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Abstract

We address the classical problem of determining finite primitive permu-
tation groups G with a regular subgroup B. The main theorem solves the
problem completely under the assumption that G is almost simple. While
there are many examples of regular subgroups of small degrees, the list is
rather short (just four infinite families) if the degree is assumed to be large
enough, for example at least 30!. Another result determines all primitive
groups having a regular subgroup which is almost simple. This has an ap-
plication to the theory of Cayley graphs of simple groups.
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1 Introduction

The problem of investigating finite primitive permutation groups containing
a regular subgroup goes back more than one hundred years. Burnside in-
vestigated first the groups of prime degree, and later showed that primitive
groups containing a cycle of prime-power degree p® are 2-transitive, except
in the case a = 1. (A minor error in his proof was noticed and corrected
independently by Peter Neumann and Wolfgang Knapp (see [27]).) Schur
generalized this to primitive groups containing a regular cycle of any com-
posite order. Burnside suggested that perhaps the existence of a regular
p-subgroup B forced the primitive group to be 2-transitive, except in the
case where B is elementary abelian. However, examples had already existed,
due to W. Manning, of simply primitive groups in product action, with reg-
ular subgroups which are direct products of cyclic subgroups of equal orders
(not necessarily prime — see [44, Theorem 25.7]). Wielandt investigated the
problem extensively. Section 25 of his book [44] is devoted to the prob-
lem. To mark the contribution of Burnside, he coined the term B-group
for any group B whose presence as a regular subgroup in a primitive group
G forces G to be 2-transitive. He gave a number of classes of examples of
groups which are B-groups [44, Section 25|, some due to Bercov and Nagai.
Wielandt also gave the first examples of non-abelian B-groups, proving that
all dihedral groups are B-groups [44, Theorem 25.6].

With the classification of finite simple groups, one can make much further
progress. By a result of Cameron, Neumann and Teague [8], if S denotes the
set of natural numbers n for which there exists a primitive group of degree
n other than A, and S,,, then S has zero density in N. Hence, for almost
all integers n, all groups of order n are B-groups. Moreover, the 2-transitive
permutation groups are known. It is natural to extend the problem and
ask also for a list of all pairs (G, B) with G a primitive permutation group
on a finite set {2 and B a regular subgroup. This is the problem we are
considering here.

Our main method of analysis is to view this situation as a group factor-
ization: for a pair (G, B) as above and a point « in the set €, the transitivity
of B implies that G = BG,, and since B is regular on ) we have in addition
that BN G, = 1. The study of such factorizations was proposed by B. H.
Neumann in his 1935 paper [38]. He called a factorization G = AB, where
A, B are subgroups such that AN B = 1, a general product, and viewed it
as a generalization of a direct product (without the requirement that A and
B be normal). In [38], among other things, the equivalence was pointed out
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between general products G = AB and transitive actions of G with point
stabiliser A and regular subgroup B. According to Neumann [39, p. 65],
general products were later called Zappa-Rédei-Szép products (see [41, 46]),
and moreover they had already occurred in the book of de Séguier [10] in
1904. Independently of [38] and in the same year, G.A. Miller wrote about
group factorizations in [37]. In particular he gave several examples of gen-
eral products in which G is a finite alternating group A,, and A is a Mathieu
group M,, with 8 < n < 12, and noted that Ag has no nontrivial expression
as a general product.

In the more recent literature, general products have come to be better
known as exact factorizations, and that is what we shall call them. Attempts
to construct them synthetically have been made by P. W. Michor [36], both
for groups and in the broader context of graded Lie algebras. (We thank
Rudolph Zlabinger for drawing this work to our attention.) In contrast to
this, our focus is analytical. We work from a given transitive (or primitive)
permutation group G with point stabiliser A, and determine the existence
or otherwise of a regular subgroup B.

Thus in our context the exact factorization G = G, B is such that the
subgroup G, is maximal and core-free in GG, since G acts primitively and
faithfully on the set €. An outline reduction theorem for such exact fac-
torizations, based on the Aschbacher-O’Nan-Scott theorem, was obtained
in [35, Corollary 3]. The main cases left outstanding there were the case
where G is almost simple and the case of G in product action. The former
is addressed here and solved completely. The latter remains open and we
hope to return to it in the future.

It should be mentioned that even for the types of primitive groups in [35,
Corollary 3] where regular subgroups always exist (namely, diagonal, twisted
wreath and affine types), the problem of determining all regular subgroups
remains open; some interesting examples of regular subgroups exist, very
different from the obvious ones (see, for example, [17] in the case of affine
groups).

Our main result is a classification theorem for almost simple primitive
permutation groups with a regular subgroup:

Theorem 1.1 Let G be an almost simple primitive permutation group on
a set Q, with socle L. Suppose that G has a subgroup B which is reqular
on Q. Then the possibilities for G, G (a € ) and B are given in Tables
16.1 — 16.3 at the end of the paper.



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 3

Remarks (1) All entries in the tables give examples of regular subgroups,
and this is verified for each entry as it arises in the proof. The fourth column
of each table gives the number of possibilities for B up to conjugacy (except
for Table 16.2, where this information is rather clear). Some of the details
concerning these numbers were verified by Michael Giudici, using Magma
[6]. More information about the sporadic group examples in Table 16.3 can
be found in [15].

(2) Some related results on regular subgroups have been obtained inde-
pendently by other researchers. Wiegold and Williamson [43] found all exact
factorizations of alternating and symmetric groups. Recent papers of Jones
and Li classify primitive permutation groups with regular cyclic subgroups
[21], regular abelian subgroups [28], and regular dihedral subgroups [29]. Li
and Seress [30, Theorem 1.2] handle the special case where the degree ()|
is square-free and the regular subgroup B lies in L. Regular subgroups of
two sporadic groups (HS.2 and J.2) have been found in [18, 22|, and all
factorizations of sporadic groups are determined in [15]. Finally, some fam-
ilies of almost simple primitive groups have been dealt with independently
by Baumeister in [4, 5|. In particular she handles unitary groups and 8-
dimensional orthogonal groups of plus-type; however, for completeness we
include our own proofs for these groups.

We remark also on a couple of features of our proof of Theorem 1.1,
which may be of independent interest. The first involves the classification
of antiflag transitive linear groups, presented in Section 3; this updates and
slightly generalizes the famous work of Cameron and Kantor [7] on such
groups. The second is the work in Section 4, which contains some detailed
results determining the subgroups of classical groups which are transitive on
various types of subspaces.

Despite the fairly long lists of regular subgroups in Tables 16.1 - 16.3,
there are essentially only four infinite families:

Corollary 1.2 Let G be an almost simple primitive permutation group of
degree n, with G %* A, and n > 329!, and suppose that G has a regular
subgroup B. Then one of the following holds:

(i) B is metacyclic, of order (¢™ —1)/(q — 1) for some prime power q;

(ii) B is a subgroup of odd order q(q —1)/2 in AT'Li(q) for some prime
power ¢ = 3 mod 4;

(iii) B = Ap—2, Sp—2 (p prime), or Ap_o x 2 (p prime, p =1 mod 4);

(iv) B= A,2_5 (p prime, p=3 mod 4).
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Table 1: Almost simple primitive groups sharing a common regular subgroup

inclusions soc(G) < soc(H) common regular subgroup B
A, < Api1 (p prime) Sp—g or Ap_9 x 2
Ao < A1p < App A7

Ly(11) < My, < Ay 11 or 11.5
Lg(ll) < Mo [12]

L2(23) < M24 [24]

M3 < Aog 23.11

M23 < M24 L3(4).2 or 24.A7
A7 < Ag < {Ag, Sp6(2)} < Qgr(2> < Sp8(2) S5

Spa(4).2 < Sps(2) Ss

Spe(2) < QF (2) 24 Aj

Spe(4).2 < QF (4).2 L>(16).4

Corollary 1.2 is an immediate consequence of Theorem 1.1.

Theorem 1.1 throws up some interesting containments between primitive

subgroups of S,, which share a common regular subgroup. In the next re-
sult we classify all such containments for which the smaller group is almost
simple. The proof can be found at the end of Section 15.

Corollary 1.3 Let G be an almost simple primitive permutation group of
degree n, not containing A,, such that G contains a regular subgroup B.
Then one of the following holds:

(i) Ng,(G) is mazimal in A, or Sy;

(ii) n =8, G = La(7) < AGL3(2), sharing a reqular subgroup B = Dg;

(iii) there is an almost simple group H such that G < H < S, and
soc(G) < soc(H); the inclusion soc(G) < soc(H) and the common regular

subgroup B are as in one of the lines of Table 1, and the actions of G, H
can be read off from the tables in Section 16.

It can be seen from Table 1 that there are no fewer than seven primi-
tive groups of degree 120 sharing a common regular subgroup (namely Ss).
Figure 1 gives the lattice of containments among these groups.
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Sps(2)
e N
Spa(4).2 Oof (2)
e N
Ag Sp6(2)
e e
S7 Sy

Figure 1: Groups of degree 120 sharing a regular subgroup S5

Some of the work discussed above was concerned with deciding whether
certain classes of groups are B-groups. In particular, the papers [21, 28, 29]
of Jones and Li deal with the cases of cyclic and dihedral regular subgroups.
At the opposite end, we classify in Theorem 1.4 below the primitive per-
mutation groups with regular almost simple subgroups. Burnside already
knew examples of simply primitive permutation groups with regular simple
subgroups. We discuss these next.

Any group T induces a regular permutation group acting on itself by
right multiplication; z € T maps y — yz (y € T). Identifying T" with this
regular subgroup of Sym(7'), we define the holomorph of T' as the normalizer
of T in Sym(T"), denoted Hol(T"). This group contains the centraliser C' =
Csym(r)(T') which is isomorphic to 7', where each x € T corresponds to the
element c, of C' that maps y — 2 'y (y € T). In general the holomorph is
the semidirect product Hol(T') = T - Aut(T") with Aut(7") acting naturally,
both T and C' are regular normal subgroups, and C NT = Z(T'). Moreover
the permutation o : y — y~! (y € T) normalizes Hol(T'), interchanges T and
C (0 :x <> ¢, for each x € T'), and centralizes Aut(T"). In the case where T'
is a non-abelian simple group, the permutation group (Hol(T"), o) < Sym(T)
is denoted by D(2,T). This is a primitive permutation group of diagonal
type, and C' x T is its unique minimal normal subgroup.

The groups D(2,T) form an important family of finite primitive groups
having simple regular subgroups, as demonstrated by the following theorem.
This theorem also shows that there are infinitely many finite primitive groups
with an almost simple regular subgroup that is not simple.

Theorem 1.4 Let G be a primitive permutation group on a finite set Q of
size m, and suppose that G has a subgroup B which is almost simple and
acts regularly on Q. Then one of the following holds:
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(i) G= A, or Sy, and |B| = n;

(ii) there is a non-abelian simple group T such that G < D(2,T) with
soc(G) =T?, and B=T;

(iii) G is almost simple, and B and G are as in Table 2 below.

In particular, if B is not simple, then G s almost simple, and either G
contains A,, or B,G are as in the lower part of Table 2.

The proof of this theorem appears in Section 15. An immediate con-
sequence is the classification of the almost simple B-groups, recorded in
Corollary 1.5 below. In contrast with the situation for simple groups, the
non-simple almost simple groups are usually B-groups:

Corollary 1.5 If G is an almost simple group, then G is a B-group if and
only if both the following conditions hold:

(i) G is not simple;
(ii) G # Sp—2 (p prime), L2(16).4, or L3(4).2.

Theorem 1.4 has another immediate consequence, concerning the struc-
ture of Cayley graphs of finite simple groups. For any group G and subset
S C G\ {1}, the Cayley digraph Cay(G, S) for G relative to S is the digraph
with vertex set G and with an edge from x to y whenever zy~! € S. If
S—1.={z7 !z € S} is equal to S, then the adjacency relation is symmetric,
so the Cayley digraph can be regarded as an undirected graph, called a Cay-
ley graph. In particular, if S = G\ {1}, then Cay(G, S) is a complete graph
on n = |G| vertices with automorphism group S,,. In all cases the group G,
acting by right multiplication, is admitted as a subgroup of automorphisms
which is regular on the set of vertices. Moreover, Cay(G, S) is connected if
and only if S generates G.

A general analysis was made in [13] of the possible structures of the
automorphism groups of Cay(7,S) for finite nonabelian simple groups 7'
As a consequence of [13, Theorem 1.1], for generating sets S with S = S~1
and S # T'\ {1}, one does not expect the automorphism group of Cay(7’, S)
to be vertex-primitive, a notable exceptional case being that in which S is
a union of T-conjugacy classes; in the latter case the automorphism group
has socle T?, and is a primitive subgroup of D(2,T). Restating Theorem 1.4
in the language of Cayley graphs, in the case where B = T is simple, gives
a classification of all vertex-primitive Cayley digraphs of finite nonabelian
simple groups. If the automorphism group contains A,, where |T'| = n, or
contains Lo(59) with 7" = Aj, then the automorphism group is 2-transitive
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Table 2: Almost simple regular subgroups
B soc(G) (soc(G))a (@ € Q) | Remark
As Ls(59) 59 - 29
Az A1, Arg My, Mz (resp.)
Ap2—2 Ap2+1 LQ(p2)2
(p prime = 3 mod 4)
Sp—2 Ap, Apia p.p%l, Lo (p) (resp.)
(p > 7 prime)
S5 Ag L»(8).3
Spa(4) L(16).2 G=L2
Spe(2) G2(2)
05 (2) Q7(2)
Sps(2) Oz (2)
1,(16)4 Spo(4), % (4) | Ga(4), 0(4) (resp.) | G > L2
L3(4)2 M23, M24 23.11, L2(23) (resp.)
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on vertices, implying that the generating set S = 7'\ {1}. If we assume this
is not so, then these cases of Theorem 1.4 do not arise in the Cayley graph
setting. Thus we obtain Theorem 1.6 below as a consequence of Theorem 1.4.
This completes the results of [13] for vertex-primitive Cayley digraphs.

Theorem 1.6 LetT be a simple group, and suppose that T has a generating
set S = S~! such that the Cayley graph Cay(T,S) has automorphism group
acting primitively on vertices, and is not a complete graph. Then one of the
following holds:

(i) S is a union of conjugacy classes of T ;

(ii) T' = Ap2_y, with p prime, p =3 mod 4.

Remark In both (i) and (ii) there are examples of vertex primitive, non-
complete Cayley graphs. This was discussed in the preamble to the theorem
for case (i). For case (ii), observe from Table 16.2 that the group A2,
acting primitively on the cosets of a maximal subgroup Ls(p?).2 possesses a
regular subgroup A,2_,; hence any orbital graph for this A,z is necessarily
a Cayley graph for the regular subgroup A,2_5. The smallest case is p = 3,
T=A;.

Cayley graphs for these groups have arisen also as exceptional examples
in a different context. In [45] a study of cubic, s-arc transitive, Cayley
graphs for finite non-abelian simple groups revealed that there are exactly
two such graphs for which s > 2, and these are both 5-arc transitive Cayley
graphs for A47 with automorphism group Ass. However, neither of these
graphs is vertex-primitive.

There is one further application that we should mention. Exact factor-
izations of finite groups can be used to obtain semisimple Hopf algebras.
The construction, using bicrossproducts, goes back to Kac and Takeuchi,
and is outlined in the paper [12]. In that paper, the exact factorization
Masy = L2(23)(2% A7) is used to construct a biperfect Hopf algebra of dimen-
sion |May4|. (A Hopf algebra H is biperfect if neither H nor H* has any
non-trivial 1-dimensional representations.) It is not known whether there
exist biperfect Hopf algebras of smaller dimension. For the bicrossproduct
construction, one needs an exact factorization of a group G with both factors
perfect and self-normalizing in G, see [12].

The layout is as follows. After some preliminaries in Section 2, we present
in Section 3 the classification of antiflag transitive linear groups, remarked



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 9

upon earlier. Section 4 contains some detailed results determining the sub-
groups of classical groups which are transitive on various types of subspaces.
Sections 5 — 11 contain the proof of Theorem 1.1 for the classical groups,
which is by far the bulk of the proof; the proofs for the exceptional groups
of Lie type, the alternating groups and the sporadic groups are given in the
following much shorter Sections 12 — 14. Section 15 contains the proofs of
Theorem 1.3 and Corollary 1.2, and finally Section 16 comprises Tables 16.1
— 16.3, referred to in the statement of Theorem 1.1.

2 Preliminaries

In this section we collect various results from the literature which will be
needed in our proofs.

Notation First we introduce some notation for certain types of subgroups
in classical groups. Let G be a finite almost simple classical group with
socle L and associated vector space V. As usual, denote by P; the parabolic
subgroup of G obtained by deleting the ith node of the standard Dynkin
diagram; so P; is the stabilizer of a totally singular i-dimensional subspace of
V, except when L = PQj (q) and i = m — 1. In this last case there are two
L-orbits on totally singular m-spaces, P,_1 and P,, being the stabilizers of
representatives of the different orbits. Also P;; denotes the intersection of
two parabolic subgroups P; and P; sharing a common Borel subgroup.

When L = L,(q), denote by Ni,_1 the stabilizer of a pair of comple-
mentary subspaces of V' of dimensions 1,n — 1.

When L = Sp,(q) with ¢ even, write O¢ for the normalizer in G of the
natural subgroup Of,(q) of L.

Now assume G is unitary, symplectic or orthogonal, and let W be a
nonsingular subspace of V' of dimension i. We denote the stabilizer Gy of
W in G by N;, N;r or IN;  as follows:

Gw = Ny, if G is unitary or symplectic, or if L = PQ%, (¢) and i is odd;

Gw = Nf (e = =), if 7 is even, G is orthogonal and W has type O;

Gw = Nf (e = %), if i is odd, L = PQay11(q) (g odd) and W+ has type
O°.

For a classical subgroup H of G, we will sometimes write P;(H), N;(H),

etc. for the relevant parabolic subgroup P; or nonsingular subspace stabiliser
N; in H. Also g will always denote a power ¢ = p® of a prime p, and when
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we write log ¢ we will mean log, ¢ = a. Finally for such a ¢ = p“, we denote
by g, a primitive prime divisor of ¢ — 1, that is, a prime which divides
p™ — 1 but not p* — 1 for 1 < i < an. By [47], such a prime exists except in
the cases where (p,an) = (2,6) or an =2, p+ 1 = 2°.

The first two lemmas of this section concern the classification of involu-
tion classes in symplectic and orthogonal groups in characteristic 2, and are
taken from [2, Sections 7,8].

Let V be a vector space of even dimension 2m over a finite field of
characteristic 2, and let (, ) be a non-degenerate symplectic form on V' with
corresponding symplectic group Sp(V). For an involution ¢ € Sp(V'), define

V(t)={veV : (v,t(v)) =0}

The Jordan form of ¢ is (J, J?™2) for some I, where J; denotes a Jordan
block of size i.

Lemma 2.1 Let V be a vector space of dimension 2m over a field of char-
acteristic 2. The conjugacy classes of involutions in Sp(V') have represen-
tatives

a; (I even,2 <1 <m),

by (I odd,1 <1< m),

¢ (I even,2 <1< m),

where ay, by, ¢; all have Jordan form (J&, me_%), and

V(al) =V, V(bl) 75 V, V(Cz) 75 V.

Now assume m > 2 and let O¢(V') be an orthogonal group on V' of type
€ € {+,—} lying in Sp(V'), with commutator subgroup Q¢(V).

Lemma 2.2 (i) Involutions in O(V') are conjugate in O°(V') if and only if
they are conjugate in Sp(V).

(ii) a; lies in QT (V) for all 1, and in Q= (V) for all | except for | = m
(m even); for m even, a,, does not lie in O~ (V).

(iii) b; lies in O (V) and in O~ (V), but not in Q(V).

(iv) ¢ lies in QT (V) and in Q~ (V).

Corollary 2.3 Ife = +, or if e = — and m is odd, then every involution
class representative ay, by, c; lies in O(V). If e = — and m is even, then
every involution class representative except ap, lies in O¢(V).
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We shall also need some information about unipotent elements of sym-
plectic and orthogonal groups in odd characteristic, taken from [42, pp.36-
39].

Lemma 2.4 Let g be a power of an odd prime, and let u be a unipotent
element of GLy,(q) with Jordan form (Ji*,J32,...). Then the following
hold.

(i) u is similar to an element of Spy(q) if and only if n; is even for each
odd 1.

(ii) u is similar to an element of some orthogonal group O,(q) if and
only if n; is even for each even i.

(iii) Assume that n is even, and also that n; is even for each even i. If
nj > 0 for some odd j, then u is similar to elements of both O, (¢q) and
O,, (q). Otherwise, u is similar to an element of O} (q) but not of O;, (q).

The next lemma gives some basic information on the representations of
G = SLy(q) (q even) in characteristic 2. If V is an F;G-module, denote
by V() the F,G-module V' with G-action twisted by a Frobenius 2i_power
automorphism (i.e. with action v g = Ug(zi) forveV,ge@).

Lemma 2.5 Let G = SL(2°) withe > 2, and let W = V5(2°) be the natural
2-dimensional module for G. Write F' = Fqe, and let V be an irreducible
FG-module.

(i) Then V=W ... W*) for some iy, ..., i satisfying 0 < iy <
< <e.

(ii) If HY(G,V) # 0 then V. = W@ for some i, in which case H*(G, V)
has dimension 1.

Proof Part (i) is immediate from Steinberg’s tensor product theorem, and
(ii) follows from [1, 4.5]. [

We conclude this section with a lemma (essentially the main theorem of
[34]) that relates our exact factorization G = BG,, with G almost simple
and G, maximal, with a maximal factorization of G or a closely related
subgroup. For an almost simple group G with socle L, and a subgroup
A of G, we write Amax~ G to mean that A is maximal among core-free
subgroups of G (so that all overgroups of A in G contain L), and we write
Amaxt G to mean that A is both core-free and maximal in G. Note that,
for any subgroup B of G it is always possible to choose an overgroup B*
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of B such that B*max~ G. An expression G = AB is called a mazimal
factorization if both Amax' G and Bmax™ G, and a max~ factorization if
both Amax~ G and Bmax~ G.

In the next result, notation in the table is as defined at the beginning of
this section.

Lemma 2.6 Let G be a finite almost simple group with socle L, and let
G = AB, where Amaxt G. Let B* satisfy B < B* < G and B*max™~ G,
and set G* := B*L, A* = ANG*.

Then G* = A*B*, and either this is a mazimal factorization (determined
by [85]), or L,ANL,B*NL are as in one of the lines of the following table.

L ANL B*NL
Loy (q) (with (¢ —1,m) # 1) Nio2m-1 Nr(PSpam(q))
PQ3,.(q) (g odd,m odd) | NL(GLm(q)/(-1)) Ny
PQY(3) 27(3) Qf (3).2
PQJ(3) Q7 (2) P (i,j €{1,3,4})
PQJ(3) 26, Ag P; (i € {1,3,4})
Mo As My

Proof Since Amax™ G, we have G = AL. Moreover, G = AB* is a max~
factorization. Now the result follows directly from [34, Theorem]. [ ]

3 Transitive and antiflag transitive linear groups

Let V = V,,(q) be a vector space of dimension n over F,. An antiflag of V' is
an unordered pair {a, H}, where « is a 1-space in V' and H is a hyperplane
not containing a. A subgroup of I'L,(q) is antiflag transitive if it is tran-
sitive on the set of all antiflags. An important role in our proofs is played
by the classification of all antiflag transitive subgroups of I'L,,(q), achieved
by Cameron and Kantor in [7]. However, a few errors in their conclusion
have come to light over the years (see for example [33, Proposition B, p.45]).
The source of the error is [7, p.401, line 2], and it can presumably be eas-
ily corrected, though such a correction has not appeared in the literature.
Moreover, for our purposes we require a slightly more general version of their
result, allowing the possibility that the antiflag transitive subgroup contains
an element in the coset of a graph automorphism ¢ of L, (q) (where ¢ is the
inverse-transpose automorphism if n > 3, and is the identity if n = 2). Here
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we extend the definition of antiflag transitive groups to include subgroups
of I'L,(q).(¢), which is justified since ¢ acts on the set of antiflags.

In view of all this, we include in this section a full proof of this slightly
generalised form of the classification of antiflag transitive groups. Note
however that our proof uses the classification of finite simple groups, whereas
[7] does not.

We shall need the following well known result of Hering, classifying the
subgroups of I'L,,(¢) which are transitive on 1-spaces - see [31, Appendix]
for a short proof of this result.

Lemma 3.1 Let H < TL,(q) be transitive on the set of 1-spaces of Vy,(q).
Then one of the following holds:

(i) H>SLo(q%) (ab = n,a > 1), Spa(q®) (ab = n,a even) or Ga(q®) (6b =
n,q even);
(i) H < TLy(¢");
(iii) one of:
n=2,q€{57,11,23} : H>Qs
n=2 qe{9,11,19,29,59} : H> SLy(5)
n=4,q=2: H= Ag or Ay
n=4,q=3: 2" qH <2148y or H> SLy(5)
n=6,¢g=3: H=5Ly13).

Now we are ready to prove the main result of this section, classifying the
antiflag transitive subgroups of Aut(L,(q)).

Theorem 3.2 Suppose that H < T'L,(q).(t) is antiflag transitive. Then one
of the following holds:

(i) H> SLy(q), Spn(q) (n even) or Ga(q)' (n = 6,q even);

(i) g =2 or4, n > 4 is even, and H> SLy, j5(¢?), Sy 2(¢?) or Ga(q?) (n =
12); moreover H contains a full group of field automorphisms in each case;

(ili) n =4,9 =2 and H = Ag or Az;

(iv) n=2,g=4 and H =TLy(¢?) = 15.4.
Conversely, each of the possibilities in (i)-(iv) does give rise to examples of
antiflag transitive subgroups.

Proof Let H® = HNT'L,(q). Then H° has t orbits (¢ < 2) of equal size on
the set of antiflags, which has size q”fl.qq%ll. If t = 2 the two Hp-orbits are
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interchanged by an element of the coset .I'L,,(q) normalizing H° (where ¢ is
as defined above); in particular we have n > 3 when ¢ = 2. By [33, 4.2.1],
HY is transitive on P;(V), the set of 1-spaces of V = V,,(q).

Fix a point o = (v) € P;(V). For a hyperplane W not containing o we
have Hyw = (H)ow. If H, wy interchanges o and W then t = 1, HO
is transitive on antiflags, and (H?), is transitive on the hyperplanes W not
containing a. Alternatively if Hy, ) = Haw, then t = 2 and (H®), has 2
orbits of equal size on the hyperplanes W not containing «, of which there
are ¢" 1. In particular it follows that if t = 2 then ¢ is even.

Being transitive on P; (V), the possibilities for H? are given by Lemma 3.1.
The groups Ag, A7 < L4(2) are listed in the conclusion. The other possi-
bilities for HY in 3.1(iii) have ¢ odd; hence if H° were one of them, then ¢
would be 1 and |H°| would be divisible by ¢"~!, which is not the case.

Hence we may assume that either H° > SL,(¢%), Spa(q®) (ab=n,a > 2)
or Go(q®) (6b=n), or H* <TLy(q*) (b =n).

Write F' = F, and K = F, so that a = Fv. Clearly HY = HY, fixes
Kwv, a 1-space over F, and, writing J = (H2)*", we have J < T'Li(g%).
Moreover, J fixes o = Fv, so cannot contain any scalars in K*\F*, and
therefore |JIF; /F;| divides blog, q.

Any F-hyperplane W not containing « intersects Kv in an F-space of
dimension b— 1. Consequently J has at most ¢ orbits on such (b— 1)-spaces,
of which there are ¢®~!. If t = 1 this implies that ¢! divides blog ¢, hence
either b =1 or b = 2, ¢ = 2 or 4. Both these possibilities are listed in the
conclusion. (Note that I'L;(4) = SL2(2) and occurs in (i).)

Now assume that ¢ = 2. Then q is even, and we have
¢t < 2blogg. (1)

Hence the possibilities for b, q are

b=1
b=2,q¢=2,4,8 or 16
b=3,q=2

b=4, g=2.

The cases b =1 and b = 2, ¢ = 2,4 are listed in the conclusion. It remains
to exclude the other cases.

Consider the case where H? < I'L;(¢®) (b = n). Since t = 2 we must
have ¢ # 1, hence n = b > 3 and ¢ = 2. If n = 3 then H° has odd
order so H cannot be transitive on the 28 antiflags. And if n = 4 then
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ITL1(2%)| = 23.3.5 is equal to the number of antiflags, so H = 3.2 x 5.4 <
L4(2).2 = Sg; however H then contains a conjugate of an involution in the
antiflag stabilizer L3(2).2, so cannot be antiflag transitive.

Assume from now on that H° > SL,(q%), Spa(q®) (ab = n,a > 2) or
G2(g%)" (6b = n). Consider first the case where b = 2,q = 16. Here equality
holds in (1), so we must have

H® =TL,(¢?), T'Spa(q*) or TG2(q*) < T'Laa(q) = T'Ly,(q).

By assumption, H is normalized by an element in the coset tI'La,(q).
When H° = I'L,(¢q?) or T'Ga(g?), it is clear from the structure of Aut(H?)
that any group of the form H°.2 contains an outer involution; and the same
holds when H® = T'Sp,(q?), noting that for a = 4, the graph automor-
phism of (H®)" is not induced (indeed, (H?)' is centralized by an element of
(I'Laa(q)).

We conclude that H? is normalized by an involution 7 € I'La,(q). By
[2, 19.8], there are two GLg,(g)-classes of involutions in this coset, with
representatives ¢ (the inverse-transpose map) and ¢J, where

0 I,
=(1 %)

We have Cgr,,(q)(¢tJ) = Sp2a(q), while Cgp,,, (q)(¢) is the centralizer of a long
root element in Spa,(q), hence in particular lies in a parabolic subgroup of

Spaa(q).

Of the two involution class representatives above, ¢ clearly normalizes
an antiflag stabilizer, while (J does not (it sends G,y to G,., where G =
GLa,(q) and the perp is relative to the symplectic form defined by J).

We aim to show that HC is normalized by a conjugate of ¢. This will
give a contradiction, since by assumption, the 2 orbits of H° on antiflags
are interchanged by an element of the coset (I'L,(q) normalizing HY; this
clearly cannot be the case for a conjugate of ¢, since ¢ fixes an antiflag.

Consider the case where (H?) = SL,(¢?). Write L = (H")". Suppose
a is even. Then the coset L7 contains an involution, which we may as
well label as 7, such that CL(7) = Sp,(¢?). This is not contained in the
centralizer of ¢, and hence 7 must be GLgy,(g)-conjugate to ¢J. Replacing
H by a conjugate, we may take 7 = ¢J.

Now Csr,,(q)(¢tJ) = Sp2a(q), the symplectic group fixing the form ()
defined by J. Clearly J itself lies in this centralizer, has Jordan form Jg,
and satsifies (v,vJ) # 0 for some v € V. By Lemma 2.1, the subgroup
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CL(7) = Spa(q?) contains an involution ¢ which is Spa,(q)-conjugate to J.
(Recall that a is even.) Then tiJ is Spa,(q)-conjugate to JuJ = ¢. Thus teJ
is a conjugate of ¢ normalizing H, giving a contradiction as explained above.
For (H®)" = Spa(q?) or Ga2(q?), we apply the same argument, starting with
an involution 7 centralizing (HY)'.

To complete this case (b = 2,q = 16), suppose now that (H°) = SL,(q?)
with a odd and a > 3. Here we have

SLa(q*) (¢, 7) < SLaa(q) (),

where ¢ € SLa,(q) is an involution inducing a field automorphism on
L = SLy(q?) and 7 is an involutory graph automorphism of G = SLy,(q)
normalizing L and commuting with ¢.

We shall show that 7 is G-conjugate to . Observe that Cr(¢71) = SU,(q),
hence Cg(¢p7) = Sp2.(q). Hence as above we can take ¢7 = «J. Now
J € Cg(]), and ¢ € Cg(¢p1) = Ci(eJ). Hence J, ¢ € Cq(tJ) = Spaa(q).
Both J and ¢ have Jordan form J§ on V, and as a is odd they are conjugate
in Cg(¢J) (see Lemma 2.1); say ¢ = J¢ with ¢ € Cg(¢J). Then

=) =1Jop =T =T.

Therefore T is conjugate to ¢, as claimed. As before this gives a contradiction.
This completes the proof for the case b = 2,q = 16.

The remaining cases (b,q) = (2,8),(3,2),(4,2) are excluded in entirely
the same fashion, and we leave this to the reader.

To complete the proof we justify the last sentence of the statement of
the theorem, asserting the existence of antiflag transitive examples in each
of conclusions (i)-(iv).

The examples in (i) are easy to justify. This is done in [7] but we give a
different argument. Clearly SL,(q) is antiflag transitive. As for Sp,(q), any
antiflag is of the form ((v),w") with w ¢ v, and Sp,(q) is transitive on such
pairs (by Witt’s lemma for example). Finally, for ¢ even we have Ga(q) <
Spe(q). Since an antiflag ((v),w') as above is stabilized by a subgroup
Spa(q) fixing (v, w) pointwise, it is enough to demonstrate the factorization
Spe(q) = Ga(q) Spa(q). Now G>(q) has a subgroup La(g) x La(q) acting
on the natural 6-dimensional module Vs as V4 L Va (it acts as Q2 (q) on
Vi and as Spa(q) on Va). Hence, if we take our subgroup Sps(q) to fix
Vo pointwise, we have Ga(q) N Spa(q) = La(q), and now arithmetic shows
that Spe(q) = G2(q) Spa(q), as required. For completeness, we remark that
when ¢ = 2, while G2(2) is antiflag transitive, in fact G2(2) is not; on the
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other hand G2(2)’ x (7) is antiflag transitive, where 7 is a suitable graph
automorphism of Lg(2) (all this can be seen using [9, p.14,46]).

Next we justify the examples in (ii) and (iv). First, [33, Prop. B, p.45]
and its proof show that I'L,,(¢?) < 'Ly, (q) is antiflag transitive for ¢ = 2
or 4 (and also that the full group of field automorphisms must be present, as
asserted in (ii)). Given this, the antiflag transitivity on Van,(q) of T'Spm(¢?)
(m even) and I'G(q?) (m = 6) follows from the antiflag transitivity of these
groups on Vi, (¢?).

Finally the examples Ag, A7 < L4(2) = Ag in (iii) are well known and
follow immediately from the 2-transitivity (on 8 points) of the antiflag sta-
bilizer L3(2).

|

4  Subgroups of classical groups transitive on sub-
spaces

In this section we study subgroups of classical groups G which are transitive
on a G-orbit of subspaces of the natural module for G. The basic starting
point is [33], which determines all such maximal subgroups of G.

Our first lemma classifies those types of subspace which admit transitive
proper subgroups of G. Recall the subgroup notations P;, N;, O¢, N1 ,_1
from Section 2.

Lemma 4.1 Let G be an almost simple classical group with socle Gy, and
let M be one of the following maximal subgroups of G:

Pi’ Nia Oea Nl,nfl-

Suppose that G contains a subgroup H which is transitive on the coset space
G/M and does not contain Gy. Then one of the following holds:

(i) Go = Ln(q): M = Py, P,_1 or Nip_1;

(ii) Go = Uam(q): M = Py, or Ny;

(iii) Go = PSpam(q): M = Py, Py, No or OF;

(iv) Go = Qom+1(q) (q odd, m > 3): M = Pp, N7, N;' (m = 3) or
N; (m = 3);

(v) Go = Py,,(q) (m > 4): M = Py, Ny or Ny;
(vi) Go = PQ3, (q) (m >4): M = Py, Py,_1, Py, N1, NS or N3 (m = 4);
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(vii) exceptional cases:

GO :L5<2) . M:PQ,Pg
G0:U3(q))q:3757 :M:Pl
Go=Us(3): M =P,
Go=Ug(2): M =P,

Proof By hypothesis we have G = HM. Hence the possibilities for M are
given by the tables of maximal factorizations in [33, Tables 1-4], together
with Lemma 2.6. The conclusion follows. ]

In the rest of the section we prove lemmas which give lists of possibilities
for the transitive subgroups H such that G = HM in the following cases:

Go M reference
PSpam(q) N2,0- Lemmas 4.2,4.6
Un(q) Ny Lemma 4.3
PQ5L(a) N Lemmas 4.4,4.5

Note that the cases where Gy = L,(q) and M = P; or Ny ,_; are covered
by the results of the previous section, since in these cases the factorization
G = HM is equivalent to saying that H is transitive on 1-spaces or antiflags,
respectively.

The results in the rest of this section are less precise than those in the
previous one, since we make no claim that all subgroups listed in the conclu-
sions are actually transitive on the relevant G-orbit of subspaces. We note
also that the results of Lemmas 4.4 and 4.5 cover in addition possibilities
for transitive subgroups for the G-action on nondegenerate quadratic forms
of type —e, where Gy = Q5,,(¢) and € = +, since this action is equivalent
to the G-action on cosets of V7.

Lemma 4.2 Let B be a subgroup of I'Spam(q) (m > 2) not containing
Spam(q), such that B is transitive on the cosets of No. Then one of the
following holds:

(i) B> Spm(q®) (m even, g =2 or4) or Spy,/2(q*) (m/2 even, ¢ =2);

(ii) B> Ga(q) (m =3, q even), Ga(q?) (m = 6,q = 2 or 4), or Ga(q?)
(m=12,q=2);

(iii) B> SLa(q?) (m =2, q even).
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Proof  We have a factorization G = BNy, where G is a group with
Spom(q) < G < I'Spa,(q). Hence by [33] together with Lemma 2.6, one
of the following holds:

() B <TSpm(q®) (g =2 or 4)
(8) B <T'Ga(q) (m =3, q even)
(v) m=2.

Case (o) By [33], N2 N Spim(q?) = Spa(q) X Spm—2(q?), which fixes an
No-space in Vi, (¢?). Hence B is transitive on Na-spaces in Vj,(¢?), and it
follows inductively that either B is as in the conclusion, or one of:

(a) B> SLy(g*) with m = 4,

(b) m = 2.
In (a), the full normalizer of SLs(q*) in I'Sps(q) is SL2(q*).[4log g], while
|G : No| = q6.g§j, hence ¢? divides 4 log q, forcing ¢ = 2, as in conclusion
(i). In (b) we have a factorization of type SL2(q?) = B SLa(q). By [33] this
forces |B| < 17.8 for ¢ = 4, whereas |G : Na| = 42 - 17. And for ¢ = 2 we
have G = Sp4(2) = Sg, N3 = S3x S3 and B = 5.4; but then BN N, contains
an involution, so G # BNs.

Case () In the factorization Spe(q) = Ga2(q)N2, we have Ga(q) N Ny =
L2(q)? by [33]. Hence if B # Ga(q)’, then there must be a factorization
of type G2(q) = BL2(q)?. There is no such factorization for ¢ > 2, and
for ¢ = 2 we get U3(3).2 = B(S3 x S3), forcing B < Ly(7).2, again by
[33]. However |B|y = 2* and Us(3) has only one class of involutions, so
BN (S3 xS3) contains an involution, showing the above factorization does
not exist.

Case () Here we have a factorization of type Sps(q) = B Spa(q)?. Assume
q > 2. By [33], q is even and B < N(Sp2(¢?)) or N(Sz(q)). The latter is
out, as from [33, 5.17b] we see that Sz(g) N OF (g) < Qf (), hence Sp4(q) #
Sz(q)Qxf (q). Consequently B < N(Spa(q?)). The normalizer of Spa(q?)
in T'Sp4(q) is Sp2(¢?).2logq, and |G : Na| = ¢*(¢®> + 1). Hence either
B > Spa(q?), giving conclusion (iii), or ¢ divides 4loggq, contrary to our
assumption that ¢ > 2.

Finally, if ¢ = 2 then we have a factorization Sg = B(S3x S3). As above,
B = 5.4 does not work, so we must have B > A5 = SLy(4), again giving

(ii).

This completes the proof of the lemma. |
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Remark As remarked earlier, the lemma by no means asserts that all
subgroups B satisfying (i) , (ii) or (iii) in the conclusion give examples which
are transitive on Ns-spaces. Indeed, with a rather more delicate analysis it
is possible to show that the Sp,,/5(2*) and G2(2*) possibilities in (i) and (ii)
do not yield transitive subgroups, but we shall not need this information.

In the next result we use the usual notation for I'U,,(q) as a subgroup of
TLn(q%).

Lemma 4.3 Let B be a subgroup of T'U,(q) (n > 3) not containing SU,(q),
such that B is transitive on the cosets of Ny. Then n = 2m is even, and
one of the following holds:
(i) B> Spam(q), Spm(q?) (m even, ¢ =2 or 4) or Spy,2(q*) (m/2 even,
q=2);
(i) B> SLin(q*) (q=2 or4) or SLy,5(q*) (m > 2 even, ¢ = 2);
(iii) B> Ga(q)" (m =3, q even), G2(q?) (m = 6,9 =2 or 4), or Go(q*)
(m=12,q=2);
(iv) one of:
m=3,q=2: B>Uy(3) or My,
m=6,g=2: B>3.Suz

(v) B < Py, and modulo the unipotent radical of Py, B induces a sub-
group of T'L,,(q?) which is transitive on 1-spaces.

Proof There is a factorization G = BNj, where SU,(q) < G <T'U,(q). If
n is odd there are no such factorizations, so n is even, say n = 2m. By [33]
together with Lemma 2.6, one of the following holds:

() B< P,

(B) B < Ng(Spam(q))

(7) B < Na(SLin(q?)) (g =2 or 4)
(

d) one of:

Case (a) Write P,, = Gy, where W is a totally isotropic m-space. From
[33, p.5b3], we see that N; N P, fixes an (m — 1)-subspace of W, and hence,
modulo the unipotent radical of P,, we have a factorization I'L,,(¢?) =
BP,, 1. Hence conclusion (v) holds.
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Case (8) Assume B # Spom(q). Then from [33, p.56] we see that N N
Spam(q) is contained in an Na-subgroup of Spe,,(q), and hence B is given
by Lemma 4.2. All these groups are in the conclusion, apart from the case

B SLs(q?) (m =2,q even,q > 4).

We rule this out. Write S for the normal subgroup SLs(¢?) of B.

First observe that |Cgy,(g)(S)|2 = 1: for otherwise, if ¢ is an involution
in this centralizer then (t) x S lies in a parabolic subgroup, which must
be ¢*.GL2(q?); however a Levi subgroup acts irreducibly on the unipotent
radical of this parabolic, so this is not possible.

It follows that |B|y divides |SLa(q?)|2 - 2log g, and hence as |G : Ni|s =
q>, we have q|2logq. This is impossible as ¢ > 4.

Case (v) By [33, p.54], N1 N SL,,(¢?) fixes an antiflag of the space V,,(¢?).
Hence B is antiflag transitive on this space, so is given by Theorem 3.2. All
the possibilities for B are in the conclusion, except for

B=54x2<SLy(4)2x2<G=1Uy2).2.

We rule out this possible factorization Uy(2).2 = BN; with B = 5.4 x 2.
Note that if such a factorization existed then |B N NN;| would be odd, since
|G : N1|2 = 8.

Observe that B < Sg x 2 = Spy(2) x (0) < G, where o is an involutory

field automorphism of Us(2) and o € B. We write the natural G-module
V = V4(22) as the heart of the permutation module for Sg - that is, as

V= {(ala"'vaﬁ) : Zai = 0}/Ta
where T'= ((1,1,...,1)). This space has standard Sp4(2)-basis

e1 =(1,1,0,0,0,0) + 7, ey =(0,0,1,1,0,0) + T,
f1=(1,0,0,0,0,1) + T, f=(0,0,1,0,1,0) +T.

Taking this also to be a standard Uy(2)-basis of V', we may take o to be the
field automorphism fixing eq, es, f1, fo.

We may take t = (12)(34) € BN Sg. Then ¢ sends
e1 —e1, e2 — €3, fi = fit+e1, fa = fat e

Now taking w to be an element of F4\F2, we check that to fixes the vector
v = wey + f1. This vector is nonsingular with respect to the unitary form
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on V, so to € BN N;. Thus BN N; has even order, and it follows that
G # BN;.

Case (§) First suppose m = 3,q = 2. If B < N(U4(3)), then since by [33]
we have N7 N Uy(3).22 = 31,55, we get a factorization Uy(3).22 = BP;, and
hence (again by [33]), either B> U4(3) or B < L3(4).22. In the latter case
we get L3(4).22 = B(A5.2), hence either B> L3(4) or B < L3(2).2 x 2. Any
As in L3(4) is reducible, so B is transitive on 1-spaces or antiflags in L3(4),
so the L3(2).22 possibility does not occur. We conclude that in this case,
B>Uy4(3) or L3(4), as in the conclusion.

Likewise, when B < N(Mag) = M22.2, we get a factorization Myy.2 =
B(L2(11).2), giving either B> May or B < L3(4).2. In the latter case we
have (L2(11).2) N (L3(4).2) = As and we see as above that B must contain
Ls(4).

Finally, consider the case where m = 6,¢ = 2 and B < N(3.Suz) =
3.Suz.2. Here we get a factorization Suz.2 = B(3%.Ly(11).2), hence either
B > Suz or B < G5(4).2 with Go(4) N 3°.M7; = 3.46. In the latter case
G2(4).2 = B(3.4¢.2), and this forces B > G2(4). This completes the proof.

|

Lemma 4.4 Let B be a subgroup of 'O, (q) (m > 2) not containing Q5, . (q),
such that B is transitive on an orbit of N1-spaces. Then one of the following
holds:

(i) B> SUn(q) (m odd), SU,,/5(¢*) (m/2 > 3 odd, ¢ = 2 or 4) or
SUm/4(q4) (m/4 >3 odd, g =2);
(ii) B> Q. (¢%) (m even, ¢ =2 or4) or Q;L/Q(q‘l) (m/2 even, g =2);
(iii) one of:
m=2,q=3: B> A;
m=3,q=3: B> L3(4)
m=3,q=2.

Proof Assume first that m > 4. By [33] (and Lemma 2.6), either B <
N(SU,,(q)) with m odd, or B < N(,,(¢?)) with m even, ¢ = 2 or 4. In
the first case there is a factorization of type I'U,,(¢) = BNy, which forces
B > SU,(q), as in (i). In the second case we get N(Q..(¢?)) = BNy, and
then inductively, B satisfies (i) or (ii).

It remains to handle m < 4. If m = 2 then I'O;, (q) = I'L2(¢?) and
N; = N(SLz(q)). For a factorization of type Ls(q?) = BL2(q), [33] gives
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qg=2,3or 4. If g =2 or 4 we have B>, (¢?), as in (ii). And for ¢ = 3 we
get B> Aj as in (iii).

Finally, let m = 3. Here the factorization I'Og (¢) = BN; becomes
I'U4(q) = BN(Spa(q)), and hence either B < N(SUs(q)) or B < N(L3(4))
with ¢ = 3. In the first case we get a factorization of type Us(q) = BNy,
hence either B > SU3(q) or ¢ = 2, as in (i) or (iii). And in the second we
get B> L3(4) as in (iii) (no proper subgroups of L3(4) arise, as there is no
relevant factorization of N(L3(4))). n

Lemma 4.5 Let B be a subgroup of TOS (q) (m > 3) not containing Q3, (q),
such that B is transitive on an orbit of N1-spaces. Then one of the following
holds:

(i) BoXm(q), Xpy2(q®) (q =2 or4) or X, /a(q*) (m > 8, ¢ =2), where
X € {SL, SU, Sp}; moreover m is even for X,,(q) = Spm(q) or SUn(q);

(ii) BrGa(q)" (m =6, q even), Ga(q?) (m =12,q =2 or 4), or Go(q*)
(m=24,q=2);

(iii) B> QL (¢%) (m even, ¢ = 2 or 4), or Q;/z(q‘l) (m/2 > 2 even,
q= 2);

(iv) B> SLa(q?) (m = 4, q even), SLa(q*) (m =8, ¢ = 2 or 4), or
SLy(q®) (m =16, ¢ =2);

(v) one of:
m=4: B>Qs(q) or Qg(q1/2)
m=8,q=2or4: B>Q(¢*) or Q5 (q)
m=16,¢=2: Br(q") or Q5 (¢°)
(vi) one of:

m=38: BrQ(q)
m=16,q=2 or4: B> Qy(¢?)
m=32,qg=2: Bp>Q(q¢?)

(vii) one of:

m=4,q=2: B> Ag, A7 or Ag
m=4,q=3: B> QF(2),Sps(2),Us(2), Ag or Ag
m=06,g=2: B>Uy(3) or My
m=12,q=2: B>3.5uz or Coq

(viii) B < P, or Py—_1, and modulo the unipotent radical, B induces a
subgroup of I'Ly,(q) which is transitive on 1-spaces.
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Proof We begin with the observation that if B < P, or P,_1, then
conclusion (viii) holds. To see this, suppose B < P = stab(W) = P, or
P,,_1, where W is a totally singular m-space, and take N; = stab(v). Then
v+ N W has dimension m — 1, so modulo the unipotent radical of P, we
have a factorization I'L,,(q) = BP,,_1. In other words B is transitive on
hyperplanes of W, hence also on 1-spaces, proving (viii).

Now assume that m = 3. Then we have a factorization of type SL4(q) =
BSp4(q), and so by [33] and Lemma 2.6, B stabilizes either a 1-space, or a
hyperplane, or an antiflag of V4(q). In the first two cases B < P;(SL4(q))
(i =1or 3),s0 B < P3(Q7(q)) or P2(€2§ (q)), and so conclusion (viii) holds.
In the third case the antiflag stabilizer GL3(q) intersects N(Spa(g)) in a
subgroup of an antiflag stabilizer of V3(g), and so B is antiflag transitive on
this space. Hence B> SL3(q), as in (i).

Now assume m > 4. We have a factorization G = BN; with Q3 (¢) <
G <TO03, (g), so [33] (and Lemma 2.6) gives one of

a) B< P, or Py_1
B) B < Ng(SUpn(q)) (m even)

(

(

(

(

(6) B <

(¢) B < Na(Q(q)) (m = 4)
(

(

(

(1) B < Ne(94 (2)) or Na(Qg (3)) (m = 4,9 =3)
(

Case () In this case conclusion (viii) holds (the transitivity assertion fol-
lows from the first paragraph of this proof).

Case () Here N(SUp,(q)) N Ny is contained in the stabilizer in SU,,(q) of
a nonsingular 1-space, giving a factorization of type I'U,,(q) = BN;. Hence
B is given by Lemma 4.3, and all possibilities are listed in the conclusion
under (i) or (ii).

Case (y) Here (Sp2(q) ® Spm(q)) N N1 < Spa(q) ® N2(Spm(q)). Hence
B contains a subgroup of I'Sp,,(q) transitive on Na-spaces, so is given by
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Lemma 4.2. All possibilities are in the conclusion under (i), (ii) or (iv).

Case (§) Here [33, p.63] shows that Ng(SL,,(q)) N N fixes an antiflag
of Vin(q), hence B is antiflag transitive and is given by Theorem 3.2. The
possibilities appear in (i), (ii), (vii).

Case (¢) Here [33, p.64] shows that Ng (.} (¢?)) N N lies in a nonsingular
1-space stabilizer of Ng (" (¢?)), so we have a factorization Ng (2} (¢?)) =
BN;. For m > 6, B is given inductively, and appears in the conclusion.
Note that this is where the SU,, /2(q2) and SU,, /4(q4) possibilities arise in
().

Now assume m = 4. We have 0 (¢?) = La(¢?)?, and N of this group is a
diagonal subgroup Ly(q?). Hence by [33], either B>Lo(q?) as in (iv), or B lies
in a parabolic, hence is as in (viii), or B < N((¢?>+1)x(¢?—1)) = N(Q3 (¢*)).
This is in (iii) for ¢ = 2, and we exclude it for ¢ = 4 as follows. Write
L = QF (4). By [24] we have N = N7 (€, (16)) = (L2(16)?).2%, with one
of the outer automorphisms interchanging the two L2(16) factors. Hence
|INN (17 x 15)]s = 23. Tt follows that |NFO§(4)(17 x 15)|2 < 2°. However

|G : N1|a = 29, so this is impossible.

Case (¢) In this case N1 N Q7(q) = Ga(q), so we get a factorization
Na(Q7(q)) = BNg(Ga(q)). Hence by [33] one of the following holds: B >
Q7(q); or B lies in a parabolic, in Ng(25(g)), or in Ng(€Q5(q)); or ¢ = 3 and
B < Spg(2) or Sg. In the first case we have conclusion (v); in the second
and third we are back in cases (a,3,d) (applying triality); in the fourth,
applying triality we have B < N(Sp4(q) ® Sp2(q)), which is case (). Fi-
nally consider the last case, where ¢ = 3 and B < Spg(2) or Sy. By [33] we
have SgNG2(3) = L2(7).2, so if B < Sy then Sy = B (L2(7).2), which forces
B> Ay, as in (vii). Likewise, Spg(2) N Ga(3) = 23.L3(2), so if B < Spg(2)
then Spe(2) = B (2%.L3(2)) < BPs; this implies that either B = Spg(2)
or B < Og (2), and in the latter case we have Oy (2) = BP», which forces
B> Qg (2) = Uy(2), as in (vii).

Case (k) Here we have a factorization Ng(Qg (¢%/?)) = BNg(Ga(¢/?)) <
BN1(Og (¢*/?)). Hence by Lemma 4.4, B> Q; (q) with ¢ = 4 or 16, as in
conclusion (iv).

Case (1) Here we see from [33, p.144] that there is a factorization Ng(Q9(q)) =
BN, and hence B> Qy(q), as in (vi).

Case (A) In this case we have Ag = B(L2(8).3), which by [33, Theorem D]
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forces B> A. (5 < ¢ <9), as in (vii) (the A5 and Ag are elsewhere as Lo(4)
and L4(2) in (iv), (i)).

Case (1) The 0 (3) case has been handled in (), so assume B < Ng (04 (2)).
Here N7 N Q7 (2) = 26.47, so N(Qg(2)) = BN(26.47) < BP,. If B %
Q4 (2), then by [33] this implies B < N(Q7(2)), N(Q4 (2)) or Ag. Also
|G : Ni| = 3% .40 divides |B|. Inspection of these groups in [9] now yields
B> Q7(2),U4(2), Ag or Ag, as in conclusion (vii).

Case (v) Here N; N Coy = Cos, so Coy = BCos. If B # Co; this gives
B < 3.Suz.2 or (A4 x Go(4)).2. Also |G : Ny| = 211(2'2 — 1). Hence from
the factorizations of G(4) and Suz, we see that B> G2(4) or 3.Suz, as in
(i), (vii). []

Lemma 4.6 Let B be a subgroup of I'Spam(q) (m > 2, q even, (m,q) #
(2,2)) not containing Spam(q), such that B is transitive on the coset space
Spam(q)/0s,,(q). Then one of the following holds:
(i) B Spaa(q®) or Go(q®)" (ab=m or 3b =m, resp.);
(ii) B>Sp.(¢?)? or (Go(q?)")? (d > 1, cd = m, c even; or 6d = m, resp.);
(iil) B> Spac(q¥?) or Go(¢¥?)' (d> 1, cd =m or 3d = m, resp.);
(iv) ¢ =2 or 4, and B is as in (i) - (vii) of Lemma 4.5;
(v) one of:
m=2,gq=4: B> Ag
m=3,q=4: B> Jy
m=4,gq=2: B> Ag or Ay
m=6,q=2: B>Jy

(vi) B < Py, and modulo the unipotent radical, B induces a subgroup of
'Ly, (q) which is transitive on 1-spaces.

Proof We have a factorization G = BNg(0,,,(q)), where Spap,(q) < G <
I'Spam(q). Hence by [33] and Lemma 2.6, one of the following holds:
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(KZ) B SSlo (m:4,q:2).

Case (o) This gives conclusion (vi) (the transitivity assertion follows in the
usual way, as P, N O,,,(q) fixes an (m — 1)-space, by [33, p.49]).

Case () Here we have a factorization N(Spaa(¢®)) = BN(O,(¢%)), so B is
given inductively. For a > 2 all such groups are in the conclusion. For a =1
we have N(SLy(¢%)) = BN(¢®+1) with ¢* > 8 (we excluded (m,q) = (2,2)
in the hypothesis). Then by [33], either B lies in a parabolic, giving (vi), or
¢® = 16 and B> La(4), giving (iii).

Case (v) In this case we have O, (q) N (Spm(q)1S2) = O (q) x O,,(q), so
we have a factorization

N(Spm(9)*) = BN(Of,(a) x Op,(q)).

In particular B must contain an element interchanging the two Sp,,(q) fac-
tors.

Let V = Va,(q), and let V- = W; L Wy be the decomposition preserved
by Spm(q) 1 S2, where Wi, Wy are non-degenerate m-spaces. Write H =
N (Spm(g)?), A = Ng(05,,(q)), and let By be the subgroup of index 2 in
B fixing W7 and W5. Then as H N A fixes W1, W5, we have

Hy' =By "(HN AW (i =1,2),
giving factorizations of type
Spm(a) = By "0 (a) = By 2Oy, (9).

As B(I)/V1 & BgV2, it follows using [33] that Bgv" < N(Spe(g?)) or N(Ga(q?))
with cd = m or 6d = m respectively, giving further factorizations of type
Spe(a?) = By Of(¢Y) = By0;(¢%) or Ga(q?) = By*(SLs(q")2) =
BY¥2(SU3(¢%).2). From this and [33], taking d maximal, we conclude that

B(I)/V1 = B(I)/VQ > Spe(q?) or Go(q?) (cd =m or 6d = m).
Thus B> Sp.(¢?)® or Go(g?)® with a = 1 or 2, as in (ii) or (iii).

Case (§) Here O, (q) N OF (q) < N1(03 (q)), so we have a factorization
N(03.(q)) = BNy. Thus B is given by Lemma 4.5 (with ¢ = 2 or 4), as in

(iv) or (vi).

Case (¢) In this case Oy, (q) N Spam(q/?) normalizes Ogp—1(q"/?), so we
have a factorization N (Spam(¢*/?)) = BP;. Thus B is given by Lemma 3.1.
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We cannot have B < I'Li(¢™), as T'L1(¢™) N N (Spam(q'/?) does not have
order divisible by |Spam(q) : O5,,(¢)| = ¢"(¢"™ — 1)/2. Also the case where
m=2,q=4, B> Az is out, as A7 £ Sp4(2). The remaining possibilities for
B are in the conclusion.

Case (¢p) Here O (9)NG2(q) = SUs(q).2, so we have N(G2(q)) = BN (SUs(q)).
If B # G2(q), it follows that ¢ = 4 and B < J5.2 or G2(2) x 2. In the first
case we get a factorization Jo.2 = B(52.(4 x S3), which implies either B> Jy
as in (v), or B < G3(2). Finally, if B < G2(2) x 2 then the fact that |B| is
divisible by 27 - 63 forces B > Us(3) = Go(2)/, as in (iii).

Case (k) Here Ni N Sy = S7 x S3. Hence S19p = B(S7 x S3), so B is
3-homogeneous of degree 10, whence B> Ag or Ajp, as in (v). n

5 Proof of Theorem 1.1: linear groups

In this section we prove Theorem 1.1 in the case where the simple group L
is a linear group L, (¢g) which is not isomorphic to an alternating group (so
we assume (n,q) # (2,4),(2,5),(4,2)). Write Z = Z(SLy(q)).

Suppose then that G has socle L = L,,(q), acts primitively on a set €,
and possesses a subgroup B which acts regularly on €. Let o € ) and write
A = G, so that we have

G=AB, AnB =1, and A max G.
By [33] together with Lemma 2.6, one of the following holds:

(5.1) n >3 and A= Py, P,_1 or Ny p_1;

(5.2) A>PSp,(q) (n even, n >4) and B < P1, P, or Ny p_1;

(5.3) A>SLu(¢")/Z (ab=n, a > 2, b prime), and either B < Py, P, 1,
orb=2,qe€{2,4} and B < Ny ,_1;
(5.4) A<TLi(¢")/Zq-1 (n odd prime) and B < Py, P,,_q;
(5.5) L = La(q), L3(4) or L5(2).

Case (5.1) If A = P, or P,_; then |B| = |G : A| = %, and B is

transitive on the set of 1-spaces in V' = V,,(¢). Hence by Lemma 3.1 we have
B <TLy(q")/F;, as in line 1 of Table 16.1. A complete description of the
regular subgroups in this case can be deduced from [14].

If A= Nip_1then|B|=|G: A= q"‘l.% and B is antiflag transitive

on V', hence is given by Theorem 3.2. By arithmetic the only possibility
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occurs when n = 4,q = 2, but this was excluded by assumption (because
L4(2) = Ag).

Case (5.2) Here
1 n?—2n n— n—
Bl =G« A] =S¢ (" = 1)@ = 1) (¢ - ),

where d divides (n,q — 1) (see [25, 4.8.3]).

Suppose first that B < P;. Since G = AB we have P, = B(AN P).
Write P = QR where Q = (F;)"! is the unipotent radical and R>SL,_1(q)
a Levi subgroup. Working modulo @, and writing B = BQ/Q, we obtain a
factorization N(SL,_1(q)) = B N(Sp,_2(q)). In particular B is transitive
on 1-spaces in V,_1(q), and so by Lemma 3.1 (noting that n — 1 is odd)
we have either B> SL.(¢?) (cd = n —1,¢ > 3) or B < T'Li(¢"!). Since
|B| = |G : A is divisible by ¢"~3 — 1, this is clearly impossible unless n = 4.
In this case B < Q.I'L1(¢?) with |Q| = ¢® and |B| = 1¢%(¢® —1). As ¢? does
not divide 3log g this forces B N Q # 1. However this is impossible, as B
acts irreducibly on (). The same argument deals with B < P,,_;.

A very similar argument applies when B < Nj,_1: the factorization
Nin—1=B(ANNiyn_1) gives N(SL,—1(q)) = B N(Spn—2(q)), which leads
to a contradiction using the above argument.

Case (5.3) Suppose first that B < P; = QR as above (the argument below
also deals with the case where B < P,,_1). Now AN P; fixes an ]Fqb 1-space
containing the F, 1-space fixed by P;. Hence, working modulo @) with the
factorization P = B(AN P;) yields a factorization

N(SL,_1(q)) = BPy_,

where B = BQ/Q and P,_; is the stabilizer of a (b—1)-space in V,,_1(q). By
[33] this implies that either b = 2 or L = Lg(2), b = 3 and | B| = 31-5. In the
latter case |B| divides 26 - 31 - 5, which is less than |G : A, a contradiction.

Hence b = 2 and n = 2a is even. Moreover, Lemma 3.1 implies that
B <TL.(q%) with cd =n — 1. As |G : A| is divisible by ¢"~3 — 1 this forces
n =4 and B < Q.I'L1(¢%). Here

1
Bl =|G: Al = 5q4(q3 —1)(g—1).

Hence ¢ must divide 6loggq, forcing ¢ = 2,3 or 4. The first case is out
as we are assuming L # L4(2). In the second and third cases we get the
possibilities
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(a) g =3 : G =L4(3).2 = PGL4(3), A= (4 x L2(9)).22, B = 33.13.3.2

(b) g =4 : G = Ly(4).2 (field aut.), A = (5x Ly(16)).4, B = 26.T'L,(2°).

Each of these gives examples in Table 16.1. To see this in case (a), note
first that the elements of order 3 in A have Jordan form J3, whereas those
in B do not; hence |A N Bly = 1. Furthermore A > PI'Ly(9), ANL >
PY.Ly(9), and PT'L2(9)\PXL2(9) contains no involution, whereas B does.
Hence AN B =1, and we have an exact factorization G = AB.

The argument for (b) is quite similar. Since the normal 2° in B consists
of transvections (and the identity), it intersects A trivially. The elements
of B of order dividing 3 form an elementary abelian subgroup, generated
by the matrix diag(l,w,w,w) and a field automorphism acting on the w-
eigenspace viewed as Fgy (where w® = 1). Hence the elements of order
3 in B have 1 as an eigenvalue, whereas those in A do not. Therefore
ANBNL=1. Finally, AN B cannot contain an involution since there are
no involutions in Ly(16).4\L2(16).2. Consequently AN B =1 and we have
an exact factorization G = AB.

Now suppose that B < Ny, withb =2 and ¢ = 2 or 4. Then ANNy ,—1
fixes an antiflag in V;,_1(q) (see [33, p.46]), and so B is antiflag transitive
on this space. As n — 1 is odd, by Theorem 3.2 this forces B > SL,,—1(q).
But then it is impossible that |B| = |G : A|.

Case (5.4) Here A <T'Li(q")/Z4—1 with n an odd prime, and we can take
B < P;. Write P; = QR as above. Observe that |A N P;| divides nloggq.

Assume first that B contains the subgroup @S of P;, where S = SL,_1(q).
For the moment identify V' = V,(¢q) with the field FF = Fgn. Taking
A < TLy(F), it is then the case that A contains the Frobenius map ¢
of order n sending x — 27 for all z € F. As an element of GL,(q), ¢ has
determinant 1 and fixes the vector 1 € F'. Hence ¢ lies in the subgroup @S,
and it follows that ¢ € AN B, which is a contradiction.

Hence B does not contain QS. Since P = B(ANPy), it follows that S =
SLy,—1(q) has a proper subgroup of index dividing nlogq. Using [25, 5.2.2],
we see that this forces n = 3 and ¢ = 2, 3,4 or 9, giving the possibilities

G A B

L3(2) 7.3 Dg

Ls(3) 13.3 32.[16]
L3(4).S3 7.3 x S35 2%.(3 x Dyg).2
L3(9).2 9132  3%(80245).22

The first two lines are examples; the first is recorded as Ly(7) = Py Dg in
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Table 16.1, and in the second, the normal 32 is the unipotent radical of
a parabolic P, = 32.GL2(3), the subgroup [16] being a Sylow 2-subgroup
of GLy(3). The fourth line is not an example, as 245 < SL2(9) is not
normalized by an involutory field automorphism. The third line does give an
example in Table 16.1. To see this, take G = PI'L3(4) = L.3.29 (notation of
[9, p.23]). There is a factorization PG L3(4) = (7.3 x 3) P, with P; = 2%.(3 x
As), and the two factors intersect in a group of order 3 (not centralizing As
in P;). Hence we see that (7.3 x3)N2%.(3x Dyg) = 1. Moreover, the quotient
B/2% = (3 x Dyp).2 is of index 2 in S5 x Fyy (where Fy is a Frobenius group
of order 20), and contains no involution lying outside 3 x D1. Consequently
AN B =1 and we have an exact factorization G = AB.

Case (5.5) If L = L5(2), then the maximal factorization not yet considered
has factors 31.5 and P, (or P3). This gives the exact factorizations in Table
16.1, with A and B either factor:

L5(2) = P; (31.5) = (31.5) P; (i = 2,3)
If L = L3(4), the maximal factorization not yet considered is
L3(4).20 = (L3(2).2) (Ag.2).

The intersection of the factors has order 6. Now the factor Ag.2 is Mg, so
has no subgroup of index 6. On the other hand, the index of Mjj in G is
56, and L3(2).2 has no subgroup of order 56. Hence no exact factorizations
arise in this case.

It remains to deal with L = Ls(q), ¢ > 5. The maximal factorizations of
groups with socle L are given by [33], and in particular one of the following
holds:

() A=P

(B) AN L = Dyg41)/(2,4-1)s B < P

(")/) ANL = As,54 or Ay.

Consider («), where A = P;. Here B has order g+1. We can assume B is not
as in line 1 of Table 16.1, so BNL < As, S4 or A4. If BNL < As, then ¢ is one
of 59,29,19,11. For ¢ = 59, we get the exact factorization Ly(59) = P; As,
as in Table 16.1. For g = 29, there is no suitable subgroup B. If ¢ = 19, the
only possibility is the exact factorization PGL2(19) = P; (5.4) — but this

is as in line 1 of Table 16.1. And if ¢ = 11, we get the exact factorization
L2(11) = P1 A4 in Table 16.1.
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If BNL <S4 then q is either 7 or 23, and we get the exact factorization
L5(23) = P; Sy (the only ¢ = 7 examples are in line 1 of Table 16.1). Finally,
if BN L < Ay then ¢ = 11, leading again to the example Ly(11) = P; Ay.

Next consider (3): AN L = Dygi1y/(2,4-1)s B < P1. Note that |G :
Al =q(¢—1)/2 = |B|. If ¢ = 3mod4 then ANP,NL =1 and we
have exact factorizations as in Table 16.1. Note that if ¢ = 7, then A only
becomes maximal in PG Ly(7). If ¢ # 3 mod 4, for an exact factorization, no
involution of PG L2 (q) can be contained in B. Hence the Sylow 2-subgroup
of B, of order equal to the 2-part of ¢(¢ —1)/2, would have to consist of field
automorphisms. An easy calculation shows this is only possible for ¢ = 4, a
case excluded here.

Finally consider case (y). If A = Aj then either G = L with ¢ one of
59,29,19,11 and B < Py, or G = Ly(16).4. The former leads to the examples
Ly(59) = A5 (59.29), Lo(29) = A5 (29.7), and Lo(11) = A5 11. There is no
regular subgroup in the cases ¢ = 19 and ¢ = 16, since the elements of order
3, respectively 2 in L are not fixed point free. This argument also disposes
of the possibility that ¢ = 16 and A N L = D34, since the degree is 120.

If ANL = Sy then ¢ is 7 or 23. The former leads to the example L3(2) =
P; 7 in line 1 of Table 16.1, while the latter gives the exact factorization
L5(23) = Sy (23.11) in the table.

Finally, if AN L = Ay, then ¢ = 11 and G = PGLy(11). We get the
example PGLy(11) = Sy (11.5), which is recorded in the table with the sign
T indicating that outer automorphisms are needed in G for maximality of A
in G (see the beginning of Section 16).

6 Proof of Theorem 1.1: unitary groups

In this section we prove Theorem 1.1 in the case where the simple group
L is a unitary group Uy,(q) with n > 3 and (n,q) # (3,2). Suppose then
that G has socle L = U,(q), acts primitively on a set (2, and possesses a
subgroup B which acts regularly on Q. Let a € © and write A = G,, so
that G = AB, ANB =1 and A max G. By [33] and Lemma 2.6, one of the
following holds:

(6.1) n is even and A = Ny;
(6.2) n is even and B < Ny;
(6.3) L= U3(3), U3(5), U3(8), U4(2), U4(3) or Ug(?).
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Case (6.1) In this case we have, writing n = 2m,

2m—1 @™ -1

B|=|G:N{|=¢" " —. 2

Bl =16 s M| =L 6
Moreover, B satisfies the conclusion of Lemma 4.3. None of the possibilities
given in (i), (ii), (iii) or (iv) of the lemma can satisfy (2). So suppose
B < P, as in (v) of Lemma 4.3. Write P,,, = QR, with @ the unipotent
radical and R > SL,,(¢?), so that B = BQ/Q is transitive on the 1-spaces
in V,,(¢?). Then by Lemma 3.1, one of the following holds:

(a) B> SLa(¢?®) (ab =m,a > 2), Spa(¢*®) (ab = m, a even) or Go(¢?)
(6b = m, q even)

(b) m=2,q =3 and Bv A4;

(C) B S GLl(q2m).

Case (a) is not possible by (2). And case (b) is out, as there is no subgroup
32.A5 in P2 == 34L2(9)

Now consider case (c), B < GL1(¢g*™). Assume for the time being that
(g,2m) # (2,6), and let t € B be an element of order ¢a,, (see Section 2
for notation). Now |Q| = ¢™°, and as an SLy,(¢%)-module over [F,, we have
Q = VeV @ realised over F,, where V = V;,(¢?). Obviously any t-invariant
subgroup of @ on which t acts nontrivially has order at least ¢>™, and hence
by (2), we have BN Q < Cg(t).

If A denotes a primitive gamth root of unity in the algebraic closure Fq,
then since it is fixed by the Frobenius ¢?-power map, t acts on V ® F, as
diag( A\, A7, ..., A" 7). As Q = V @ V@, it follows that |Co(t)] is 1 if m
is even, and is ¢ if m is odd.

If m is even, then BN Q = 1, so it follows from (2) that ¢>™~! divides
2mlogq. This is impossible as m > 2. Likewise, if m is odd then |[BN Q| <
g™, so ¢! divides 2m log ¢, which is impossible as m > 3.

It remains to handle the excluded case (g,2m) = (2,6). In this case let
t € B be an element of order 7. As above we calculate that C(t) = 1, and
the composition factors of @ | (t) have order 23. As |B| = 2°-21, this forces
22 to divide 2mlog g = 6, a contradiction.

Case (6.2) Again write n = 2m. In this case B < N; and by [33], one of
the following holds:

(a) A= Pp;
(b) A> PSpam(q) or SLin(¢?) (¢ = 2 or 4);
(¢) L =1Ug(2), A>Uy(3) or May; or L = Uy2(2), A Suz.
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We have a factorization Ny = B(A N Nip), and Ny > SUz,—1(q). Since
|B| = |G : A|, we have B ? SUsy,—1(q) by arithmetic. Hence it follows from
the factorizations of unitary groups of odd dimension in [33] that

L=U4(q) (¢ =2,3,5,8) or Ujp(2).

The last case L = Uj(2) is not possible, as it requires AN N; < N(J3) (see
[33, Table 3]), whereas from the proofs of the factorizations G = ANj in [33]
it is clear that this cannot be the case.

Now consider L = Uy(2). If A = P, then |B| = |G : A| = 27, and
there are examples of such regular subgroups in N; = GU3(2), as recorded

in Table 16.1: for example, relative to an orthonormal basis of V' = V;(22),
define

0
0 : >
0 Y b:dla’g(lﬂw’w ’]‘)7

O O O
O O = O

2

w © & oo

w
where w? = 1. Then a® = (wl3,1) and a’ = a*, so (a,b) = 9.3. Elements of
order 3 in A are conjugate to (w,w,w? w?), whereas elements of order 3 in
{a,b) are in (a3,b). Hence (a,b) is regular on (L : A).

Now suppose A > Sp4(2) (still with L = U4(2)). Then |B| = 36; however
we see from [9] that A contains representatives of all classes of involutions
in Uy(2).2, so there is no regular subgroup B in this case.

Next let L = Uy(3). The only proper factorization of Us(3) is La(7)P;.
Hence A = P, |B| = |G : A| = 112, and from [9, p.52] we see that B <
(L2(7) x 4).2. But this group has no subgroup of order 112.

Now consider L = Uy4(5). The only factorization of Usz(5) is A7Pi, so
A= P, |B| =756 and B <2 x 3.S7. However 2 x 3.57 has no subgroup of
order 756.

Finally, let L = Uy(8). Again A = Py so |B| =3°-19, and B < N;. In
order to have a subgroup B of this order in N7 = N;(G) we require G = L.3
and the only possibility for B is GU;(29).9 < N; = GUs3(8).3. This is an
example in Table 16.1: arguing as in the case above where L = Uy(2), A =
P,, we see that no element of order 3 in BN L = (29 + 1).3 is conjugate to
an element of order 3 of P»; hence ANBNL = 1. Finally B\((BNL) has no
element of order 3, hence also AN B =1, so we have an exact factorization
G = AB.

Case (6.3) There are six possible socles to consider here:

L= U3(3),U3(5),U3(8), U4(2), U4(3) or Ug(2).
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We consider possible maximal factorizations of G containing our factoriza-
tion AB.

Let L = U3(3). The maximal factorization of L to consider has factors
Py and Ly(7), intersecting in a subgroup of order 6. An inspection of the
permutation characters of G = Us(3).2 of degrees 28 and 36 shows that there
are no fixed-point-free involutions in either action.

Let L = U3(5). The maximal factorization of L to consider has factors
P; and A7, intersecting in a subgroup of order 20. If A = P; then A7 must
have a proper subgroup of order divisible by 63 - not so. Hence A normalizes
A7 and B is regular of order 50. This is not possible, since an inspection
of the permutation character shows that all involutions fix points in this
action.

Let L = U3(8). Here the maximal factorization to consider is in fact
exact:

Us(8).32 = P, (3x19.9) = (3 x19.9) P,
as in Table 16.1.

Let L = Uy4(2). Here the maximal factorization of L not already con-
sidered (in (6.1), (6.2)) has factors 33.S; and P», of index 40 and 27. From
the permutation character of degree 40 we see that all involutions in G fix
a point in this action. Hence A = P, of index 27. We have seen an exact
factorization

Us(2) = P [27]

in the above case (6.2). The Magma computations of Michael Giudici (men-
tioned in the remarks after Theorem 1.1) show that up to L-conjugacy there
are two regular examples B = [27], which are in fact non-isomorphic.

Let L = U4(3). Here one of the factors of a maximal factorization
containing AB intersects L in L3(4), the other in one of Py, P, and PSp4(3).
Assume A normalizes L3(4), so B has order 162. Since L has a unique class
of involutions, G must contain some outer involutory automorphisms. We
claim that there is an exact factorization

Us(3).2 = (L3(4).2) (3*.2).

This follows from the argument in [33, p. 113]: let G = U4(3).2; in the
notation of [9, p. 52], and A = Ng(L3(4)) = L3(4).22. Now G = AP,
and P, = 3%.(2 x Ag), with AN P, = Ag. It is then clear that the normal
subgroup B = 3%.2 of P, is an example of a regular subgroup of degree 162.
In fact there are more examples — the computations of Giudici show that
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there are 6 classes of regular subgroups B of order 162 in G = Uy(3).22, all
pairwise non-isomorphic.

If A is one of the other factors (namely P, P> or PSpy(3)), then the
degree |G : Al is 280,112 or 126, and B is a subgroup of Ng(L3(4)) of this
order. However, L3(4).22 has no subgroups of any of these orders, since the
only maximal subgroup of L3(4) of order divisible by 7 is Lo(7).

Finally let L = Uy(2). The relevant maximal factorization of L has
factors P; and J3, with intersection 22+4.(3 x S3). Since J3 has no proper
factorizations, A must be Ng(J3) and L has index at most 2 in G. Now
the derived subgroup of the Levi subgroup of P; is U7(2); since this has no
proper factorizations, it must be involved in B. Considering the power of 3,
this is impossible as B is regular.

7 Proof of Theorem 1.1: orthogonal groups in odd
dimension

In this section we prove Theorem 1.1 in the case where G has socle L =

Qom+1(g) (m = 3, ¢ = p” odd).
Suppose G = AB, AN B =1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

(71) A= Ny ;

(7.2) A= Py, B< Ny

(7.3) m = 3 and either A = Ng(G2(q)) or B < Ng(G2(q));

(7.4) g = 3%, L = Q13(q) or Q5(q) and A = N(PSpg(q)) or N(Fy(q)),
respectively;

(7.5) L = Q1(3).

Case (7.1) Here |B| = |G : Ny | = 3¢™(¢™ — 1). For any involution
t € SO2m+1(q), either the 1-eigenspace or the —1-eigenspace of ¢ is a non-
degenerate subspace of dimension at least 4, and hence ¢ lies in a conjugate
of N; . In other words A = N; contains representatives of all involution
classes of GNSO2,+1(q), and hence BNSO2p,+1(q) has odd order. It follows
that |B|z divides log, g. This is only possible if |B| is odd - in other words,
m is odd and ¢ = 3 mod 4.

By [33], the factorization G = BN; implies that either B < P, or
B < N(G2(q)) (m = 3). In the latter case we get an exact factorization
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N(G2(q)) = B(N; NN(G2(q)). However there is no such exact factorization
by [33, Theorem B].

Hence B < P,,,. Write P,,, = QR, where () is the unipotent radical and
the Levi subgroup R > SL,,(q). Working modulo @ with the factorization
Py, = B(AN Py), we get a factorization of type SLy,(q) = BPp—1, where
B = BQ/Q. As |B] is odd, it follows by Lemma 3.1 that B < I'L;(¢™).

Relative to a standard basis e1, ..., em,d, f1 ..., fm of V.= Van11(q) (see
[25, 2.5.3]), @ consists of matrices of the form

I, 0 0
T 1 01,
y -7 1,
where zis 1 x m, Y is m xm, and Y + Y7 = —zT2. Denote such a matrix

by M(x,Y). The conjugation action of an element g in the Levi subgroup
G Ly (q) sends M(x,Y) — M(zg,97Yg).

We have Q' = Z(Q) = {M(0,Y) : Y+YT = 0}. Moreover, Q' and Q/Q’
are irreducible F,S L, (q)-modules, isomorphic to A2V* and V respectively,
where V = V,,,(q).

Let ¢t € B be an element of prime order ¢, = pme, where ¢ = p©, and let
Qo = BNQ. Now Cp(t) = 1, and hence every composition factor of @ | (t)
has order ¢". Since Q) is t-invariant, and |B| = %qm(qm —1), it follows that
Qo has order ¢™. Also Qg is abelian (as Z(Qo) is t-invariant). Moreover
Qo < @', since otherwise the irreducibility of (t) on Q/Q" would imply that
Q = QoQ = QuZ(Q), which is a contradiction as @ is non-abelian.

Let u = M(0,Y) € Qo. Under the action of the Levi GL,,(q), u is
conjugate to M (0, Z), where

0 0 I,
Z = 0 Om—2r O
-1, 0 0

for some . Then u has Jordan form (J37, JZ™ #"*1). As m is odd, we have

2m —4r+1 > 3. But then Lemma 2.4(iii) implies that a conjugate of u lies
in A = N, contradicting the exactness of the factorization G = AB.

Case (7.2) Here [B] = |G : A| = [[(¢" + 1), and writing N; = G,
we see from [33, p.57] that AN N; fixes a totally isotropic (m — 1)-space in
v, Hence the factorization N; = B(AN Ny ) gives N(€5, (q)) = BPm_1.
By [33] there is no such factorization, except for m = 3, in which case this
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becomes N (Uy(q)) = BPy, which yields ¢ = 3 and B < N(L3(4)). However
the fact that 5 and 7 divide |B| then implies that B > L3(4) (see [9, p.23]),
which is clearly not the case.

Case (7.3) Suppose first that A = N(G2(q)). By [33, Lemma A, p.105], if
we embed L = Q7(q) irreducibly in H = PQ4{ (q) via a spin representation,
then we have H = LN; and LN Ny = G2(q). Hence the action of G on G/A
is contained in that of H on H/N;. In Section 9 we prove that the latter
action has no regular subgroups for ¢ odd (see the proof of Lemma 9.4).

Now suppose that B < Ng(G2(q)). Then we have an exact factorization
Na(Ga(q)) = B(A N Ng(Ga(q)). However, G2(gq) and its automorphism
groups have no exact factorizations, by [33, Theorem B|. Hence there are no
regular subgroups in this case.

Case (7.4) Here B < N; and we have a factorization N; = B(AN Ny ).
But it is easy to see using [33] that there is no such factorization with

|B| = |G : Al

Case (7.5) Here L = Q7(3). The relevant maximal factorizations are
discussed in detail in [33, pp. 100-103].

If A= N then the degree |G : A is 378 = 2.33.7, and relevant maximal
factorizations of L have the other factor either Spg(2) or Sg. In the first of
these, the interesection of the factors is a subgroup of a parabolic subgroup
Py of Spe(2). This gives rise to a factorization of Spg(2), so B must be
contained in G3(2) or L2(8).3; however, there is no subgroup of the right
order. In the second case, Sy has no subgroup of order 378: this would have
to be transitive, containing a 7-cycle and hence 3-transitive, not so.

The case where A = G2(3) has been handled in (7.3) already.

If A = P3, the degree is 1120 = 25.5.7 and the relevant maximal factor-
izations of L have the other factor one of Sy, Spe(2) and 26.4;7. Now Sy has
no subgroup of order 1120: a subgroup of order divisible by both 7 and 5
has to involve A7. The same is true for Spg(2): the only maximal subgroup
of order divisible by 35 is Sg, and the above applies. And the same is true
also for the remaining possibility, 26.47.

If A = Spe(2), the degree is 3°13 and the relevant maximal factorizations
of G have the other factor one of G2(3), N; and P3. Now G2(3) has no exact
factorizations, so the first possibility is out. In the second case, B must be
contained in the parabolic 33L3(3) of L4(3); that however has no subgroup
of order 3°13. Similarly Py = 33*3L3(3) has no subgroup of order 3°13.
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If A = Sy, the degree is 12636 = 223°13 and the relevant maximal
factorizations of G have the other factor one of Ga(3), N;” and P;. Now
G2(3) has no exact factorization. Next, N;~ = L4(3).2; the only maximal
subgroups of L4(3) of order divisible by 13 are the parabolic subgroups
33L3(3), from which we see there is no subgroup of the required order. The
same applies for P3 = 3313L3(3).

If finally AN L = 2545, the degree is 3713 and B is a subgroup of
P;. Regarding L as a subgroup Ni of P (3), there is a factorization
PQJ(3) = LQF(2) such that L N QF(2) = 26.4; = AN L (see [33, p.
106]). However, we show in Section 11 (see case (a) of the PQy (3) part
n (11.10)) that N; has no subgroup B which is regular on the coset space
PQJ(3)/94 (2), so there is no regular subgroup B in the case under current
consideration.

8 Proof of Theorem 1.1: orthogonal groups of mi-
nus type

In this section we prove Theorem 1.1 in the case where G has socle L =
PQy,,(q) (m = 4).

Suppose G = AB, AN B =1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

(8.1) A= Ny;

(8.2) A= Py or Ny (¢ =4), B < Na(SUn(q)) (m odd);
(8:3) A = No(SUn(q)) (m odd), B < Pr, Ny or Ny
(8:4) A= Ng(2;,(¢*) (m even, ¢ =2 or 4), B < Ny;
(8.5) L =2(2).

Case (8.1) Here G = BNj and |B| = |G : Ni| = mqm_l(qm +1).
Moreover B is given by Lemma 4.4, from which we check that the only
possibility is m = 4,¢ = 2 and BDQ;/2(q4) =, (16). However in this case
L = Qg (2) and it follows from Lemma 2.2 that every involution class in G
is represented in N7, so no regular subgroup occurs.

Case (8.2) If A= P then |B| = |G : A| = (¢ +1)(¢™ ' ~1)/(¢g+1) and
we have a factorization N (SU,,(q)) = B(ANN(SUp(q)) < BP;. Form > 5
odd, the only factorization of U,,(q) (or an automorphism group) with P; as
a factor is Ug(2) = J3P;. However, it is easily seen using [9] that J3 and J3.2
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have no subgroups of order (2% +1)(2% — 1)/3. A similar argument handles
the case where A = N.

Case (8.3) Here A = Ng(SU(q)) with m > 5 odd, and
Bl =G : Al = ¢"" V(" 4 ) (@ = 1) (P + (- 1) (3)

Suppose first that B < P;, and write P = QR where @ is the unipotent rad-
ical and the Levi subgroup R> €, . ,(¢q). Then AN P; lies in P;(A), hence
modulo @ we have a factorization R = BP; (where bars denote image mod-
ulo Q). There are no such factorizations of Q5. ,(¢) or an automorphism

group thereof (note m — 1 is even).

Next suppose that B < Ni. Then Ny = B(AN Ny) < BNg(SUn-1(q)).-
For ¢ odd there is no such factorization of N7, so ¢ is even and we have

N(Sp2m-2(q)) = BN(SUn-1(q)) < BN(Q3,, 5(q))-

Clearly B # Spam—2(q) by (3). Hence [33] implies that either B < N(Sp2.(q®))
(ab=m—1,b>1),or B < N(, 5(q)) (g =2or4), or B< N(Ly(17))
(m =b5,q = 2). The first and third cases are out by (3). In the second case
we have a factorization of the form N (€, 5(q)) = BNi. Then [33] forces
B> Q5. 5(q) or Q. ,(q?), neither of which is possible by (3). The same
observation rules out the last possibility in (8.3), namely B < N.f.

Case (8.4) In this case AN Ny > Qy,,_1(¢%), so the factorization N =
B(AN Ny) gives

Ne(Spam-2(q)) = BN (Qm-1(¢%)) < BP1.

As m —1 > 3 is odd, Lemma 3.1 now implies that either B> Spaa(q®) (ab =
m — 1) or m =4 and B> Gy(q). Since |B| = |G : A|, arithmetic shows that
only the second possibility can hold.

If ¢ = 4 then from [25, 4.3.16] we have AN L = 4(16).2, while BN
L = G3(4), so |L|2/(|A]2|Bl2) = 23. This is impossible as |G : L| divides
|Out(L)| = 4.

Finally, if ¢ = 2 then our potential exact factorization of G is Qg (2).2 =
(L2(16).4) (G2(2) x 2). However, we claim that this is not a factorization,
and prove this by showing that the subgroups L,(16) and G2(2) meet the
same involution class of L. To see this, we refer to [9, p.88]. All classes of
involutions in L meet Spg(2). The irreducible character of degree 34 splits as
a sum of two irreducibles of Spg(2), one of degree 7 and the other of degree
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27. We deduce that the class 2B of L contains involutions from both classes
2A and 2C in Spg(2). From the permutation character we see that these
involutions are not contained in G2(2). On the other hand, the other two
classes of involutions in L therefore have to be represented in G2(2). Next,
considering possible restrictions of the character of degree 34 to L2(16), we
see that the value on involutions there has to be 2, so the class in L to which
these belong is either 24 or 2C (in fact it is the latter). This establishes the
claim.

Case (8.5) Here L = O1,(2). The factors in L are P; and A2, intersecting
in a subgroup (S4 x Sg)* of A15. The index of Ao in L is 2'1.51, whereas it
is quite easy to see (cf. [9, p. 89]) that any subgroup of Og (2) (and hence
Py) of order divisible by 51 involves L2(16) and hence has order divisible by
5. On the other hand, if A = P; of index 495, then A5 does not have a
suitable exact factorization.

9 Proof of Theorem 1.1: some special actions of
symplectic and orthogonal groups

In this section we prove Theorem 1.1 in the following two special cases:

7 0 0]
Spam(q) (¢ even,m >2) L/O,, (q) 3¢™(¢™ - 1) (4)
PQ3,,(q) (m > 4) L/Nt  gyyd™ ' (d" - 1)

It will turn out that the main candidates for regular subgroups in these
cases contain normal subgroups Lo (qm/ 2). Tt is convenient to begin by clas-
sifying such subgroups.

Proposition 9.1 Let L, be as in (4). Suppose m is even, and let S < L
with S = Lz(qm/2) and S semireqular on Q. If q is odd, assume that S is
contained in a parabolic P, or P,,_1 of L. Then the following hold.

(1) S is a factor of La(q™?) x La(q™?) = PQJ (¢"™/?) < L; conversely,
such a factor is indeed semireqular on €.

(ii) S is contained in a Levi subgroup of a parabolic subgroup P,, (or
P,,_1in the orthogonal case) of L.

(ili) CL(S) = La(g™/?).

(iv) If q is even, u is an involution in CL(S) and s is an involution in
S, then su fixes a point of €.
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Proof (A) Suppose first that ¢ is even. Let V' = V5,,,(¢) be the natural
module for L. Let t € S be an element of order 3 so that V' is completely
reducible as (t)-module. If W = Cy/(t) is nonzero then it is non-degenerate
and so t lies in Sp(W+) x 1 or Q(W+) x 1% from which it follows easily
that t fixes a point of 2, contrary to our semiregularity assumption. Hence
Cy(t) =0.

By Lemma 2.5, the F,S-composition factors of V' are sums of field twists
of tensor products Vo ® 1/2(2”) ®X...Q VQ(TZ), realised over F,, where V5 is the
natural module for S. If [ > 1 then ¢ has nonzero fixed point space on such
a tensor product. It follows that [ = 0 and the IF,S-composition factors of V'

‘/2(qm/2_1)

are m-dimensional modules of the form V5 @ V2(q) ®...0 , realised

over [F,.

Thus S has two m-dimensional composition factors on V of the above
form. In particular S fixes an m-dimensional subspace U of V, and U is
either totally singular or non-degenerate.

Suppose U is non-degenerate. Now S fixes an I m/2-symplectic form [,]

on Vo = Va(q™/?), unique up to IF ;m/2-scalar multiplication. Identifying the
vectors in U with those of V5, we see that S fixes the F,-symplectic form on

U defined by (u,v) = Trizm/z [u,v]. If we take an involution s € S sending
e — e, f— f+efor some F n/2-basis e, f of V3, then s has Jordan form J3"
on V, and satisfies (v, s(v)) # 0 for some v € V (for example take v = \f
(X € Fm/2), where Tr(A?[e, f]) # 0). Hence by Lemma 2.1, some conjugate
of s fixes a point of €2, a contradiction.

Hence U, and indeed every S-invariant m-subspace of V, is totally sin-
gular. In particular S < Ly = P,,, a parabolic subgroup of L. Write
P,, = QR, where @ is the unipotent radical and R = GL,,(q) is a Levi
subgroup. Then @ is elementary abelian, and has the structure of an F,R-
module, with composition factors Vj,,, A2V, if L = Spam(q), and just A%V,
if L = PQj (q) (where V;,, denotes a natural module for R).

The Levi subgroup R has a subgroup T' = SLy(¢™/?) acting as above on

Vi (namely, as Vo @ Vz(q) ®...0® V"Q(qmnil), realised over Fy). Observe that
this subgroup 7' acts semiregularly on €2: for semisimple elements of 1" are
clearly semiregular, while an involution ¢ € T acts on V with Jordan form
J3" and satisfies (v,t(v)) = 0 for all v € V, hence is fixed point free on §2 by
Lemmas 2.1 and 2.2.

We next aim to prove that

S is Q-conjugate to T. (5)
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We first claim that in P, there are at most two conjugacy classes of
subgroups SLy(¢™/?) which project to T' (via the canonical map QR — R).
If L = PQ3 (g), then as an F,T-module we have

QLT =NV LT =S Vi @ Vi) 4 triv,,
1<j
(realised over F,). Hence from Lemma 2.5(ii) we see that H(T,Q) = 0,

whence the semidirect product QT has just one class of complements to @,
giving the claim. If L = Spo,,(g) this is no longer the case: here we have

m/2 _ ) )
QIT=>V" /> V" oV /tivn,
i=1 i<j

(realised over F,). Hence we see from Lemma 2.5(ii) that H'(T,Q) has

dimension at most m/2 over F,, arising from the fact that H'(T, VQ(qi)) has
dimension 1 for each i. As a module over F, for a subgroup GLa(q™/?) of R

containing T, >, H(T, V2(ql)) is of the form V1+V1(Q) +.. .+V1(qM/2_1) realised
over Fy, where V; is a 1-dimensional module over F ./ for GLay(q™?).
In particular GLg(qm/ 2) acts transitively on the nonzero elements of this
module, and it follows that there are at most two classes of complements
to @ in the semidirect product T, which establishes our claim in this case
also.

We now deduce the assertion (5). If L = PQJ (q) then as shown above,
the semidirect product QT has just one class of complements to Q. Since
@S is conjugate to QT', (5) follows in this case.

Now assume L = Spo,,(q). We first produce a complement to @ in QT
which is not conjugate to T. Let X be a non-degenerate m-subspace of V,
and let S 22 SLs(¢™/?) be a subgroup of L fixing X and X', such that

m/2—1 _
X\I/SngJ_\LSngVYQ(ql)
=0

(realised over F,). If ¢ : X — X' is an Sj-isomorphism, then S fixes the
subspace W = {z+¢(z) x € X}, which is a totally singular m-space. Hence
we may take S; < P,,. Replacing S; by a suitable P,,-conjugate, we may
assume that S; < QT. Further, S; is not conjugate to 7', since it follows
from the above observations that an involution in T is fixed point free on
Q, while an involution in 5] is not.
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It now follows that our subgroup S is Q-conjugate to either T or Sj.
However, as just noted, S; is not semiregular on 2. Hence S is conjugate to
T. This establishes (5), and also proves conclusion (ii) and the last part of
(i) of the proposition.

Now consider a subgroup Qf (¢™/?) < QF (q) < L. Write Qf (¢™/?) =
T) x Ty with T} = SLo(q"/?). This acts on V4(¢™/?) as a tensor product
of two 2-dimensional spaces, say Vi ® Vo. Then for v € Vs, the subspace
V1 ® v is a totally singular m-space in V fixed by 11, and it follows that T
fixes a pair of complementary totally singular m-spaces, hence lies in a Levi
subgroup GL,,(q) of a parabolic P,,. Thus we see that S is conjugate to 17,
proving (i).

To prove (iii), let P be a Sylow 2-subgroup of Cr(T}). Then P x T}
lies in a parabolic subgroup of L, which must be P,,. Hence P < Cp, (T}),
whence P = Cg(T1). The composition factors of @ | T are given above,
and there are at most m/2 trivial ones, whence |P| < ¢"/2. Since T lies in
Cr(Ty), it follows that |P| = ¢™/2. Moreover the composition factors of T}
onV® IF‘q are all 2-dimensional and have multiplicity 2. Hence we see that
Cr(Ty) = Ty, giving (iii).

Finally we establish (iv). As above take T} x Ty to act on V; ® Vs, a
tensor product of 2-dimensional spaces over Fym/2. Let T fix a symplectic
form (, ); on V;, and let ¢;, f; be a basis of V; with (e;, f;); = 1. Then T} x T3
fixes the quadratic form Qo on Vi ® V5 which has associated bilinear form
[, ] equal to the product of (, ); and (, )2, and satisfies Qo(v; ® v2) = 0 for
all v; € V; (see [25, p.127]). For i = 1,2, let t; € T; be the involution which
sends e; — e;, fi — e; + f;- Then the involution ¢ty sends

fi®fo—mea®e+er® fo+ fi®es+ f1® fo

Hence t1t9 acts on Vi ® V5 with Jordan form J22 , and if we write v = f1 ® fo
then [Mv, t1t2(Av)] = A2 for ) € F ms2. Now regarding Vi ® V3 as the 2m-

dimensional space over F, with symplectic form (, ) = Trizmm[, |, we see
that tity acts on V as JI* and, taking u = Av with Tr(\?) # 0, we have
(u,tita(u)) # 0. Hence tity fixes a point of 2 by Lemma 2.1, and (iv) is
proved.

(B) Now assume that ¢ is odd, so that L = PQJ (q) and Q = L/Ny.
Again write V = Va,,(q). Let S be the preimage of S in L = Q5..(q). If tis
an involution in S then Cy (t) is non-degenerate, so the semiregularity of S
on Q forces Cy/(t) = 0 and t = —1y. In particular S = SLy(¢g™/?).
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By hypothesis, S is contained in a parabolic P = P, or P,,_; of L. This
parabolic P is the stabilizer of a totally singular m-subspace W of V. As
before write P = QR, where @ is the unipotent radical and R < GL,,(q) is
a Levi subgroup.

Consider the action of S 2 SLy(¢™?) on the m-space W. This action
is realised over F,, so the set of composition factors of S on W is invariant
under a Frobenius g-power morphism. Simple arithmetic shows that the
only possible sets of composition factors are {V2(qz) :0<i< % —1} and
{(Va® V2(q°))(qi) 10 <4 < — 1}, where V3 is the natural 2-dimensional
module for S and qo is a power of p. In fact the latter set is impossible, as

Z(8S) acts trivially on V3 ® VQ(qO) , whereas we showed above that it must act
as (—1y) on V. It follows that

m/2—1 )
Wi Sr ~ Z ‘/2((1 ),
1

realised over [F,.

We next establish that S acts completely reducibly on V. Assume for
a contradiction that this is not the case. As an S-module, V/W = W* =
ZT/2_1 VQ(qz), so it must be the case that Extg(Vg,Y/'z(qz)) # 0 for some
i. By [1, 4.5], for this to be the case we must have ¢ = 3, and V | S
the sum of field twists of a 4-dimensional indecomposable with composition
factors VQ,V2(3). Such an indecomposable can be viewed as the space of
homogeneous polynomials of degree 3 in two variables or its dual, from
which we see that the action of an element u € S of order 3 has Jordan form
(J3,J1). Hence the action of u on the whole of V' is (Jén/Q, Jin/2). However,
such an element fixes pointwise a non-degenerate subspace of dimension m /2
(see [42, p.38]), and hence fixes a point of €2, contradicting the semiregularity
of S.

Hence V | S is completely reducible, and is ZT/ >t Vz(ql)—kzan/ > VQ(qZ).
In particular S fixes an m-subspace W’ of V such that V. = W @& W’'. As-
sume W' is non-degenerate, so that S < Q(W’) = Q¢ (¢q). Consideration
of primitive prime divisors of ¢" — 1 shows that for |SLy(¢™/?)| to divide
126, (¢)| we must have 4/m and e = —. However in this case 2, (¢) does not
contain —I,,, (see [25, 2.5.13]), giving a contradiction as S contains —1y. It
follows that W’ is totally singular. Thus S fixes the complementary totally
singular m-spaces W, W', and hence S lies in a Levi subgroup of P, giving
conclusion (ii) of the lemma.
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Finally, conclusions (i) and (iii) are proved by similar arguments to those
given above for these in part (A) of this proof. n

Next we establish the existence of the examples in Table 16.1 for this
case (i.e. L, asin (4)).

Proposition 9.2 Regular subgroups B of G exist in each of the following
cases:

G Ga B
Sp4(4).2 04_(4)2 55
Sps(2)  Og(2) S5
Q5 (2) M Ss
Q5 (4)2 M L>(16).4

where in lines 1 and 4, G/L is generated by an involutory field automor-
phism. Moreover, in each case the subgroup B’ is unique up to G-conjugacy.

Proof First consider the last two lines. Here L = QJ (¢) with ¢ = 2 or
4. By Lemma 9.1 there is a subgroup S = SL3(q?) of a Levi GL4(q) in L
which acts semiregularly on . In fact there is a subgroup S.2 = SLs(¢?).2
in this GL4(q), and any outer involution t of this has Jordan form Jj on
V = Vi(q) and satisfies (v,t(v)) = 0 for all v € V (since GL4(q) fixes a pair of
complementary totally singular 4-spaces), and hence ¢ is fixed point free on
Q by Lemma 2.1. It follows that this subgroup 5.2 is semiregular on 2. For
q = 2 this gives a regular subgroup B = S5, as required. For ¢ = 4, adjoin a
field automorphism 7 to L. Then the normalizer of S in G = L(7) contains
S.4 = Ly(16).4. If this intersects N; nontrivially, the intersection must have
order 2. However elements in Ly(16).4\ L2(16).2 have order divisible by 4,
so this is not possible, and it follows that this subgroup L9(16).4 is regular
on {2, giving the example in line 4 of the table in the conclusion.

Observe that the action of Q2 (2) on Nj-spaces is contained in the action
of Spg(2) on the cosets of Og (2), and hence the latter also has a regular
subgroup Sj5.

Now consider line 1. Let G = Sps(4).2. By Lemma 9.1 there is a
semiregular subgroup S = SLy(4). Its normalizer in G contains a subgroup
S5. This must intersect G, = L2(16).4 trivially, since as above, elements of
G, \L have order divisible by 4. Hence this S5 is regular.

Finally, the uniqueness statement in the proposition follows from Propo-
sition 9.1.

|
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Remark The proof shows that the indicated outer automorphisms of L are
necessary in lines 1 and 4 of the table in 9.2, hence the * in the corresponding
entries of Table 16.1.

Now we embark upon the proof of Theorem 1 for the special actions
given in (4). Let G, L,Q be as in (4), and suppose B < G acts regularly on
Q.

Lemma 9.3 One of the following holds:

(i) m is even and B has a normal subgroup S = Lo(q™/?), where S is
contained in a Levi subgroup SLy,(q)/(—1) in L;

(ii) (m,q) = (4,3), B lies in a parabolic subgroup P; (i =3 or 4) of G,
and B> As, where this As lies in a Levi subgroup Ly4(3) of P;.

Proof We know that |B| = 3¢™(¢™ — 1) or (QTl_l)qm L(g™ — 1), accord-
ing as L = Spam(q) or PQJ (q). Moreover B satisfies the conclusion of
Lemma 4.6 or 4.5, respectively. It follows by arithmetic that one of the
following holds:

(@) B Ly(¢™/?) with q even or (m,q) = (4,3);
(6) B < P, (or Py,_1 in the orthogonal case), and modulo the unipotent
radical B induces a subgroup of I'L,,(¢) which is transitive on 1-spaces.

Consider case (a). If g is even then conclusion (i) holds by Proposition 9.1.
Now assume (m, q) = (4,3) and B Ly(9) = As. We have |B| = 1080, hence
B = 3 x Ag, and so B lies in a maximal parabolic P, which must be P3 or
Py (since G = BNj). Hence conclusion (i) holds by 9.1 again.

Now consider case (). Let P,,, = QR as in the proof of Proposition 9.1,
and let B denote the subgroup of I'L,,(q) induced by B. Then B is given
by Lemma 3.1. Since |B| = || is as in (4), one of the following holds:

(2) B> La(q™");
(b) B Ly(13) with (m, q) = (6, 3);
(c) B> Az or B < 21,85 with (m,q) = (4,3);
() B < TLi(¢™).
Consider (a). Since |B|, < ¢™, B must act trivially on B N Q, and hence

the preimage of Ly(¢™/?) in B is a central extension of BN Q by Ly(q™/?).
Now the Schur multiplier of Lg(qm/ %) is a p’-group, with the exception of
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Ly(4) and La(9) (see [16, 6.1]). Therefore, apart from these exceptions, we
have B > Lo(¢™/?), and conclusion (i) now follows by Proposition 9.1. The
exceptional possibilities are that B contains a cover 2.Ly(4) or 3.L2(9) (with
m =4, ¢ = 2 or 3). However, there is no such cover in P,, in these cases: for
example, when ¢ = 2 we have P,, = Py = 26.L4(2) or 2476.14(2) according
as L = Q4 (2) or Sps(2). The group B, being transitive on 1-spaces, is an
Ly(4) centralizing an element of order 3 in L4(2), hence acting completely
reducibly on 2¢ as 22 @ 2*. The derived group of 26.B is therefore 24.B3,
which does not contain a cover 2.Ly(4) as B is fixed point free on 24. The
argument for ¢ = 3 is similar.

In case (b) the fact that |[B| = 335(3% — 1) forces B = 3%.Ly(13). We
have Q = A2V;(3) as a module for R’ = Lg(3), and hence using [20] we see
that @ | L2(13) has composition factors of orders 37,37 and 3. Hence Pg
has no subgroup 34.L5(13), a contradiction.

Now consider (c). Here |B| = 1080 and B < P; < 3%.L4(3).Dg, where
i € {3,4}. If |B|3 = 1 then |B N Q| = 33. However since B has an element
of order 5, there is no B-invariant subgroup of order 3% in @, so this is
impossible. Hence |B|3 = 3, B> A5 and BN Q = 3% = Cg(A;5). Since the
Schur multiplier of A5 has 3'-order, it follows that B > As. Arguing as in
part (B) of the proof of Proposition 9.1, we see that this As lies in a Levi
subgroup of P; (using [26, Lemma 1] instead of [1] for the relevant fact about
Ext groups). Hence conclusion (ii) of the lemma holds.

Finally, consider (d), in which B < T'L1(¢™). Assume first that (m, q) #
(6,2), so that B contains an element ¢ of prime order ¢, (a primitive prime
divisor of ¢™ —1). The non-trivial composition factors of @ | (t) have order
¢™; in addition we have |Cg(t)| = 1 or ¢"/2, according as m is odd or even,
respectively. Since |B|, < ¢, it follows that BNQ < Cg(t), and so mlog, q
is divisible by |B|,/|Cq(t)|. Hence one of the following holds:

m=2,q=4or 16
m=4, q=2,4or 16
m=2_8, q=2.

In the m = 2 case we have L = Sps(q) and BN L < Np,(t) = [g.(¢ — 1)]
[(g +1).2] < La(q) x La(q) = 5 (q). By Proposition 9.1(iv), no involution
from the second factor can be present in B. Hence for ¢ = 16 we have
B < ([q.(g — 1)] x (g + 1)).4, whereas |B|z = 27, a contradiction. And for
q = 4 we have G = L.2 and B = (22.3 x 5).2; however, any 2-element in the
outer coset of this group would have to have order 4, since Np,,(4)2(5) = 5.4,
so this is also impossible.



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 49

In the m = 4 case, we similarly have BNL < ([¢%.(¢> —1)] x (¢*+1)).2 <
Q4 (¢%), and again any outer 2-element must have order greater than 2,
leading to a contradiction. The m = 8 case yields to an entirely similar
argument.

To complete the proof, observe that in the excluded case (m,q) = (6,2)
we take ¢ € B to be an element of order 7; then all composition factors of
Q | (t) have order 23. This yields a contradiction since |B|y = 2°. n

Lemma 9.4 q is even.

Proof Suppose ¢ is odd. Then L = PQJ (q) (m > 4) and Q = L/N;. Say
N; is the stabilizer of a 1-space (w) with (w,w) = 1.

Assume first that case (i) of Lemma 9.3 holds. By Lemma 9.1, the
normal subgroup S = Lg(qm/ 2) of B is a factor of a subgroup S x T =
Lay(q™?) x Ly(¢™?) = PQf (¢™/?) < L, and moreover Cr(S) = T. Hence
B normalizes S x T Since |B|, = ¢™ ! it follows that B contains an element
to € T of order p.

However, we claim that we can choose t; € S of order p such that ¢ty
fixes a point of €. To see this, rewrite S x T' =T} x T, and take this to act
on V1 ® V3, a tensor product of 2-dimensional spaces over I m/>. Let T; fix a
symplectic form (, ); on V;, and let e;, f; be a basis of V; with (e;, f;); = 1.
Then T x T fixes the symmetric form [, ] on V; ® V2 which is the product
of (,)1 and (, )2, and we may assume the F,-form (, ) on V preserved
by L to be Trk [, ], where K = Fom2,k = Fq. We may take t; to send
e; — €, fi = aze; + fi for i = 1,2 and some «; € ]qu/z. Then t1t9 fixes the
vector

v=aje1 ® fo — asfi ® es.

Now [v,v] = 2ajag, and so for a suitable choice of o (recall that we can
choose t1 to be any element of order p in S), we have (v,v) = Tk [v,v] = 1,
so the FF,-1-space spanned by v is in € and is fixed by t1t2 € B, as claimed.
This contradicts the fact that B acts semiregularly on 2.

Finally, consider case (ii) of Lemma 9.3. As in the fifth paragraph of
the proof of that lemma (case (c)), we have BN Q = Cg(As) = 3%, and
the subgroup 3% x Az of B lies in a subgroup Ag x 4g = PQf(9) < L.
Then B contains an element t1ty, where t1,to are elements of order 3 in the
two factors Ag, and as above, this element fixes a point of €2, which is a
contradiction. |
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At this point we can complete the proof of Theorem 1 for the actions
in (4). Let G,L,Q be as in (4), and suppose B < G is regular on 2. By
Lemmas 9.3 and 9.4, m and ¢ are even, and B has a normal subgroup
S 2 Ly(¢™/?). Moreover, S satisfies (i)-(iv) of Proposition 9.1.

Let T = CL(S), so T = Ly(q™/?) by Proposition 9.1(iii). Now |Bly =

™ — 1 = |S|o, while [BN Ty = 1 by Proposition 9.1(iv). It follows that
BNT =1. Since S is centralized by no nontrivial field automorphism of L,
we have Cg(S) = CL(S) = T, whence Cp(S) = 1. Consequently B/S has
order dividing |Out(S)| = Zlog, ¢. Since |B/S| = 3 q™? if L = Spom(q),
and |B/S| = ¢™?> Vif L = Q+m( ), this forces one of the following to hold:

L=Spon(q) :m=2,q=4orm=4,q=2
L=QF (q) : m=4,g=2o0r 4.

In all these cases examples of regular subgroups B exist, and are unique up
to conjugacy, by Proposition 9.2. Finally, we see using Proposition 9.1(iv)
that there are no further examples of regular subgroups.

This completes the proof of Theorem 1 for the actions in (4).

10 Proof of Theorem 1.1: remaining symplectic
cases

In this section we prove Theorem 1.1 in the case where G has socle L =

Suppose G = AB, AN B =1 and A max G. By [33] and Lemma 2.6,
one of the following holds:

B < P (ab=m, b prime);
104) A = NG(PSan( b)) < Ng(925,,(9)) (g even, ab = m, b prime);
om(9)) (g even);
10.6) A = Ng(Spm( )252) B < N¢(95,,(q)) (m even, g even);
A = Ny, B < Ng(Spm(q?)) (m >4 even, ¢ = 2 or 4);
A = Ng(Spm(q?)), B < Ny (m >4 even, ¢ = 2 or 4);
A = No(Spam(a"2), B < Na(@(a)) (g =4 or 16);
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(10.10) m = 2, A = N(Sz(q)) or B < N(Sz(q)) (¢ = 22¢*1 > 8);
(10.11) m =3, A= N(G2(q)) or B < N(G2(q)) (q even);
(10.12) L = PSp4(3), PSps(3) or Spg(2).

Case (10.1) For e = — this case has been handled in Section 9. So assume
e = +. Then A = Ng(93,,(¢q)) and |[B| = 1¢™(¢™ + 1). By Lemma 2.3,
A contains representatives of all involution classes in L, and hence, as B is
regular on 2, B can contain no such involutions; in other words, |B N L] is
odd. It follows that |B|s = 1¢™ divides |G : L|, hence divides log, g. This
is impossible.

Case (10.2) Here A = Py, |B| = (¢*™ — 1)/(q¢ — 1), and by Lemma 3.1
we have B < T'Li(¢*™)/(—1). Now I'L1(¢*™) N Spam(q) = (¢™ + 1).2m
(see for example the proof of [25, 4.3.15]), and hence (¢*™ — 1)/(¢ — 1)
must divide (¢" + 1).2mloggq. This forces m = 2,q = 3. In this case
L = PSp4(3) = Uys(2), which was handled in (6.3).

Case (10.3) Here B < P; and A = Ng(PSp2a(¢q®)) (ab = m, b prime),
and we have

Bl=1L: A= ] (@ -, (6)
i<m—1,i#kb
Write P = QR where @ is the unipotent radical and R a Levi subgroup, so
R>Spom_2(q). As usual set B = BQ/Q. If P, = Gy then AN Py stabilizes
the 1-space spanned by v over F», and hence we have a factorization R =
BP,_1. By [33] this forces one of the following to hold:

(1) B> Spam—2(q)
2)b=m>2
(3)b=2.

Consider first case (1). Here (6) forces b = m, and |B|/|Spam—2(q)| =
g™ ! /m. Hence as m is prime, m = p. Moreover Spa,,_2(q) has composition
factors on @ of orders ¢ and ¢?" 2, and so BN Q < Qou, where Qy =
Co(Spam—2(q)), a group of order g. Thus ¢™~*/m divides glogq. If m = 2
then p = 2 and A = Ng(Sp2(¢?)) is conjugate under a graph automorphism
of L to N(O; (q)), a case already handled in Section 9. The only other
possibility is that m = p = 3, in which case ¢? divides 3¢log g, forcing ¢ = 3,
and ANL = PSpy(27).3, BN L = Sps(3) x 3. But then A and B contain
conjugate elements of order 3 and Jordan form J;.
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For the rest of the proof we may assume that B % Spam,_2(q).

Consider case (2): b = m > 2. Here the factorization R = BP,,_1
implies using [33] that one of the following holds:

(2i) B < N(O,,,_5(q)), q even

(2ii) m = q =3, B <2t4.8;

(2iii) m = 3,q = 2.
In case (2i) we have B < Q.(O5,,_5(q) x (¢ — 1)).logg, and hence by (6),
g™ ! — 1 divides m(q — 1)logq. This forces m =3, ¢ =2 or 8. For ¢ = 2
the only possibility for B is 2*.45, and we claim there is indeed an exact
factorization

Spe(2) = (Sp2(8).3) (2. 45),

as in Table 16.1. To prove this claim, we start with the factorization
Spe(2) = (Sp2(8).3) Og (2) given by [33]. The intersection of the two fac-
tors is O, (8).3, which is not contained in € (2), and hence we also have
Spe(2) = (Sp2(8).3) Q5 (2), the factors intersecting in 25 (8).3 = 9.3. Now
take B = 2. A5 = P;(Q4 (2). Then B is also Py(Uy(2)). From Section 6 we
have an exact factorization of Uy(2) which interpreted for €25 (2) takes the
form Qg (2) = P19, (8).3, and the claim follows.

Finally, for m = 3,q = 8 we assert that no example arises: for here
the relevant exact factorization must be Spg(8).3 = (Sp2(8%).9) B, where
B = (Fg)%.(Q, (8) x7).3, and B is unique up to P-conjugacy. Hence B is the
stabilizer of a singular 1-space in Qg (8). Since Spg(8) = (Sp2(83).3) Q4 (8),
with factors intersecting in 2, (82).3, this leads to a factorization Qg (8).3 =
Py (95 (8%).3.3). However there is no such factorization, by [33].

Next consider case (2ii): m = q¢ = 3, B < 2'*4.S5. Under the action of
a subgroup of order 5 in B, the radical Q = 3!** contains no invariant 3,
and hence the only possibility is B = Q.(2!7%.5.4). We claim that there is
an example of this form, i.e. an exact factorization

PSpg(3).2 = AB = (PSpy(27).3.2) (3174217 5.4),

as in Table 16.1. To see this, observe first that |ANB|3 = 1: for the elements
of order 3 in A have Jordan form J3 or JZ, whereas those in B (hence in
Q) do not. Next, |AN BN L|y = 1: for involutions in P; lift to involutions
in Sps(3), whereas involutions in the subgroup PSp2(27) lift to elements of
order 4. Finally, |A N Bl = 1 also, since, working in B/O;3(B) = 5.4, we
see that every 2-element of B N (L.2\L) has order divisible by 4 and has a
power which is an involution in L. This proves the existence of the above
exact factorization.
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Now consider case (2iii): m = 3,q = 2. Here the factorization R =
Sp4(2) = BP, implies that B > Ajs by [33]. Moreover |B| = 2* - 60, so the
only possibility is given by the exact factorization Spg(2) = (Sp2(8).3) (24.45),
the existence of which was established above. This completes our analysis
of case (2).

To complete this subsection (10.3), consider case (3): b = 2. Here m = ab

is even and
1

2 _ —
Bl =5q" (@2 1) (P~ 1) ... (¢* - 1).

The factorization R = BP; implies by Lemma 3.1 that one of the following
holds:
3i) B> Spac(q?) with cd =m —1,d > 3
3il) B> Ga(q?) with g even, 3d =m — 1
3iii) m = 4,q = 3 and B> SLy(13) (< Sps(3))
3iv) m =2, g € {5,7,9,11,19,23,29,59}, B> Qg or SLy(5)

(3v) BN Spam—2(q) < TLy(g?>™2).
In case (3i), the fact that |B| is divisible by ¢*™~% — 1 forces m = 4 and
B> Spa(¢®). Now B acts on @ with composition factors of order ¢ and
¢%. Since |B|, = ¢8/(2,q), it follows that |B N Q| divides g. However this

means that |B N L|, < ¢*, hence ¢*/(2, q) divides |Out(L)|, which is clearly
impossible.

(
(
(
(

Now consider (3ii). Here again the divisibility of |B| by ¢>™ 6 — 1 forces

d =1 and m = 4, and as above |B N Q| divides q. We claim that A and B
both contain conjugates of an element of order ¢ + 1, which will contradict
the factorization G = AB. To see the claim, consider Ga(q) < Sps(q) < L.
A subgroup S = SLs(q), generated by long root elements of Ga(q), acts on
the natural module Vg as V22 + V14, and hence S has an element s of order
g+ 1 acting on Vg as (4, A, 1%), where A stands for a 2 x 2 matrix of order
g+ 1. Then B contains a conjugate of s. Moreover, so does A, within a
natural subgroup Sps(q?) of Sps(g?) < A. This proves the claim.

Next consider (3iii). Here |Bly < 2|SLy(13)|; = 2%, whereas |B| =
13%(3% — 1)(3% — 1) has 2-part 2°, a contradiction.

In case (3iv) we have |B| = $¢?(¢*> — 1), and as before |B N Q| divides g.
Hence q divides | B|, which is not possible.

Finally consider (3v). We have |Spam,_2(q) N TL1(¢*™2)| = (¢™ ! +
1)(m—1)-(2,q) (contained in a subgroup Spa(¢™~!).(m — 1) - see the proof
of [25, 4.3.15]. Hence |B| divides 2(¢™ 1 +1)(m —1)(¢ — 1) log . This must
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be divisible by ¢™~! — 1, which forces m = 2. Then |B| = 3¢%(¢*> — 1),
and as usual |B N Q| divides q. Hence %q divides 2logq, so ¢ = 4 or 16
(recall g # 2 since by assumption L # Sp4(2) = Sg). Now applying a graph
automorphism of L = Sps(q) to A and B, we have A = N(O, (¢)) and
B < P,. Hence we are done by Section 9.

Case (10.4) Here A = Ng(PSp2a(q®)), B < Ng(95,,(q)) (g even, ab = m,
b prime), and |B| is as in (6). There is a factorization

Ne(Qm(a)) = B N(05,(d"), (7)

and B # Q5,,(q) (by (6)). Hence by [33], one of the following holds:

() m>4,b=2,g=2or 4, and B < N; (or an image of N; under
triality if m = 4,e = +)

(2) m < 3.
Consider first case (1). Here |B| = %quﬂ(qu_2 —1)(®5-1)...(¢*—1),
so B # Qom_1(q). From [33] we see that N; N Of,(¢?) fixes a 1-space of

the natural module for Spom,—2(¢) = Qam—1(q), and hence (7) leads to a
factorization

N(Sp2m—2(q)) = BP1.

By Lemma 3.1 together with the fact that m > 4 is even, it follows that
either B < N(Spac(q?) (cd =m—1,d > 3), or m = 4 and BrG3(q). In the
former case |B|, < %me/ 2 a contradiction. And in the latter case, we see as
in the case (3ii) of (10.3) above, that A and G2(g) both contain conjugates of
an element of order ¢+ 1, which contradicts the exact factorization G = AB.

Now consider case (2): m < 3. If m = 2 we can apply a graph au-
tomorphism of L to take A = N(O, (q)), and we are done by Section 9.
So assume that m = 3. Then |B| = 3¢%(¢* — 1)(¢* — 1), and (7) gives a
factorization Ng(O§(q)) = B N(05(g®)). For q > 2 there is no possible
such factorization, by [33]; neither is there for ¢ = 2,¢ = + (note that
Of(2) = Ss). For ¢ = 2,¢ = —, the only possibility is the factorization
arising from Uy(2) = (9.3) P, which we have seen in Section 6, leading to
the example

Spe(2) = (Sp2(8).3) (2*.45),

seen in case (2i) of (10.3) above.

Case (10.5) Here A = P, and B < Ng(€5,,(q)) (¢ even). We have
B = |G : Al = [[2,(¢" +1). From [33] we see that AN O,,,(q) fixes a



REGULAR SUBGROUPS OF PRIMITIVE PERMUTATION GROUPS 95

totally singular (m — 1)-space, and hence we get a factorization
Ne(25,,(9)) = BPm1.

There is no such factorization for m > 3, by [33] (note that for m = 3 it
translates into a factorization of type Us(q) = BP;). Finally, m = 2 is also
not possible as Aut(Ls(¢?)) has no subgroup of order (¢? + 1)(q + 1).

Case (10.6) Here A = Ng(Spm(q)1S2) and B < Ng(5,,(¢q)) (m even, g
even), and we get a factorization

Ne(92,,(0)) = BN(0;7,(q) x Oy (a)).-

Clearly B # Q,,.(q), so there is no such factorization for m > 4, by [33].
And for m = 2 we have |B| = 1¢%(¢® + 1), and the above factorization is
N(Ls(q?)) = B N(q* — 1), which is not possible for ¢ > 2.

Case (10.7) Here A = Ny, B < Ng(Spm(q?)) (m > 4 even, ¢ = 2 or
4), and |B| = |G : A] = ¢®2(¢*™ — 1)/(¢®> — 1). From [33] we see that
AN Ng(Spm(q?)) normalizes Spa(q) X Spm_2(q?), so we get a factorization

NG (Spm(q®)) = BN(Sp2(q) x Spm—-2(¢*)) < BNo.

Hence by [33], one of the following holds:

(1) ¢ =2, B < N(Spp/2(16))

(2) m =6, B < N(Ga(q?))-
In case (1), repetition of the above considerations yields a factorization
NG (Spm/2(16)) = B N(Spa(4) X Spm/2—2(16)), which implies by [33] that
either m = 12, B < N(G2(16)), or m = 4, B < N(17). In the latter case
|B| cannot be divisible by 5, a contradiction. In the former, as G2(16) and

its automorphism groups have no proper factorizations (see [33, Theorem
B]), we have B > G2(16), contrary to the above formula for |B].

In case (2), the factorizations of Ga(g?) imply that ¢ = 2 and B>
SU3(4),G2(2) or Jy. None of these are possible by the formula for |B|.

Case (10.8) Here A = Ng(Spm(q?)), B < N2 (m > 4 even, ¢ = 2 or 4),
and projecting to the Spa,—2(q) factor of Na, we get a factorization

N(Spam-2(q)) = B N(Sp2(q) x Spm—2(¢*))

where B is the projection of B. As in the previous case this forces m = 4
and B > Ga(q). However, as in case (3ii) of (10.3) above, A and G3(q)
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both contain conjugates of an element of order ¢ + 1 in G, which gives a
contradiction.

Case (10.9) Here A = Ng(Spam(q'/?)), B < Na(95,,(q)) (¢ = 4 or 16),
and

Bl =G : Al =¢" ] (d +1). (8)
=1

From [33] we have ANO,,,(q) = O2m—1(q1/2) x 2, so there is a factorization
NG(ng(q)) = BN(Omel(q1/2)) < BNj.

For m = 2 or 3, neither Aut(L2(g?)) nor Aut(U(q)) has a subgroup of the
order required by (8). And for m > 4, the above factorization implies by
[33] that either B < N(SU,,(q)) with m odd, or B < N(Q,,(¢?)) with m
even, ¢ = 4. Neither of these is possible, again by (8).

Case (10.10) As Sz(q) and its automorphism groups do not have proper
factorizations, the only possibility here is that A = N(Sz(q)) and B <
N(Of (q)) (see [33]). Then |B| = |G : A = ¢*(¢*> — 1)(¢ + 1). However
it is easy to see that there is no subgroup of this order in N(OF (¢)) (<
Aut(Ly(q)?)) for ¢ = 2201 > 8.

Case (10.11) As G3(g) and its automorphism groups do not have proper
exact factorizations, we must have A = N(G2(q)). By [33] we have Qf (q) =
Spe(q) N1 (where the Spg(q) factor acts irreducibly), and the intersection
of the two factors is Ga2(q). Hence the action of L = Spg(q) on the cosets
of G(q) is contained in that of 2§ (q) on N;. The possibilities for regular
subgroups of 4 (¢) in this action are determined in Section 9; they are given
in the last two rows of the table in Proposition 9.2. Inspection of the proof
of this proposition shows that the subgroups B = S5, L2(16).4 in these rows
lie in an irreducible subgroup Spg(q) of QF (¢), and hence these examples
carry over to this case, and are recorded in Table 16.1.

Case (10.12) We have already dealt with L = PSpy(3) = U4(2) in Section
6. In the remaining cases L is either PSpg(3) or Sps(2). We consider
maximal factorizations of G containing AB which have not already been
considered in previous cases.

Let L = PSpe(3). The maximal factorization of L to be considered
here has factors L9(13) and P;, intersecting in a subgroup of order 3. If
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A = L(13) then G = L; however P; has no subgroup of index 3. And, A
cannot be P; either, since Ly(13) has no subgroup of index less than 14.

Now let L = Spg(2). There are two factorizations to consider here. In
one, the factors are Sig and Og (2).2, intersecting in a subgroup S7 x Ss.
Now S1p does not have a suitable exact factorization, so A = Sig and B is a
proper subgroup of Og (2).2. Since 17 divides the order of B, it follows from
[9, p. 89] that B is a subgroup of L2(16), which is clearly impossible by
considering the power of 2. In the other factorization, the factors are La(17)
and Of (2).2, intersecting in a subgroup Dis. Now Of (2).2 has no subgroup
of index 18, so A = OF (2).2, of index 136. However, Ly(17) does not have
a suitable exact factorization, as it has a unique class of involutions.

11 Proof of Theorem 1.1: orthogonal groups of
plus type

In this section we prove Theorem 1.1 in the case where G has socle L =
PQy,,.(q) (m > 4).

Suppose G = AB, AN B =1 and A max G. By [33] and Lemma 2.6,
one of the following holds (if necessary replacing A by its image under some
automorphism of L):

(11.1) A = Ny;

(11.2) B< Nyand A = Py, Pp—1, Na(SLS,(q)), No(PSp2(q)@PSpm(q))
(m even, ¢ > 2), Ng(Q:%(¢%)) (m even, ¢ = 2,4), or Ng(Qg (¢*/?)) (m = 4,
g square);

(11.3) A= N, and B < Pp,, Py,—1 or Ng(SL,(q)) (g =2,4);

(11.4) A= P; and B < Ng(SUpn(q)) (m even);

(11.5) A = Ng(SU,(q)) and B < P; (m even);

(11.6) A= N, and B < Ng(SUp,(q)) (g = 4, m even);

(11.7) A = Ng(SUm(q)) and B < N5 (¢ = 4, m even);

(11.8) L = PQ4(q), A = Ng(Q9(g)) and B < Ny;

(11.9) L = Q3,(2), A= Co; and B < Ny;

(11.10) L = PQ(q) (¢ = 2,3,4), and the factorization G = AB is
contained in one in the bottom half of [33, Table 4].

Note that when m = 4 some apparently missing cases are omitted above
because of the presence of the triality automorphism of L = PQg (q) — for
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example, the case where A = P, B < Q7(q) is in fact included under (11.2),
since triality sends P; to P3 or P4 and sends Q7(q) to Ny; likewise, the cases
where A = N7 or N, , and B < Qy(q), are also under (11.2) as triality
sends N5~ to Ng(SLs(g)), and Ny to Ng(SUs(g)). (For e = + or — we
write SLE (q) for SLy,(q) or SU,,(q) respectively.)

Case (11.1) This has been handled in Section 9.

Case (11.2) Here B < N; and we have a factorization
N1 = B(N;NA). 9)

By arithmetic, B does not contain Qs,,—1(g), so the possibilities are given
by the factorizations of Qg,,—1(g) in [33].

If A= Py, or P,,_y, then |B| = |G : A| = [[7"' (¢’ + 1) and (9) gives
Na(Q2m-1(q)) = B Py,—1. Hence by [33], one of the following holds:

(1) B < Na(25,,-5(a))
(2) m =4,q =3 and B lies in the normalizer of Sg, Spg(2) or 26.A47.

In case (1) we get a factorization Ng(€25,, 5(q)) = B Pp—2, which forces
m = 4,qg = 3 and B < Ng(L3(4)) (the L3(4) lying in a subgroup N, of
L). But Ng(L3(4)) has no subgroup of order (3 +1)(3241)(33 + 1) (see for
example [9]). Likewise, neither do the normalizers of Sy, Sps(2) or 26.A7,
so case (2) is also out.

Next consider A = N(SLS,(q)). Then

Bl = L mm-1)2 L=
B = ~q [I@ +e)

i=1
where ¢t < 4. Now (9) gives a factorization of type Oam—1(q¢) = BN(SLS,_1(q)) <
BNj. By [33], the only maximal factorizations of Ogy,—1(g) with one factor
N; and the second divisible by |B| have the second factor equal to Ny ,
with ¢ = 2 or 4. This leads to a factorization of type N (O, _,(q)) = BNj.
However, Lemma 4.4 implies that there is no factorization of O,y _,(q) with
one factor N; and the other divisible by |B|. This forces B > Q% _,(q), but
this contradicts the formulae given above for |B|.

Now suppose that A = Ng(PSp2(q) ® PSpm(q)) (m even, ¢ > 2). Here

|Bly = ( £82(qm+2i —1))/(¢*> — 1), and (9) gives rise to a factorization of

type Ozm-1(g) = BN(PSpa(q) ® PSpm-—2(q)) < BN;". However, [33] shows
that there is no such factorization with the given value of |B|,.
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Next let A = Ng () (¢%)) (meven, ¢ = 2,4). Here |B| = 1¢™/2(¢>™ 2~
1)(g*5—1)---(¢*> — 1), and (9) gives a factorization of type Spay,_2(q) =
BO; _,(¢*) < BPy. Clearly B # Spam—2(q), so from [33] we see that either
B < N(Sp24(¢?)) (ab=m —1,b> 1) or B < N(G2(q)) (m = 4). The first
case is impossible since | N (Spaq(q®))| is not divisible by the above expression
for |B|. In the second case we must have B > G2(q)’, and now we see as in
the case (3ii) of (10.3) above, that A and G2(g) both contain conjugates of
an element of order ¢+ 1, which contradicts the exact factorization G = AB.

To complete this case (11.2), assume now that A = Ng(Qg (¢'/2)) (m =
4, q square). Then |B| = ¢%(¢ +1)(¢* + 1)(¢* — 1) and A N Ny < Ga(¢"/?),
so (9) gives a factorization of type O7(q) = BGa(q'/?) < BGa(q). Hence
[33] implies that B < N(Q4 (¢)). However |5 (¢)| = |B|- (¢ —1) and ¢ > 2
(since ¢ is square), so this is impossible.

Case (11.3) Here |B| = 3™ 2(¢™ —1)(¢™ ' - 1)/(g+1). f B < P
with P = P, or P,_1, the stabilizer of a totally singular m-space W,
then A N B fixes an (m — 2)-subspace of W, so writing B = BQ/Q we
get a factorization of type GL,,(q) = BPn_o. By [33] this forces either
B > SL,(q) or m =5,qg=2and B <TLi(2%), both of which possibilities
conflict with the above formula for |B|. Similarly if B < Ng(SLn(q)) we
get a factorization Ng(SLy,(q)) = BNam—2, which forces B > SLy,(q), a
contradiction.

Case (11.4) Here |B| = (¢™ — 1)(¢™ ' +1)/(¢ — 1) and we have a fac-
torization Ng(SUp,(q)) = BPi, which by [33] forces m = 4,9 = 3 and
B < N(L3(4)). But N(L3(4)) has no subgroup of order 28 - 40, a contradic-
tion.

Case (11.5) Here |B| = qm(m-1)/2 17 (¢ + (=1)%) with ¢ < 4, and
writing B = BQ/Q (where Q is the unipotent radical of P;), we have a
factorization of type OF = ,(¢) = BP;. This forces B > Q3. ,(q) by [33],
which is impossible.

Case (11.6) Here |B| = 3¢*"2(¢™ — 1)(¢™ ' +1)/(g— 1) and we have a
factorization Ng(SU,,(q)) = BN, giving a contradiction using [33].

Case (11.7) Here |B|is as in (11.5) and the factorization N, = B(ANN;")
gives rise to a factorization of type O, ,(4) = B N(SU,,—2(4)) < BN;".
This leads to the usual contradiction using [33].
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Case (11.8) Here L = PQ;(q), A = Ng(Q0(q)) and B < N;. From
[33, Appendix 3] we see that A N N; > Qr(q), fixing a non-degenerate 8-
dimensional subspace of the underlying 16-dimensional orthogonal space for
G. Thus (9) gives rise to a factorization of type O15(¢) = BNs. However
there is no such factorization unless B > €15(g), which is a contradiction.

Case (11.9) Here AN N; = Cos by [33, Lemma B, p.79], so (9) gives a
factorization Spe2(2) = BCos. However there is no such factorization with
B proper in Spa(2), a contradiction.

Case (11.10) Consider first L = QF (2). Then, adjusting A, B by a triality
automorphism of L if necessary, and noting that the case A = N; has been
done in Section 9, we may assume that one of the following holds:

(a) A= Ag, B < Ni,P; or Ny ;
(b)A:P1 OI‘NQ_,BSAQ;
(C) A= A§.22, B S Nl.

Consider (a). If B < Nj then since AN Ny = L2(8).3 (see [33]), we have a
factorization N; = Spe(2) = B(L2(8).3). This is considered in case (2i) of
(10.3), where it is shown that there is a unique possible such exact factor-
ization with B = 2%.A5; hence we have the example

Qf(2) = Ag (2*.45)

in Table 16.1.

When B < P; (still in case (a)), apply triality to take A = Ag to be
embedded in Qg (2) with the natural module V = Vg(2) being an irreducible
constituent of the permutation module for A over Fy, and B < P53 or Py (see
[9, p.85]). Write vectors of V as subsets of {1,...,9} of even size (addition
being symmetric difference), and define W to be the 4-space spanned by
the vectors 1234, 1256,1278,1357. Then W is totally singular and an easy
check shows that C4(W) = 1. We know from [33] that L = ALy and
AN Ly = 23.L3(2); moreover if we write Ly = QR where Q = Cp(W) = 2°
is the unipotent radical, and R = L4(2) a Levi subgroup, then AN Q = 1.
Hence (9) gives a factorization Ly = B(A N Ly ), which forces B to be of
the form Q.F, where F' < R is a group of order 15 such that R = L4(2) =
(23.L3(2))F. Hence we have the example

QF (2) = Ag (2°.15)
in Table 16.1.
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To complete case (a), suppose B < N, . Note that |B| = |L : A| =25-3-5
and N, = (3 x Uy(2)).2. It follows using [9, p.26] that B < (3 x 2%.45).2
with index 6, and hence that B = 2%. 45 or (3 x 2%.D10).2. The first case
has been handled above, so assume B = (3 x 24.Dy().2. By the 2*. 45 case
above, the subgroup 3 x 2%.D1q is semiregular on L/A with 2 orbits. The
normalizer of the Dqg in A5.2 = S5 is 5.4, and hence there are no involutions
in B\(3 x 2%.D1g). It follows that B is regular on L/A, giving the example

Q3 (2) = Ag (3 x 2%.Dyg).2

in Table 16.1.

Now consider case (b). If A = P;, then |B| = 135 and ANAg = 23.L3(2).
But Ag has no exact factorization of the form B(23.L3(2)). And if A = N, ,
then |B| = 1120 and A N Ay = 33.53, but there is no exact factorization
Ag = B(33S3), a contradiction.

Finally consider (c): A = A2.22) B < N;. Here B < Sps(2) and |B| =
12096, which forces B = G5(2), giving a possible exact factorization 0 (2) =
(4 (4).2%)G5(2). However the two factors in fact share an element of order
3, as in (3ii) of (10.3), which gives a contradiction.

This completes the analysis for L = Qg (2).

Now suppose that L = PQJ(3). Again adjusting A, B by a triality
automorphism of L if necessary, and noting that the case A = N; has been
handled in Section 9, we may assume that one of the following holds:

(a) A= Ng(Q4(2)), B < Ny, P, or Py3;
(b) A= Py or P13, B < Ng(Q4(2));

(C) A= N(26.A8), B < Pl;

(d) A= P, B < N(25.4g).

Consider case (a). Here |B| = |G : A| = 37 - 13. Suppose B < P, = QR,
where Q = 35 and R = L4(3).[2%] (a < 3). From [33, p.107] we have
ANP NL = (3x PSpsa(3)).2, and hence, writing bars for images modulo
Q, we have a factorization of type L4(3) = B PSps(3). It follows that
BNQ = 3% and B = 32.(3%.13.3). However a computation using Magma [6],
kindly carried out for us by Michael Giudici, showed that no such regular
subgroups exist for this action.

If B < Pi3 then as B has odd order it also lies in P;, a case already
considered. And if B < Nj then by [33] we have AN Ny N L = 25, A7, giving
a factorization of type O7(3) = B (2°.A7). Hence from [33] we see that B
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lies in a parabolic subgroup of Ni, hence in a parabolic of GG, which we have
already excluded.

Now consider (b). If A = Pi3 then |B| = 2% .5 7; however Og (2) has
no subgroup of this order, so this is impossible. Now assume that A = P;.
Then |B| = 1120 and AN QJ(2) = (3 x Us(2)).2. Hence the factorization
N (g (2)) = B(AN Ng(QF (2)) implies that B lies in the normalizer of
either Spg(2) or Ag. The latter is impossible as neither Ag nor Sy has
a subgroup of order 1120. The former case gives a factorization of type
Spe(2) = BN(SU3(2)) < BOg(2). Hence, using [33] and the fact that
|B| = 1120, we see that B < N(2§(2)) = N(As). However this does not
have a subgroup of order 1120.

In case (c), we have | B| = 319.5-13; but the Levi factor L4(3) of P; has no
subgroup of odd order divisible by 5-13; similarly, in case (d), |B| = 25-5-7,
but N(26.A4g) has no subgroup of this order.

This completes the analysis for L = PQy (3).

Finally, note that for L = Qg (4), the factorizations given at the bottom
of [33, Table 4] have already been considered in versions adjusted by triality,
under (11.2) and (11.3).

The proof of Theorem 1.1 for classical groups is now complete.

12 Proof of Theorem 1.1: exceptional groups of
Lie type

In this rather brief section, we note that when L is an exceptional group
of Lie type, all (maximal or non-maximal) factorizations of L and its auto-
morphism groups are given in [33, Table 5] (taken from [19]), and it is clear
from the short list of factorizations in this table that none of them is exact.
Theorem 1.1 for exceptional groups follows immediately.

13 Proof of Theorem 1.1: alternating groups

A complete description of the exact factorizations of the alternating and
symmetric groups appears in the paper of Wiegold and Williamson [43].
We analyze their results to obtain our Table 16.2. An alternative starting
point would be [33, Theorem D and Remark 2], which gives all the maximal
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factorizations. We postpone dealing with the automorphisms of Ag outside
Se till the end of this section.

Thus G is A,, or Sy, acting naturally on the set € of size m > 5. Assume
that G = AB with A a maximal subgroup and B regular on the set of cosets
of A in G. The general case to consider is where for some k with 1 < k < 5,
one of A and B normalizes a subgroup A,, r of G acting naturally on a
subset I" of €2 of size m — k, and the other is k-homogeneous on . (In fact,
this is so unless m is 6 or 8, cases considered later.)

Assume first that A,,_j is normal in A. By maximality of A, it follows
that A = G N (Sy—k X Sk). Then B is sharply k-homogeneous on . If
k =1, we get the standard examples S,, = S,,_1 B with B regular on {2, and
similarly for A,. For k > 1 we use Kantor’s list [23]; the possibilities are
listed in [43]. For k = 2, we see that B must have odd order and it follows
that m = ¢ is a prime power congruent to 3 mod 4 and B is a subgroup of
AGL;(q) of order qq;21, yielding the example
q 1)

Ag = 5¢—2 ([Q]T

in Table 16.2. For k = 3 we get the two examples with
A32 = (A29 X A3)2 (AFL1(32)),
Ag = (A5 X A3)2 (AGL1(8))

There are no sharply k-homogeneous examples with £k =4 and k = 5.

Assume next that A is the k-homogeneous factor, which now must be
maximal in G. We consider the various cases in the Theorems in [43]. In
Theorem A there, G is alternating, and in Theorem S it is symmetric.

In case (AI) (of [43]), we have G alternating, A is sharply k-transitive
and B = A,,_x. The possibilities are well known and are listed in [43,
Remarks, p.173]. Certainly k£ > 1 by maximality of A. Next, k > 2, since
there are no maximal sharply 2-transitive groups in A4,,. If Kk = 3 we have
A a Zassenhaus group; since A is sharply 3-transitive and maximal in A,,,
we get A = PSLs(p?).2 with p a prime congruent to 3 mod 4. This gives
examples in Table 16.2:

Ay =PSLy(p*).2 (A _y).

If k£ is 4 or 5, the only sharply k-transitive groups are the Mathieu groups
M7, and Mio, and we get the examples

Apm = My, A7 (m=11,12).



64 M.W. LIEBECK, C.E. PRAEGER AND J. SAXL

In case (AIl), G is alternating and A is k-homogeneous but not k-
transitive on €. The possibilities are listed in [43, p.173]. Those leading
to maximal subgroups of G lead to the factorizations

Ag = (L2(8)3) 85,
A33 = (L2(32)5) (Agg X A3).2,

-1
Ay = (ppT) Sp—2 with p prime, p =3 mod 4, p # 7,11,23,

Api1 = La(p) Sp—2 with p prime, p =3 mod 4, p# 7,11,23.

Note that in the last two lines the congruence on p is needed to obtain
a factorization (see [43, Theorem Al); for p = 1 mod 4, we shall meet the
corresponding factorizations for the symmetric groups below, which explains
why they appear in Table 16.2 with a *. The excluded values are there to
rule out non-maximal cases — they do occur below for the relevant symmetric
groups and hence appear in Table 16.2 with a 7.

Next we consider the cases in Theorem S, where G is symmetric. In
case (SIi), we have precisely the trivial factorization S,, = A,, 2, which
is ruled out by our conditions. In case (SIii), the maximal subgroup A
contains A N A,, as a subgroup of index 2 which is sharply k-transitive on
), There is no such maximal subgroup with k£ = 1: it would have to be
primitive on 2, so would have to be dihedral of order 2p, but that is not
maximal either. Further, there is no such maximal subgroup with k& = 2:
A would have to be soluble, so A = AGL;(p) - but then the intersection
with the alternating group is no longer 2-transitive on 2. Thus k£ = 3 and
A is maximal and contains a sharply 3-transitive subgroup of index 2; we
deduce that A = PTLy(p?) with p congruent to 3 mod 4, and we have seen
the correponding factorizations of the alternating groups above in case (AI).
In cases (SIiii) and SIIi), we have A sharply k-transitive on . If £ =4 or
k = 5, there is no such maximal sharply k-transitive subgroup, and also
k > 1 by maximality. For k = 2, we have A = AGL4(p) with p a prime, and
we get the exact factorizations

Sp = AGLl(p) Sp_g
and
Sp = AGL1(p) (Ap—2 x 2) (p=1mod 4).

For k = 3, we have A = PGLs(p) with p a prime (for maximality), and we
get the factorizations
Sp+1 = PGLa(p) Sp—2
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and
Sp+1 = PGLy(p) (Ap—2 x 2) (p=1mod 4).

These are listed in Table 16.2, with appropriate remarks. In case (SIIii), A
is k-homogeneous but not k-transitive on 2. The possibilities are listed in
[43, p.176]. None of these is maximal in Sy,.

Next we consider the cases where m is 6 or 8 and neither A nor B
normalizes a large natural alternating subgroup — see cases (AIII) and (SIII)
of [43]. We obtain the exact factorizations

Se = Lo(5).2 B with B either Cg or Dg,
Ag = AGL3(2) Ci5.

Finally, to complete the treatment of groups with alternating socle, we
consider the case m = 6 where GG contains an automorphism of Ag not
contained in Sg. By [9], maximal subgroups of G have intersection with Ag
of order 10,36 or 8, so the index is 36,10 or 45, respectively. There is no
subgroup of order 45, so the last is out. If AN Ag = Dqg, since there is only
one class of involutions in Ag and since the factorization is exact, we must
have BN Ag = 3% and G = A4.22. Thus B = 3222. On the other hand, the
extension Ag.23 is non-split, so this cannot work. Finally, in the remaining
case A = N(32), there are factorizations both with B = C19 and B = Dy
in G = Ag.29 = PGL2(9): here B < Dyg; the cyclic group Cig (the Singer
cycle in PGLs(5)) is clearly transitive in the action of degree 10, and since
Doy is isomorphic to Dig X Co, there is also a dihedral subgroup D19 which
is transitive.

This completes the consideration of groups with alternating socles.

14 Proof of Theorem 1: sporadic groups

We argue separately for each of twelve sporadic simple groups (and their
automorphism groups) which have a factorization. By [33], these are the five
Mathieu groups, Jo, HS, He, Ru, Suz, Fiso and Co;. Suppose that G = AB,
AN B =1 and A max G. We aim to show that this exact factorization is
in Table 16.3, and that all such factorizations exist.

Case Mj;: Since Mi; has a unique conjugacy class of involutions, either
A or B has odd index in L. From the list of factorizations in [33], we see
that B cannot have odd index. Hence |L : A is odd. If A = Mg, we get
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as the only possibility. If A = My.2, we get
My, = (My.2) (11.5)
as the only possibility. And if A = 254, there are no possibilities for B.

Case Mis: First consider the factorization Mi, = Mj1As coming from
Lemma 2.6. Here the intersection of the factors has order 5. Taking a
subgroup of index 5 in As, we get the exact factorization

Mo = My Ag.

This is the only factorization arising here: for if A = My, then G = M,
since M7; is not maximal in Ms.2; and B is not in M;; since that has no
subgroup of index 5.

Now we consider the factorizations arising in [33]. If A = M;j;, we get
exact factorizations for various subgroups B of order 12; we already noted
the factorization with B = A4, but others exist: a regular B = D15 can be
seen as a subgroup of Lo(11), and a regular B = 22 x 3 can be seen as a
subgroup of Ay x S3. Next let A = Ly(11). Since Mo = Lo(11) M;; with
intersection of factors being 11.5 and since M7j; = (11.5) My.2 is an exact
factorization, we get the exact factorization

Mo = Ly(11) (My.2),

given in Table 16.3.

Now A cannot be Mig.2 or My.Ss3, since it is easy to see that M5 has no
subgroups of order 66 or 220. And A cannot be one of 2 x S, 42. D15, A4 X Sa:
here B would be a subgroup of Mj; of index 20, 16, 6, which is impossible.

Case Mass: The only maximal factorization to consider here (containing
G = AB) is My2.2 = (L2(11).2) (L3(4).2). Now A cannot be L2(11).2 since
the index of this in My3.2 is 672 and L3(4).2 has no subgroup of order 672
([9, p. 23]). On the other hand, if A = L3(4).2 = M>;.2, we get

Moo.2 = (M21.2) Doy

as the only possibility. This is an exact factorization: for by [9], the involu-
tion in the normaliser of an 11-subgroup is in class 2C', being a power of an
element of order 10, and these involutions are fixed point free in the natural
action of degree 22. On the other hand, M25.2 has no cyclic subgroup of
order 22, so there is no other possibility for an exact factorization here.
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Case Mos: This is very similar to the case Mi;. Since Ms3 has a unique
conjugacy class of involutions, A has odd index or odd order. If A has odd
order, then A = 23.11. Now B < Mbss is not possible, since Mso has no
subgroup of index 11. Hence we get precisely the two exact factorizations

Mas = (23.11) (L3(4).2)

and
Moz = (23.11) (21457),

as in Table 16.3. Assume now that the index of A is odd. If A = Mss, the
only possibility is
M23 = Moy 23.

If Ais L3(4).2 or 2* A7, we get the first two examples with A and B swapped.
Finally, the maximal subgroup of index 1771 does not appear as a factor in
a factorization.

Case Myy: First let A = Mbss. There are subgroups of order 24 regular
here. For example, considering the factorization Moy = M3 L2(23) we see
that

Msy = Ma3 Doy

is an exact factorization. And, considering the factorization Myy = Mag Lo(7),
we see that
Masy = Mg Sy

is an exact factorization. Next let A = L2(23). Then B is a subgroup of one
of Mas, May.2,2* Ag, L3(4).2 of index 253,22, 8,1, respectively. Thus we get
precisely the exact factorizations

My = L2(23) (L3(4).2)

and
Moy = Ly(23) (21 A7),

as in Table 16.3. Next, if A is M23.2,2*Ag or L3(4).S3, then B is a subgroup
of L3(23) of index 22, 8 or 3, which is impossible. Finally, if A is M.2,263S¢
or 26(L3(2) x S3) then B is a subgroup of Ms3. But B has order divisible
by 23, forcing B = 23.11, which is not so.

Case Jy: First consider the factorization of Jp with factors Us(3) and
As x Dig. The intersection of the factors has order 6. Since Us3(3) has no
subgroup of index 6, we must have A = Us(3) of index 100 and B contained
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in the normalizer of a Sylow 5-subgroup. This does not lead to a factorization
of the simple group by [33, p. 119] . Thus we are searching for subgroups B
of J5.2 which are regular in the action of degree 100. We claim that there is
a subgroup B = 52.4 acting regularly: The argument in [33, p. 119] implies
that the elements of order 4 which lie in Us(3).2 are of type 4B whereas
those normalizing a Sylow 5-subgroup are of type 4C. Since the elements
of type 4C square to involutions 2B which are not represented in Us(3).2,
the assertion follows. It is also not hard to see that no subgroup B = 52.22
would do.

Case HS: The factorizations to consider here all have one of the factors
intersecting L in Mg, whereas the other intersects L in Us(5).2, (5 : 4) x As
or [532%]. There is only one exact factorization of an automorphism group
of Mso; it is quite easy to see that this forces A to normalize My and B to
be regular of degree 100. Also, B must normalize a 5-subgroup. Looking
at the permutation character of degree 100, all involutions in B must be of
type 2B. If B were contained in a subgroup Us(5).2, then B N Us(5) would
have even order. However all involutions in Us(5) are conjugate and are of
type 2A, so this is not possible.

Suppose that B contains no elements of order 4. Then, since the only
involutions in B are of type 2B, it follows that B C HS. Now the maximal
subgroup [532°] of HS - 2 meets HS in the intersection of two maximal
subgroups Usz(5).2, so if B were contained in a subgroup [532°], then B
would contain an involution from some Us(5), which is not the case. Thus
B < (5:4) x A, and in fact B lies in the normaliser (5 : 4) x (5 : 2) of
a 52 in this subgroup. Hence B contains a conjugate of every involution in
(5:4) x (5:2). However this group contains an element of type 4A that
squares to an element of type 2A, which is a contradiction.

Thus B contains elements of order 4. Now the only fixed point free
elements of order 4 are of type 44 or 4F, but the square of an element of
type 4A has type 2A. Thus all elements of order 4 in B must have type 4F,
and in particular G = HS.2 (hence the * symbol in Table 16.3). We claim
that there is a subgroup of order 100 in HS.2 acting regularly. Consider
the factorization HS = Msyy 5.4 X As. mentioned above. The second factor
contains a normal subgroup P of order 5 with non-trivial elements of type
5B. The normalizer of P in HS.2 is 5.4 x S5. Let Q) be a Sylow 5-subgroup of
the S5, and let x be an element of order 20 centralizing P and normalizing Q.
This must then be an element of type 20C, as it must square to an element
of type 10B. It follows that all non-trivial powers of = are fixed-point-free,
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and the group of order 100 generated by P, @,z is the regular subgroup we
want.

Case He: The maximal factorizations here have one factor intersecting
L in Sp4(4).2 and the other either in 72SLy(7) or 7172(S5 x 3). Since the
intersection of the factors is smaller than the index of the largest proper
subgroup of Sp4(4).4, it follows that A must be the normalizer of Spy(4)
and B is regular of order 2058 = 736. It follows that B lies in the normalizer
of a Sylow 7-subgroup. By [33, p. 120] , it follows that G = He.2 (hence
the * symbol in the Table). We claim that He.2 does have a subgroup B of
order 2058 which is regular. It will suffice to show that an element of type
6F normalizes a Sylow 7-subgroup: for, its non-trivial powers are all fixed-
point-free, as are also all the 7-elements, as we see from the permutation
character in [9, p. 104]. We refer to [33, p. 120]. The centre C of a Sylow
7-subgroup P is a subgroup of order 7 with all 7-elements of type 7C. We
consider C' as subgroup of the maximal subgroup 357 x 2; there we see an
element of type 3B acting on C' and an element of type 2C' centralizing 357,
yielding an element of type 6 F normalizing C' and hence P, as required.

Case Ru: The only maximal factorization has factors 2F;(2) and Lo(29),
intersecting in a group of order 3. Hence there are no exact factorizations.

Case Suz: The maximal factorizations of Suz here have one factor G2(4)
and the other either Us(2) or 3%My;, of indices 1782,32760 and 232960,
and similarly for Suz.2. Sylow theory shows that Suz and Swuz.2 have no
subgroup of order 1782 = 2.3%.11, so AN L is not Go(4). On the other hand,
G2(4) has no exact factorizations.

Case F'igs:  The maximal factorization to consider in this case is Figg =
2Ug(2) 2F4(2) and the corresponding factorization of Figy.2. Now AN L
is not 2Ug(2), since 2F4(2) and 2F4(2)" have no proper factorizations. If
ANL = 2F(2), then B has order 263577. We see from [9, p. 115] that
there is no suitable subgroup in Us(2).

Case Co;: In the maximal factorizations here, one of the factors is a
smaller Conway group while the other is the normalizer of one of 3.Suz or
Ag X G2(4). Since the smaller Conway groups have no proper factorizations,
it follows that A is a smaller Conway group, of index either 23.33.5.7.13 or
211 32.5.7.13. Inside 3.Suz.2, the only maximal subgroup of order divisible
by either is G2(4). On the other hand, G2(4) has no subgroups of suitable
orders - see [9, p. 97].
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15 Proof of Theorem 1.4 and Corollary 1.3

Most of this section is concerned with proving Theorem 1.4. At the end can
be found the very short proof of Corollary 1.3.

For the proof of Theorem 1.4, we make the following assumptions.

(1) B < G < S, with G primitive, and B regular on §2, where |Q| = n;
(2) T < B < Aut(T), where T is a nonabelian simple group;

(3) N is a minimal normal subgroup of G, with N = Uy x ... x U 2 U¥,
where U is simple and k > 1; and 7; : N — Uj is the natural projection
map, fori=1,...,k.

First we reduce to the case where T' < N. We shall use the fact that
|Out(T)| < |T|, and we note that this implies that n = |B| < |T|?.

Lemma 15.1 The simple group U is nonabelian, and either
(i) G < D(2,T), with soc(G) = T? and B=T = U; or

(ii) T < N, and N is the unique minimal normal subgroup of G.

Proof Since B is regular, |T'| divides n, and in particular n is not a prime
power, so IN is not elementary abelian. Thus U is a nonabelian simple
group, and so G permutes {Uy,...,Uy} transitively by conjugation. Since
G is primitive, its normal subgroup N is transitive, so G = NG,, where
a €, and G, is also transitive on {Uy,...,U}.

Suppose first that T' centralises N. Then Cg(N) is a nontrivial nor-
mal subgroup of the primitive group G, and by the O’Nan—Scott Theorem
[11, Chapter 4] it follows that Cg(N) and N are both regular on 2, are
isomorphic to each other, and G < D(2,U)! Sy with & > 1. Thus we
have T < Cg(N) = N = U*. Since both T and U are simple, we have
|T'| < |U|. On the other hand, by the observation made before the proof,
|ICq(N)| = |U|F = n < |T|?. Tt follows that k = 1, and so G < D(2,U). If
T = Cg(N), then T is regular on €2, and so B =T = U and part (i) holds.
So suppose that T is a proper subgroup of Cg(N). Now N is the centraliser
in G of Cg(N), and so BN N =1 and B is isomorphic to a subgroup of
G/N < Aut(U). That is to say, we have a simple proper subgroup 7T of a
nonabelian simple group U such that M := Ny 1) (T') has order divisible
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by |B| = |U|. Now |M]| divides |Out(U)|- |[M NU|, and M NU is a proper
subgroup of U, so |U : M NU| divides |Out(U)|. However this does not
hold for any nonabelian simple group U and proper subgroup M NU (see
for example [25, 5.2.2]).

Thus we may assume that T does not centralise IV, and therefore B N
Cg(N) = 1. Suppose that ' £ N. Then, since B is almost simple, BNN =1
and B is isomorphic to a subgroup of Out(N) = Out(U)Sk. Since Out(U)
is soluble, it follows that B is isomorphic to a subgroup of Sp. Thus n
divides k!. Let o € Q and H := N,. As we noted above, G, is transitive by
conjugation on {Uj,..., Uy}, and since G, normalises H it follows that G,
permutes the projections m;(H) (1 < i < k) transitively. If the mj(H) = U;
then H = U* for some proper divisor £ of k, and son = |N : H| = |U|*~* and
k—¢ > k/2. It follows that, for any odd prime divisor p of |U|, p*~¢ divides
n, and hence divides k!. However the largest exponent of p that divides k!
is [(k—1)/(p—1)] < k/2. Thus the projections m;(H) are all isomorphic to
a proper subgroup R of U, and by the O’Nan—Scott Theorem [11, Chapter
4], H = R* and n = m* where m = |U : R|. In this case we deduce that p*
divides k! for any prime p dividing m, and we have a contradiction as in the
previous case. Thus T' < N.

Suppose now that G has a second minimal normal subgroup M distinct
from N. Then T' < C(M), and the argument of the first part of the proof,
with N and M interchanged, shows that part (i) holds. Finally, if N is the
unique minimal normal subgroup of G then part (ii) holds. ]

By Lemma 15.1, U is a nonabelian simple group and so G acts transi-
tively by conjugation on {Ui,...,Ux}. Let m : G — Si be the homomor-
phism corresponding to this action.

Lemma 15.2 One of the following holds.

(i) G < D(2,T), withsoc(G) =T? and B=T = U;

(i) G < H 1S in product action, where U < H < Aut(U), k > 2,
w(B)#1, and B#T;

(iif) k = 1.

Proof Suppose that neither case (i) nor case (iii) holds. Then k > 2
and, by Lemma 15.1, T < N = U so that |T| < |U|, and N is the unique
minimal normal subgroup of G. Also, as we observed above, |T'| > nl/2, If
n = |U|* for some integer ¢ > k/2, then we have |U| > |T| > |U|*? which
implies that £ = 1 and k£ = 2. By the O’Nan—Scott Theorem, we have in
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this case that G < D(2,U). The argument in the second paragraph of the
proof of Lemma 15.1 yields that part (i) holds, contrary to our assumptions.
Thus n is not of this form.

Let a € Q. It now follows from the O’Nan—Scott Theorem that N, =
Ry % ...x Ry, = R* with R; < U; and R; = R, a proper subgroup of U, and
G < H1Sk < S 1Sk in product action on = QF, where m = |Qg| = |U : R|
and U < H < Aut(U). Let M =GN S,]fl, and note that N < M.

Next we show that 7(B) # 1. Suppose that this is not so. Then B <
M. Let a = (aq,...,ax), and for i = 1,...,k, let M; denote the setwise
stabiliser in M of {y € Q|y; = a;}. Then M, = ﬂleMi, and for each
i, M factorizes as M = M;(N;x;M;). Since B < M and B is transitive,
we have also, setting B; := B N M;, the equality |B;| = |B|/|Q0| and the
factorization B = B;(N;x;B;) for each i. If k > 3, these factorizations
are called strong multiple factorizations, and all such factorizations of finite
almost simple groups B have been classified in [3]; in none of the examples
are the subgroups B; all of the same size. Thus k& = 2. In this case we have
B = B1By and By N By = B, = 1. All factorizations of a finite almost
simple group B in which the factors Bi, By have the same order have also
been classified in [3], and for none of them do the factors intersect in the
identity subgroup. This contradiction proves that B £ M, or equivalently,
that 7w(B) # 1. In particular, since T' < N < M, this means that B #T. m

Proof of Theorem 1.4.

Let T, B,G, N be as defined at the beginning of this section, and suppose
first that B = T. If G < D(2,T) with soc(G) = T2, then part (ii) of
Theorem 1.4 holds. So we now assume that this is not the case. Then
by Lemmas 15.1 and 15.2, it follows that G is almost simple with socle NV
containing T. If N = A,, then |T| = n, and part (i) of Theorem 1.4 holds,
so assume that N # A,. Then it follows from Theorem 1.1, and inspection
of Tables 16.1 to 16.3, that T', G satisfy one of the first three lines of Table
2 in part (iii) of Theorem 1.4.

Thus we may assume that B # T. Suppose first that G is almost simple.
If G contains A,, then part (i) holds, so assume this is not the case. Then,
by Theorem 1.1 and inspection of Tables 16.1 to 16.3, B, G are as in one of
the lines of the second section of Table 2 in part (iii) of Theorem 1.4.

Assume now that £ > 2. Then, by Lemma 15.2, G < H S} in product
action on Q = QF where U < H < Aut(U), and N, = R* where m =
|Q| = |U : R|. Further, m(B) # 1. Suppose that G is chosen to satisfy
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these conditions, with k¥ minimal subject to k > 2. Let a = (4,...,0) € Q,
where § € Q).

We claim that 7(B) is transitive. Since m(B) # 1, m(B) has an orbit
of length ¢ > 2. Without loss of generality we may suppose that this orbit
is {1,...,¢}. If £ < k, then C := {y € Qly; = J for £ < i < k} is a block
of imprimitivity for B in €2, and the setwise stabiliser B¢ is regular on C
and is almost simple with socle T'. Moreover, the setwise stabiliser in G of
C induces on C' a primitive subgroup of H ! Sy in product action, and the
group B¢ projects onto a transitive subgroup of Sy. This contradicts the
minimality of k, and hence we conclude that m(B) is transitive.

We claim that there is a prime p dividing |T'| such that p does not divide
|B : T| and such that a Sylow p-subgroup of T is cyclic. This follows from
[16, 4.10.3(a)] if T" is of Lie type, and is clear if T is alternating or sporadic.

Let p be as in the previous paragraph, and let P be a Sylow p-subgroup
of T. Write |P| = p* and let Py be the subgroup of P of order p. Since p
does not divide |B : T| it follows that P < T < BN H*. Suppose that p®
does not divide m. Then Py fixes some point of €y, say w, and hence Py
fixes the point (w,...,w) € Q. This is a contradiction since Py < B and B is
regular. Therefore p® divides m and so p®* divides n = |B|. This, however,
implies that p**=1 divides |B : T'| which is a contradiction. This completes
the proof of Theorem 1.4. m

Proof of Corollary 1.3

Let G be almost simple and primitive of degree n, and assume that G has
a regular subgroup B. Suppose that G < H < S, where soc(G) # soc(H)
and soc(H) # A,. If H is almost simple then it follows from Theorem
1.1 that (iii) holds. So suppose that H is not almost simple. Then, by
[40, Proposition 6.1], either G = PSLy(7), H = AGL3(2) of degree 8, or
soc(G) = Ag, M1 or PSps(q) (with q even), of degree m? and H < Sy, 15,
where m = 6,12 or ¢?(¢®> — 1)/2 respectively. The group PSLy(7) contains
a regular subgroup, giving case (ii) of the corollary. However, Theorem
1.1 shows that none of the above primitive groups of degree m? possesses
a regular subgroup (note that for G = Mj2.2, G, = L2(11).2, we have
G4 Nsoc(G) non-maximal in soc(G), so this is not the example in line 4 of
Table 16.3). This completes the proof.
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16 The tables in Theorem 1.1

In this section we present the tables of regular subgroups referred to in
our main result, Theorem 1.1. The first two columns of each table contain
the possibilities for the simple group L and a point stabilizer in L. The
third has the possibilities for the regular subgroup B, and in the fourth
we give the number of possibilities for B up to conjugacy in Aut L. (We
have not included this column in Table 16.2, where the numbers of classes
are rather clear.) The last column contains any relevant extra information.
This includes the use of the symbols * and {, which (as in [33]) have the
following meaning. The symbol * means that there is no reqular subgroup B
in the simple group L, but there is one in some almost simple group with
socle L; and t means that G, N L is not mazimal in L, but G, is mazximal
in some almost simple group G with socle L.

Some of the numbers of classes in column 4 of Tables 16.1 and 16.3 were
calculated by Michael Giudici using Magma, and more information about
the sporadic group examples in Table 16.3 can be found in [15].



Table 16.1: L of Lie type

L GoaNL B no. of classes | Remark
L,(q) Py or P, [qq":ll] see (5.1) B metacyclic,
B <TLi(q")/F;
Ls(q) Dyiq [@] see (5.5)(8) |¢=3mod4, B< P,
Tifg=7

L5(2) P2 or P3 31.5 1

31.5 P2 or P3 2
Ly(11) | P, Ay 1

As 11 1

Ay 11.5 1 f,G=1L.2
Ly(23) | P Sy 1

S, P =23.11 1
L2(29) | As 29.7 1
Ly(59) | P As 1

As P, =59.29 1
L3(3) 13.3 32.[16] 1
L3(4) 7.3 (24.(3 x D1p).2 | 1 x, G > L.S3
L4(3) (4 x Ly(9)).2 | 33.TL1(3%) 1 *,G = L.2 = PGL4(3)
Ly(4) (5 x Ly(16)).2 | 26.'L;(29) 1 *,G = L.2
Us(8) Py 3x19.9 1 *, G > L.32

19.3 P 1 *,G > L.3?
Us(2) Py [27] 2
Us(3) Ls(4) [3%.2] 6 *, G > L.2
U4(8) P2 GU1(29)9 1 *, G Z L.3
Sps(4) | La2(16).2 Ss 1 *,G = L.2
Spe(2) | G2(2) Ss 2

Ly(8).3 24 As 1
PSpe(3) | La(27).3 3itioltdis4 |1 *,G=1L.2
Spe(4) | Ga2(4) Ly(16).4 1 *, G = L.2
Sps(2) | O5(2) Ss 1
Q4 (2) 27(2) Ss 1

Ag 24 Aj 1

Ag 26.15 1

Ag (3 X 24.D10).2 1
Qd(4) | Q7(4) L5(16).4 1 *,G > L.2

75




Table 16.2: L alternating

L G,NL B Remark

A, A, any B,|B| =n

A, (g prime power) | S;_2 Fq.q;; < AGL1(q) | ¢ =3 mod 4
A

p> Ap+1 (p prime)

Apz41 (p prime)

Ag

Ls(5)
N(3?)
AGL3(2)
(A5 X Ag).2
Lo(8).3

MH, M12 (resp.)

(A29 X A3)2
L(32).5

Sy

Ap,Q X 2
Ap2_2

Cs, S3

C1o, D1o
Cis
AGL,(8)

S5

A7

AT (32)
(Agg X A3)2

Tifp="7,11,23
xif p=1 mod 4
*, p=1mod 4
p=3 mod4

*

x, G £ Sg

Table 16.3: L sporadic

L GoNL |B no. of classes | Remark
My | My 11 1
My.2 115 |1
M12 M11 [12] 3 see [15]
Lo(11) | My2 |1
Moo | Moy Do 1 *
M23 M22 23 1
Mo1.2 23.11 |1
23.11 M2 | 1
24 A7 23.11 |1
23.11 24 A7 |1
M24 M23 [24] 8 see [15]
Ly(23) | My.2 |1
Ly(23) |24 A7 |1
Ja | Us(3) 524 |2 *, see [15]
HS | My 524 |4 *, see [15]
He | Spy(4).2 | 71426 |3 *, see [15]

-
D
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