and
symmetric groups appears in the paper of Wiegold and Williamson [43].
We analyze their results to obtain our Table 16.2. An alternative starting
point would be [33, Theorem D and Remark 2], which gives all the maximal
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factorizations. We postpone dealing with the automorphisms of A6 outside
S6 till the end of this section.

Thus G is Am or Sm, acting naturally on the set Ω of size m ≥ 5. Assume
that G = AB with A a maximal subgroup and B regular on the set of cosets
of A in G. The general case to consider is where for some k with 1 ≤ k ≤ 5,
one of A and B normalizes a subgroup Am−k of G acting naturally on a
subset Γ of Ω of size m− k, and the other is k-homogeneous on Ω. (In fact,
this is so unless m is 6 or 8, cases considered later.)

Assume first that Am−k is normal in A. By maximality of A, it follows
that A = G ∩ (Sm−k × Sk). Then B is sharply k-homogeneous on Ω. If
k = 1, we get the standard examples Sn = Sn−1 B with B regular on Ω, and
similarly for An. For k > 1 we use Kantor’s list [23]; the possibilities are
listed in [43]. For k = 2, we see that B must have odd order and it follows
that m = q is a prime power congruent to 3 mod 4 and B is a subgroup of
AGL1(q) of order q

q−1
2 , yielding the example

Aq = Sq−2 ([q]
q − 1
2
)

in Table 16.2. For k = 3 we get the two examples with

A32 = (A29 ×A3).2 (AΓL1(32)),

A8 = (A5 ×A3).2 (AGL1(8)).

There are no sharply k-homogeneous examples with k = 4 and k = 5.

Assume next that A is the k-homogeneous factor, which now must be
maximal in G. We consider the various cases in the Theorems in [43]. In
Theorem A there, G is alternating, and in Theorem S it is symmetric.

In case (AI) (of [43]), we have G alternating, A is sharply k-transitive
and B = Am−k. The possibilities are well known and are listed in [43,
Remarks, p.173]. Certainly k > 1 by maximality of A. Next, k > 2, since
there are no maximal sharply 2-transitive groups in Am. If k = 3 we have
A a Zassenhaus group; since A is sharply 3-transitive and maximal in Am,
we get A = PSL2(p

2).2 with p a prime congruent to 3 mod 4. This gives
examples in Table 16.2:

Ap2+1 = PSL2(p
2).2 (Ap2−2).

If k is 4 or 5, the only sharply k-transitive groups are the Mathieu groups
M11 and M12, and we get the examples

Am =Mm A7 (m = 11, 12).
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In case (AII), G is alternating and A is k-homogeneous but not k-
transitive on Ω. The possibilities are listed in [43, p.173]. Those leading
to maximal subgroups of G lead to the factorizations

A9 = (L2(8).3) S5,

A33 = (L2(32).5) (A29 ×A3).2,

Ap = (p.
p− 1
2
) Sp−2 with p prime, p ≡ 3 mod 4, p 6= 7, 11, 23,

Ap+1 = L2(p) Sp−2 with p prime, p ≡ 3 mod 4, p 6= 7, 11, 23.

Note that in the last two lines the congruence on p is needed to obtain
a factorization (see [43, Theorem A]); for p ≡ 1 mod 4, we shall meet the
corresponding factorizations for the symmetric groups below, which explains
why they appear in Table 16.2 with a *. The excluded values are there to
rule out non-maximal cases – they do occur below for the relevant symmetric
groups and hence appear in Table 16.2 with a †.

Next we consider the cases in Theorem S, where G is symmetric. In
case (SIi), we have precisely the trivial factorization Sm = Am 2, which
is ruled out by our conditions. In case (SIii), the maximal subgroup A
contains A ∩ Am as a subgroup of index 2 which is sharply k-transitive on
Ω, There is no such maximal subgroup with k = 1: it would have to be
primitive on Ω, so would have to be dihedral of order 2p, but that is not
maximal either. Further, there is no such maximal subgroup with k = 2:
A would have to be soluble, so A = AGL1(p) - but then the intersection
with the alternating group is no longer 2-transitive on Ω. Thus k = 3 and
A is maximal and contains a sharply 3-transitive subgroup of index 2; we
deduce that A = PΓL2(p

2) with p congruent to 3 mod 4, and we have seen
the correponding factorizations of the alternating groups above in case (AI).
In cases (SIiii) and SIIi), we have A sharply k-transitive on Ω. If k = 4 or
k = 5, there is no such maximal sharply k-transitive subgroup, and also
k > 1 by maximality. For k = 2, we have A = AGL1(p) with p a prime, and
we get the exact factorizations

Sp = AGL1(p) Sp−2

and
Sp = AGL1(p) (Ap−2 × 2) (p ≡ 1 mod 4).

For k = 3, we have A = PGL2(p) with p a prime (for maximality), and we
get the factorizations

Sp+1 = PGL2(p) Sp−2
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and
Sp+1 = PGL2(p) (Ap−2 × 2) (p ≡ 1 mod 4).

These are listed in Table 16.2, with appropriate remarks. In case (SIIii), A
is k-homogeneous but not k-transitive on Ω. The possibilities are listed in
[43, p.176]. None of these is maximal in Sm.

Next we consider the cases where m is 6 or 8 and neither A nor B
normalizes a large natural alternating subgroup – see cases (AIII) and (SIII)
of [43]. We obtain the exact factorizations

S6 = L2(5).2 B with B either C6 or D6,

A8 = AGL3(2) C15.

Finally, to complete the treatment of groups with alternating socle, we
consider the case m = 6 where G contains an automorphism of A6 not
contained in S6. By [9], maximal subgroups of G have intersection with A6
of order 10, 36 or 8, so the index is 36, 10 or 45, respectively. There is no
subgroup of order 45, so the last is out. If A∩A6 = D10, since there is only
one class of involutions in A6 and since the factorization is exact, we must
have B ∩ A6 = 32 and G = A6.22. Thus B = 3222. On the other hand, the
extension A6.23 is non-split, so this cannot work. Finally, in the remaining
case A = N(32), there are factorizations both with B = C10 and B = D10
in G = A6.22 = PGL2(9): here B < D20; the cyclic group C10 (the Singer
cycle in PGL2(5)) is clearly transitive in the action of degree 10, and since
D20 is isomorphic to D10 ×C2, there is also a dihedral subgroup D10 which
is transitive.

This completes the consideration of groups with alternating socles.

14 Proof of Theorem 1: sporadic groups

We argue separately for each of twelve sporadic simple groups (and their
automorphism groups) which have a factorization. By [33], these are the five
Mathieu groups, J2,HS,He,Ru, Suz, F i22 and Co1. Suppose that G = AB,
A ∩ B = 1 and A max G. We aim to show that this exact factorization is
in Table 16.3, and that all such factorizations exist.

Case M11: Since M11 has a unique conjugacy class of involutions, either
A or B has odd index in L. From the list of factorizations in [33], we see
that B cannot have odd index. Hence |L : A| is odd. If A =M10, we get

M11 =M10 11



66 M.W. LIEBECK, C.E. PRAEGER AND J. SAXL

as the only possibility. If A =M9.2, we get

M11 = (M9.2) (11.5)

as the only possibility. And if A = 2S4, there are no possibilities for B.

Case M12: First consider the factorization M12 = M11A5 coming from
Lemma 2.6. Here the intersection of the factors has order 5. Taking a
subgroup of index 5 in A5, we get the exact factorization

M12 =M11 A4.

This is the only factorization arising here: for if A = M11 then G = M12,
since M11 is not maximal in M12.2; and B is not in M11 since that has no
subgroup of index 5.

Now we consider the factorizations arising in [33]. If A = M11, we get
exact factorizations for various subgroups B of order 12; we already noted
the factorization with B = A4, but others exist: a regular B = D12 can be
seen as a subgroup of L2(11), and a regular B = 2

2 × 3 can be seen as a
subgroup of A4 × S3. Next let A = L2(11). Since M12 = L2(11) M11 with
intersection of factors being 11.5 and since M11 = (11.5)M9.2 is an exact
factorization, we get the exact factorization

M12 = L2(11) (M9.2),

given in Table 16.3.

Now A cannot beM10.2 orM9.S3, since it is easy to see that M12 has no
subgroups of order 66 or 220. And A cannot be one of 2×S5, 42.D12, A4×S3:
here B would be a subgroup of M11 of index 20, 16, 6, which is impossible.

Case M22: The only maximal factorization to consider here (containing
G = AB) is M22.2 = (L2(11).2) (L3(4).2). Now A cannot be L2(11).2 since
the index of this in M22.2 is 672 and L3(4).2 has no subgroup of order 672
([9, p. 23]). On the other hand, if A = L3(4).2 =M21.2, we get

M22.2 = (M21.2) D22

as the only possibility. This is an exact factorization: for by [9], the involu-
tion in the normaliser of an 11-subgroup is in class 2C, being a power of an
element of order 10, and these involutions are fixed point free in the natural
action of degree 22. On the other hand, M22.2 has no cyclic subgroup of
order 22, so there is no other possibility for an exact factorization here.
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Case M23: This is very similar to the case M11. Since M23 has a unique
conjugacy class of involutions, A has odd index or odd order. If A has odd
order, then A = 23.11. Now B < M22 is not possible, since M22 has no
subgroup of index 11. Hence we get precisely the two exact factorizations

M23 = (23.11) (L3(4).2)

and

M23 = (23.11) (2
4A7),

as in Table 16.3. Assume now that the index of A is odd. If A = M22, the
only possibility is

M23 =M22 23.

If A is L3(4).2 or 2
4A7, we get the first two examples with A and B swapped.

Finally, the maximal subgroup of index 1771 does not appear as a factor in
a factorization.

Case M24: First let A = M23. There are subgroups of order 24 regular
here. For example, considering the factorization M24 = M23 L2(23) we see
that

M24 =M23 D24

is an exact factorization. And, considering the factorizationM24 =M23 L2(7),
we see that

M24 =M23 S4

is an exact factorization. Next let A = L2(23). Then B is a subgroup of one
of M23,M22.2, 2

4A8, L3(4).2 of index 253, 22, 8, 1, respectively. Thus we get
precisely the exact factorizations

M24 = L2(23) (L3(4).2)

and

M24 = L2(23) (2
4A7),

as in Table 16.3. Next, if A isM22.2, 2
4A8 or L3(4).S3, then B is a subgroup

of L2(23) of index 22, 8 or 3, which is impossible. Finally, if A isM12.2, 2
63S6

or 26(L3(2) × S3) then B is a subgroup of M23. But B has order divisible
by 23, forcing B = 23.11, which is not so.

Case J2: First consider the factorization of J2 with factors U3(3) and
A5 × D10. The intersection of the factors has order 6. Since U3(3) has no
subgroup of index 6, we must have A = U3(3) of index 100 and B contained
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in the normalizer of a Sylow 5-subgroup. This does not lead to a factorization
of the simple group by [33, p. 119] . Thus we are searching for subgroups B
of J2.2 which are regular in the action of degree 100. We claim that there is
a subgroup B = 52.4 acting regularly: The argument in [33, p. 119] implies
that the elements of order 4 which lie in U3(3).2 are of type 4B whereas
those normalizing a Sylow 5-subgroup are of type 4C. Since the elements
of type 4C square to involutions 2B which are not represented in U3(3).2,
the assertion follows. It is also not hard to see that no subgroup B = 52.22

would do.

Case HS: The factorizations to consider here all have one of the factors
intersecting L in M22, whereas the other intersects L in U3(5).2, (5 : 4)×A5
or [5325]. There is only one exact factorization of an automorphism group
of M22; it is quite easy to see that this forces A to normalize M22 and B to
be regular of degree 100. Also, B must normalize a 5-subgroup. Looking
at the permutation character of degree 100, all involutions in B must be of
type 2B. If B were contained in a subgroup U3(5).2, then B ∩ U3(5) would
have even order. However all involutions in U3(5) are conjugate and are of
type 2A, so this is not possible.

Suppose that B contains no elements of order 4. Then, since the only
involutions in B are of type 2B, it follows that B ⊂ HS. Now the maximal
subgroup [5325] of HS ∙ 2 meets HS in the intersection of two maximal
subgroups U3(5).2, so if B were contained in a subgroup [5

325], then B
would contain an involution from some U3(5), which is not the case. Thus
B < (5 : 4) × A5, and in fact B lies in the normaliser (5 : 4) × (5 : 2) of
a 52 in this subgroup. Hence B contains a conjugate of every involution in
(5 : 4) × (5 : 2). However this group contains an element of type 4A that
squares to an element of type 2A, which is a contradiction.

Thus B contains elements of order 4. Now the only fixed point free
elements of order 4 are of type 4A or 4F , but the square of an element of
type 4A has type 2A. Thus all elements of order 4 in B must have type 4F ,
and in particular G = HS.2 (hence the * symbol in Table 16.3). We claim
that there is a subgroup of order 100 in HS.2 acting regularly. Consider
the factorization HS =M22 5.4×A5. mentioned above. The second factor
contains a normal subgroup P of order 5 with non-trivial elements of type
5B. The normalizer of P in HS.2 is 5.4×S5. Let Q be a Sylow 5-subgroup of
the S5, and let x be an element of order 20 centralizing P and normalizing Q.
This must then be an element of type 20C, as it must square to an element
of type 10B. It follows that all non-trivial powers of x are fixed-point-free,
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and the group of order 100 generated by P,Q, x is the regular subgroup we
want.

Case He: The maximal factorizations here have one factor intersecting
L in Sp4(4).2 and the other either in 7

2SL2(7) or 7
1+2(S3 × 3). Since the

intersection of the factors is smaller than the index of the largest proper
subgroup of Sp4(4).4, it follows that A must be the normalizer of Sp4(4)
and B is regular of order 2058 = 736. It follows that B lies in the normalizer
of a Sylow 7-subgroup. By [33, p. 120] , it follows that G = He.2 (hence
the * symbol in the Table). We claim that He.2 does have a subgroup B of
order 2058 which is regular. It will suffice to show that an element of type
6E normalizes a Sylow 7-subgroup: for, its non-trivial powers are all fixed-
point-free, as are also all the 7-elements, as we see from the permutation
character in [9, p. 104]. We refer to [33, p. 120]. The centre C of a Sylow
7-subgroup P is a subgroup of order 7 with all 7-elements of type 7C. We
consider C as subgroup of the maximal subgroup 3S7 × 2; there we see an
element of type 3B acting on C and an element of type 2C centralizing 3S7,
yielding an element of type 6E normalizing C and hence P , as required.

Case Ru: The only maximal factorization has factors 2F4(2) and L2(29),
intersecting in a group of order 3. Hence there are no exact factorizations.

Case Suz: The maximal factorizations of Suz here have one factor G2(4)
and the other either U5(2) or 3

5M11, of indices 1782, 32760 and 232960,
and similarly for Suz.2. Sylow theory shows that Suz and Suz.2 have no
subgroup of order 1782 = 2.34.11, so A∩L is not G2(4). On the other hand,
G2(4) has no exact factorizations.

Case Fi22: The maximal factorization to consider in this case is Fi22 =
2U6(2)

2F4(2)
′ and the corresponding factorization of Fi22.2. Now A ∩ L

is not 2U6(2), since
2F4(2) and

2F4(2)
′ have no proper factorizations. If

A ∩ L = 2F4(2)
′, then B has order 263677. We see from [9, p. 115] that

there is no suitable subgroup in U6(2).

Case Co1: In the maximal factorizations here, one of the factors is a
smaller Conway group while the other is the normalizer of one of 3.Suz or
A4×G2(4). Since the smaller Conway groups have no proper factorizations,
it follows that A is a smaller Conway group, of index either 23.33.5.7.13 or
211.32.5.7.13. Inside 3.Suz.2, the only maximal subgroup of order divisible
by either is G2(4). On the other hand, G2(4) has no subgroups of suitable
orders - see [9, p. 97].
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15 Proof of Theorem 1.4 and Corollary 1.3

Most of this section is concerned with proving Theorem 1.4. At the end can
be found the very short proof of Corollary 1.3.

For the proof of Theorem 1.4, we make the following assumptions.

(1) B < G ≤ Sn with G primitive, and B regular on Ω, where |Ω| = n;

(2) T ≤ B ≤ Aut(T ), where T is a nonabelian simple group;

(3) N is a minimal normal subgroup of G, with N = U1 × . . .× Uk ∼= Uk,
where U is simple and k ≥ 1; and πi : N → Ui is the natural projection
map, for i = 1, . . . , k.

First we reduce to the case where T ≤ N . We shall use the fact that
|Out(T )| < |T |, and we note that this implies that n = |B| < |T |2.

Lemma 15.1 The simple group U is nonabelian, and either

(i) G ≤ D(2, T ), with soc(G) ∼= T 2 and B = T ∼= U ; or

(ii) T ≤ N , and N is the unique minimal normal subgroup of G.

Proof Since B is regular, |T | divides n, and in particular n is not a prime
power, so N is not elementary abelian. Thus U is a nonabelian simple
group, and so G permutes {U1, . . . , Uk} transitively by conjugation. Since
G is primitive, its normal subgroup N is transitive, so G = NGα, where
α ∈ Ω, and Gα is also transitive on {U1, . . . , Uk}.

Suppose first that T centralises N . Then CG(N) is a nontrivial nor-
mal subgroup of the primitive group G, and by the O’Nan–Scott Theorem
[11, Chapter 4] it follows that CG(N) and N are both regular on Ω, are
isomorphic to each other, and G ≤ D(2, U) o Sk with k ≥ 1. Thus we
have T ≤ CG(N) ∼= N ∼= Uk. Since both T and U are simple, we have
|T | ≤ |U |. On the other hand, by the observation made before the proof,
|CG(N)| = |U |k = n < |T |2. It follows that k = 1, and so G ≤ D(2, U). If
T = CG(N), then T is regular on Ω, and so B = T ∼= U and part (i) holds.
So suppose that T is a proper subgroup of CG(N). Now N is the centraliser
in G of CG(N), and so B ∩ N = 1 and B is isomorphic to a subgroup of
G/N ≤ Aut(U). That is to say, we have a simple proper subgroup T of a
nonabelian simple group U such that M := NAut(U)(T ) has order divisible
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by |B| = |U |. Now |M | divides |Out(U)| ∙ |M ∩ U |, and M ∩ U is a proper
subgroup of U , so |U : M ∩ U | divides |Out(U)|. However this does not
hold for any nonabelian simple group U and proper subgroup M ∩ U (see
for example [25, 5.2.2]).

Thus we may assume that T does not centralise N , and therefore B ∩
CG(N) = 1. Suppose that T 6≤ N . Then, since B is almost simple, B∩N = 1
and B is isomorphic to a subgroup of Out(N) = Out(U) oSk. Since Out(U)
is soluble, it follows that B is isomorphic to a subgroup of Sk. Thus n
divides k!. Let α ∈ Ω and H := Nα. As we noted above, Gα is transitive by
conjugation on {U1, . . . , Uk}, and since Gα normalises H it follows that Gα
permutes the projections πi(H) (1 ≤ i ≤ k) transitively. If the πi(H) = Ui,
then H ∼= U ` for some proper divisor ` of k, and so n = |N : H| = |U |k−` and
k− ` ≥ k/2. It follows that, for any odd prime divisor p of |U |, pk−` divides
n, and hence divides k!. However the largest exponent of p that divides k!
is [(k − 1)/(p− 1)] < k/2. Thus the projections πi(H) are all isomorphic to
a proper subgroup R of U , and by the O’Nan–Scott Theorem [11, Chapter
4], H ∼= Rk and n = mk where m = |U : R|. In this case we deduce that pk

divides k! for any prime p dividing m, and we have a contradiction as in the
previous case. Thus T ≤ N .

Suppose now that G has a second minimal normal subgroup M distinct
from N . Then T ≤ CG(M), and the argument of the first part of the proof,
with N and M interchanged, shows that part (i) holds. Finally, if N is the
unique minimal normal subgroup of G then part (ii) holds.

By Lemma 15.1, U is a nonabelian simple group and so G acts transi-
tively by conjugation on {U1, . . . , Uk}. Let π : G → Sk be the homomor-
phism corresponding to this action.

Lemma 15.2 One of the following holds.

(i) G ≤ D(2, T ), with soc(G) = T 2 and B = T ∼= U ;

(ii) G ≤ H o Sk in product action, where U ≤ H ≤ Aut(U), k ≥ 2,
π(B) 6= 1, and B 6= T ;

(iii) k = 1.

Proof Suppose that neither case (i) nor case (iii) holds. Then k ≥ 2
and, by Lemma 15.1, T ≤ N ∼= Uk so that |T | ≤ |U |, and N is the unique
minimal normal subgroup of G. Also, as we observed above, |T | > n1/2. If
n = |U |` for some integer ` ≥ k/2, then we have |U | ≥ |T | > |U |`/2 which
implies that ` = 1 and k = 2. By the O’Nan–Scott Theorem, we have in
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this case that G ≤ D(2, U). The argument in the second paragraph of the
proof of Lemma 15.1 yields that part (i) holds, contrary to our assumptions.
Thus n is not of this form.

Let α ∈ Ω. It now follows from the O’Nan–Scott Theorem that Nα =
R1× . . .×Rk = Rk with Ri < Ui and Ri ∼= R, a proper subgroup of U , and
G ≤ H oSk ≤ Sm oSk in product action on Ω = Ωk0, where m = |Ω0| = |U : R|
and U ≤ H ≤ Aut(U). Let M = G ∩ Skm, and note that N ≤M .

Next we show that π(B) 6= 1. Suppose that this is not so. Then B ≤
M . Let α = (α1, . . . , αk), and for i = 1, . . . , k, let Mi denote the setwise
stabiliser in M of {γ ∈ Ω|γi = αi}. Then Mα = ∩ki=1Mi, and for each
i, M factorizes as M = Mi(∩j 6=iMj). Since B ≤ M and B is transitive,
we have also, setting Bi := B ∩Mi, the equality |Bi| = |B|/|Ω0| and the
factorization B = Bi(∩j 6=iBj) for each i. If k ≥ 3, these factorizations
are called strong multiple factorizations, and all such factorizations of finite
almost simple groups B have been classified in [3]; in none of the examples
are the subgroups Bi all of the same size. Thus k = 2. In this case we have
B = B1B2 and B1 ∩ B2 = Bα = 1. All factorizations of a finite almost
simple group B in which the factors B1, B2 have the same order have also
been classified in [3], and for none of them do the factors intersect in the
identity subgroup. This contradiction proves that B 6≤ M , or equivalently,
that π(B) 6= 1. In particular, since T ≤ N ≤M , this means that B 6= T .

Proof of Theorem 1.4.

Let T,B,G,N be as defined at the beginning of this section, and suppose
first that B = T . If G ≤ D(2, T ) with soc(G) = T 2, then part (ii) of
Theorem 1.4 holds. So we now assume that this is not the case. Then
by Lemmas 15.1 and 15.2, it follows that G is almost simple with socle N
containing T . If N = An then |T | = n, and part (i) of Theorem 1.4 holds,
so assume that N 6= An. Then it follows from Theorem 1.1, and inspection
of Tables 16.1 to 16.3, that T,G satisfy one of the first three lines of Table
2 in part (iii) of Theorem 1.4.

Thus we may assume that B 6= T . Suppose first that G is almost simple.
If G contains An then part (i) holds, so assume this is not the case. Then,
by Theorem 1.1 and inspection of Tables 16.1 to 16.3, B,G are as in one of
the lines of the second section of Table 2 in part (iii) of Theorem 1.4.

Assume now that k ≥ 2. Then, by Lemma 15.2, G ≤ H o Sk in product
action on Ω = Ωk0, where U ≤ H ≤ Aut(U), and Nα = R

k where m =
|Ω0| = |U : R|. Further, π(B) 6= 1. Suppose that G is chosen to satisfy
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these conditions, with k minimal subject to k ≥ 2. Let α = (δ, . . . , δ) ∈ Ω,
where δ ∈ Ω0.

We claim that π(B) is transitive. Since π(B) 6= 1, π(B) has an orbit
of length ` ≥ 2. Without loss of generality we may suppose that this orbit
is {1, . . . , `}. If ` < k, then C := {γ ∈ Ω|γi = δ for ` < i ≤ k} is a block
of imprimitivity for B in Ω, and the setwise stabiliser BC is regular on C
and is almost simple with socle T . Moreover, the setwise stabiliser in G of
C induces on C a primitive subgroup of H o S` in product action, and the
group BC projects onto a transitive subgroup of S`. This contradicts the
minimality of k, and hence we conclude that π(B) is transitive.

We claim that there is a prime p dividing |T | such that p does not divide
|B : T | and such that a Sylow p-subgroup of T is cyclic. This follows from
[16, 4.10.3(a)] if T is of Lie type, and is clear if T is alternating or sporadic.

Let p be as in the previous paragraph, and let P be a Sylow p-subgroup
of T . Write |P | = pa and let P0 be the subgroup of P of order p. Since p
does not divide |B : T | it follows that P ≤ T ≤ B ∩Hk. Suppose that pa

does not divide m. Then P0 fixes some point of Ω0, say ω, and hence P0
fixes the point (ω, . . . , ω) ∈ Ω. This is a contradiction since P0 ≤ B and B is
regular. Therefore pa divides m and so pak divides n = |B|. This, however,
implies that pa(k−1) divides |B : T | which is a contradiction. This completes
the proof of Theorem 1.4.

Proof of Corollary 1.3

Let G be almost simple and primitive of degree n, and assume that G has
a regular subgroup B. Suppose that G < H < Sn, where soc(G) 6= soc(H)
and soc(H) 6= An. If H is almost simple then it follows from Theorem
1.1 that (iii) holds. So suppose that H is not almost simple. Then, by
[40, Proposition 6.1], either G = PSL2(7), H = AGL3(2) of degree 8, or
soc(G) = A6, M12 or PSp4(q) (with q even), of degree m

2 and H ≤ Sm oS2,
where m = 6, 12 or q2(q2 − 1)/2 respectively. The group PSL2(7) contains
a regular subgroup, giving case (ii) of the corollary. However, Theorem
1.1 shows that none of the above primitive groups of degree m2 possesses
a regular subgroup (note that for G = M12.2, Gα = L2(11).2, we have
Gα ∩ soc(G) non-maximal in soc(G), so this is not the example in line 4 of
Table 16.3). This completes the proof.
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16 The tables in Theorem 1.1

In this section we present the tables of regular subgroups referred to in
our main result, Theorem 1.1. The first two columns of each table contain
the possibilities for the simple group L and a point stabilizer in L. The
third has the possibilities for the regular subgroup B, and in the fourth
we give the number of possibilities for B up to conjugacy in AutL. (We
have not included this column in Table 16.2, where the numbers of classes
are rather clear.) The last column contains any relevant extra information.
This includes the use of the symbols ∗ and †, which (as in [33]) have the
following meaning. The symbol ∗ means that there is no regular subgroup B
in the simple group L, but there is one in some almost simple group with
socle L; and † means that Gα ∩ L is not maximal in L, but Gα is maximal
in some almost simple group G with socle L.

Some of the numbers of classes in column 4 of Tables 16.1 and 16.3 were
calculated by Michael Giudici using Magma, and more information about
the sporadic group examples in Table 16.3 can be found in [15].



Table 16.1: L of Lie type

L Gα ∩ L B no. of classes Remark

Ln(q) P1 or Pn−1 [ q
n−1
q−1 ] see (5.1) B metacyclic,

B ≤ ΓL1(qn)/F∗q
L2(q) Dq+1 [ q(q−1)2 ] see (5.5)(β) q ≡ 3 mod 4, B ≤ P1,

† if q = 7

L5(2) P2 or P3 31.5 1
31.5 P2 or P3 2

L2(11) P1 A4 1
A5 11 1
A4 11.5 1 †, G = L.2

L2(23) P1 S4 1
S4 P1 = 23.11 1

L2(29) A5 29.7 1
L2(59) P1 A5 1

A5 P1 = 59.29 1
L3(3) 13.3 32.[16] 1
L3(4) 7.3 (24.(3×D10).2 1 ∗, G ≥ L.S3
L4(3) (4× L2(9)).2 33.ΓL1(3

3) 1 ∗, G = L.2 = PGL4(3)
L4(4) (5× L2(16)).2 26.ΓL1(26) 1 ∗, G = L.2

U3(8) P1 3× 19.9 1 ∗, G ≥ L.32

19.3 P1 1 ∗, G ≥ L.32

U4(2) P2 [27] 2
U4(3) L3(4) [34.2] 6 ∗, G ≥ L.2
U4(8) P2 GU1(2

9).9 1 ∗, G ≥ L.3

Sp4(4) L2(16).2 S5 1 ∗, G = L.2
Sp6(2) G2(2) S5 2

L2(8).3 24.A5 1
PSp6(3) L2(27).3 31+4.21+4.5.4 1 ∗, G = L.2
Sp6(4) G2(4) L2(16).4 1 ∗, G = L.2
Sp8(2) O−8 (2) S5 1

Ω+8 (2) Ω7(2) S5 1
A9 24.A5 1
A9 26.15 1
A9 (3× 24.D10).2 1

Ω+8 (4) Ω7(4) L2(16).4 1 ∗, G ≥ L.2

75



Table 16.2: L alternating

L Gα ∩ L B Remark

An An−1 any B, |B| = n
Aq (q prime power) Sq−2 Fq.

q−1
2 < AGL1(q) q ≡ 3 mod 4

Ap, Ap+1 (p prime) p.
p−1
2 , L2(p)(resp.) Sp−2 † if p = 7, 11, 23

∗ if p ≡ 1 mod 4
Ap−2 × 2 ∗, p ≡ 1 mod 4

Ap2+1 (p prime) L2(p
2).2 Ap2−2 p ≡ 3 mod 4

A6 L2(5) C6, S3 ∗
N(32) C10, D10 ∗, G 6≤ S6

A8 AGL3(2) C15
(A5 ×A3).2 AGL1(8)

A9 L2(8).3 S5
A11, A12 M11, M12 (resp.) A7
A32 (A29 ×A3).2 AΓL1(32)
A33 L2(32).5 (A29 ×A3).2

Table 16.3: L sporadic

L Gα ∩ L B no. of classes Remark

M11 M10 11 1
M9.2 11.5 1

M12 M11 [12] 3 see [15]
L2(11) M9.2 1

M22 M21 D22 1 ∗
M23 M22 23 1

M21.2 23.11 1
23.11 M21.2 1
24.A7 23.11 1
23.11 24.A7 1

M24 M23 [24] 8 see [15]
L2(23) M21.2 1
L2(23) 24.A7 1

J2 U3(3) 52.4 2 ∗, see [15]
HS M22 52.4 4 ∗, see [15]
He Sp4(4).2 7

1+2.6 3 ∗, see [15]
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[17] P. Hegedüs, Regular subgroups of the affine group, J. Algebra 225
(2000), 740-742.

[18] A. Heinze, Applications of Schur rings in algebraic combinatorics:
graphs, partial difference sets and cyclotomic schemes, Dissertation,
Oldenburg 2001.

[19] C.Hering, M.W. Liebeck and J. Saxl, The factorizations of the finite
exceptional groups of Lie type, J. Algebra 106 (1987), 517–527.

[20] C. Jansen, K. Lux, R. Parker and R. Wilson, An atlas of Brauer char-
acters, Oxford University Press, 1995.

[21] G.A. Jones, Cyclic regular subgroups of primitive permutation groups,
J. Group Theory, 5 (2002), 403–407.

[22] L. K. Jorgensen, and M. Klin, Switching of edges in strongly regular
graphs. I. A family of partial difference sets on 100 vertices, Electron.
J. Combin. 10 (2003), Research Paper 17, 31 pp. (electronic).

[23] W.M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261-265.

[24] P.B.Kleidman, The maximal subgroups of the finite 8-dimensional or-
thogonal groups PΩ+8 (q) and of their automorphism groups, J. Algebra
110 (1987), 173-242.

[25] P.B. Kleidman and M.W. Liebeck, The Subgroup Structure of the Fi-
nite Classical Groups, London Math. Soc. Lecture Note Series 129,
Cambridge University Press, Cambridge, 1990.

[26] A.S. Kleshchev and A.A. Premet, On second degree cohomology of
symmetric and alternating groups, Comm. Algebra 21 (1993), 583–600.

[27] W. Knapp, On Burnside’s method, J. Algebra 175 (1995), 644–660.



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 79

[28] C.H. Li, The finite primitive permutation groups containing an abelian
regular subgroup, Proc. London Math. Soc. 87 (2003), 725–747.

[29] C.H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps,
Trans. Amer. Math. Soc. 358 (2006), 4605–4635.

[30] C.H. Li and A. Seress, On vertex-transitive non-Cayley graphs of
square-free order, Designs, Codes and Cryptography 34 (2005), 265–
281.

[31] M.W. Liebeck, The affine permutation groups of rank three, Proc. Lon-
don Math. Soc. 54 (1987), 477-516.

[32] M.W. Liebeck, C.E. Praeger and J. Saxl, Distance transitive graphs
with symmetric or alternating automorphism group, Bull. Austral.
Math. Soc. 35 (1987), 1-25.

[33] M.W. Liebeck, C.E. Praeger and J. Saxl, The maximal factorizations of
the finite simple groups and their automorphism groups, Mem. Amer.
Math. Soc. 86 (1990), no. 432.

[34] M.W. Liebeck, C.E. Praeger and J. Saxl, On factorizations of almost
simple groups, J. Algebra 185 (1996), 409-419.

[35] M.W. Liebeck, C.E. Praeger and J. Saxl, Transitive subgroups of prim-
itive permutation groups, J. Algebra 234 (2000), 291-361.

[36] P. W. Michor, Knit products of graded Lie algebras and groups, Pro-
ceedings of the Winter School on Geometry and Physics, Srni, 1988,
Suppl. Rendiconti Circolo Matematico di Palermo, Ser. II, 22 (1989),
171-175. (ArXiv: math.GR/9204220)

[37] G. A. Miller, Groups Which are the Products of Two Permutable
Proper Subgroups, Proceedings of the National Academy of Sciences
21 (1935), 469-472.

[38] B. H. Neumann, Decompositions of groups, J. London Math. Soc. 10
(1935), 3–6.

[39] B. H. Neumann, Commentary on Chapter 2, in Selected works of B.
H. Neumann and Hanna Neumann. Editors: D. S. Meek and R. G.
Stanton, Charles Babbage Research Centre, Winnipeg, Canada, 1988.
Volume 1, pp. 65–67.



80 M.W. LIEBECK, C.E. PRAEGER AND J. SAXL

[40] C.E. Praeger, The inclusion problem for finite primitive permutation
groups, Proc. London Math. Soc. 60 (1990), 68–88.

[41] J. Szep, On the structure of groups which can be represented as the
product of two subgroups, Acta Sci. Math. Szeged 12 (1950), 57-61.

[42] G.E. Wall, On the conjugacy classes in the unitary, symplectic and
orthogonal groups, J. Austral. Math. Soc. 3 (1965), 1-62.

[43] J. Wiegold and A.G. Williamson, The factorization of the alternating
and symmetric groups, Math. Z. 175 (1980), 171-179.

[44] H. Wielandt, Finite Permutation Groups, Academic Press, New York-
London 1964.

[45] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic s-arc transitive
Cayley graphs of finite simple groups, European J. Combin. 26 (2005),
133–143.

[46] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi
permutabili traloro, Atti Secondo Congresso Un. Mat. Ital., Bologna,
1940, Edizioni Cremonense, Rome, 1942, 119125.

[47] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3
(1892), 265–284.

Department of Mathematics, Imperial College, London SW7 2BZ, UK

School of Mathematics and Statistics, University of Western Australia, 35
Stirling Highway, Crawley, WA 6009, Australia

DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB, UK


