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Abstract

We prove that if G is a finite almost simple group, having socle
of Lie type of rank r, then the number of maximal subgroups of G is
at most Cr−2/3|G|, where C is an absolute constant. This verifies a
conjecture of Wall for groups of sufficiently large rank. Using this we
prove that any finite group G has at most 2C|G|3/2 maximal subgroups.

1 Introduction

For a finite group G, let max(G) denote the number of maximal proper
subgroups of G. In [33], Wall proves that max(G) ≤ |G| for soluble groups
G, and conjectures that this is true for all finite groups G. In [22, 4.6]
this conjecture was verified for sufficiently large symmetric groups. In this
paper we establish new bounds on max(G) for almost simple groups, and
also for general finite groups. Our result for almost simple groups gives
something stronger than Wall’s conjecture, namely that max(G)/|G| → 0
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as rank(G)→∞, where we define the rank of a group of Lie type to be the
rank of the overlying simple algebraic group.

Theorem 1.1 There exists an absolute constant C such that if G is a finite
almost simple group, having socle of Lie type of rank r, then

max(G) ≤ Cr−2/3|G|.

Corollary 1.2 Finite simple groups of sufficiently large rank satisfy Wall’s
conjecture.

Observe that when r is bounded Theorem 1.1 is best possible up to
improvement of the constant: for example, for infinitely many values of q,
G = L2(q) has a maximal subgroup isomorphic to A5, and hence max(G) ≥
|G|/60 for such q. Also for r unbounded, the exponent −2/3 is probably
not best possible, but cannot be improved by too much: as we will show in
Section 3 of the paper, there are families of classical groups of rank r with
max(G) ≥ r−2−ε|G| for arbitrarily small ε > 0.

We apply Theorem 1.1 and other tools to bound max(G) for arbitrary
finite groups G. An unpublished result of Pyber (see [24, 11.3.4]) states
that max(G) ≤ |G|c for some absolute constant c. Here we improve this as
follows.

Theorem 1.3 For any finite group G, we have max(G) ≤ 2C|G|3/2, where
C is the constant in Theorem 1.1.

We also show that groups G with non-abelian socle have at most
(C + 1)|G| core-free maximal subgroups (see Theorem 4.13).

Along the way we establish the following result, which may be of inde-
pendent interest. It is an improvement of [25, Corollary 2].

Theorem 1.4 There is an absolute constant c such that every finite group
has at most cn1/2 faithful primitive permutation representations of degree n
(up to equivalence), where n is an arbitrary positive integer.

What we actually show in the proof of Theorem 1.4 is the equivalent
fact that any finite group has at most cn3/2 core-free maximal subgroups of
index n.

Our results on max(G) have applications to some questions in number
theory (see [5]).

The paper is divided into three further sections. In the first, Theorem
1.1 is proved. The following section establishes a lower bound on the number
of maximal subgroups of certain classical groups, showing that Theorem 1.1
is close to best possible. The final section contains the proof of Theorems
1.3 and 1.4.
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2 Proof of Theorem 1.1

Let G be a finite almost simple group having socle of Lie type of rank r over
a field Fq, where q = pe and p is prime. For each prime divisor f of e, G has
a subfield subgroup of type G(q1/f ).

Lemma 2.1 (i) The number of conjugacy classes of maximal subgroups of
G which are not subfield subgroups is at most c(r).

(ii) For each divisor f of e, G has at most r conjugacy classes of subfield
subgroups of type G(q1/f ).

Proof (i) This follows from [17, Theorem 1.3] and the remark following it.

(ii) This is a consequence of [20, 5.1].

Lemma 2.2 Theorem 1.1 holds if the rank r is bounded.

Proof Since each conjugacy class of maximal subgroups has size at most
|G|, the previous lemma implies that

max(G) ≤ c(r)|G|+ r
∑

f |e

|G : G(q1/f )| < c1(r)|G|,

and the conclusion follows.

Now assume that the rank r is unbounded, so the socle of G is a classical
group — denote it by Cln(q), where n is the dimension of the natural module
V . Thus

soc(G) = Cln(q) = Cl(V ).

A well known theorem of Aschbacher [1] classifies all maximal subgroups
of G into eight families Ci (1 ≤ i ≤ 8) of well understood subgroups (see
[14] for detailed descriptions), together with a family S consisting of almost
simple subgroupsM whose socle has (projective) representation on V which
is absolutely irreducible and is not realised over a proper subfield of Fq.

Define C to be the union of the families Ci.

Lemma 2.3 Any maximal subgroup of G has order at least n2/2. Moreover,
any subgroup in S has socle of order at least n2/2.

Proof Inspection show that this is true for maximal subgroups in C. (In
fact a lower bound of n4 can easily be seen to hold for these.)

Now consider a maximal subgroup M ∈ S. Let L be the simple socle of
M . Then some covering group L̂ of L has an absolutely irreducible repre-
sentation of dimension n, and hence |L̂| ≥ n2 (since |L̂| is at least the sum
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of the squares of the degrees of its absolutely irreducible representations
in characteristic p). Now |L̂| ≤ |L|M(L), where M(L) is the order of the
Schur multiplier of L. If L is an alternating group the result follows since
M(L) = 2 (recall that n is unbounded). If L is of Lie type, then n ≤ 2|L : B|
where B is a Borel subgroup, by [28, 2.2], and hence n2 ≤ 4|L : B|2. One
checks that this is at most 2|L|. The conclusion follows.

The next result is a slight refinement of [8, 2.1].

Lemma 2.4 The number of conjugacy classes of maximal non-subfield sub-
groups in C is at most 4n log n/ log log n.

Proof This follows from [14, Chapter 4]. Lemma 2.1 of [8] gives bounds on
the number of Δ-classes of subgroups in each Ci, where Δ is the full isometry
group associated with G. Each Δ-class corresponds to a bounded number of
G-classes unless G is linear or unitary and the subgroups are in the families
C4, C6 or C7 (note that we are excluding C5 as these are subfield subgroups),
so the result follows from [8, 2.1] except in these cases. In the remaining
cases each Δ-class corresponds to at most

√
n, n, n G-classes respectively

(see [14, 4.4.10, 4.6.5, 4.7.3]), so by [8, 2.1] the numbers of G-classes are
at most 2nd(n), n, 3n log n, respectively. In fact it is easily seen that the
number of Δ-classes in C7 is at most 3 log n/ log log n (rather than the 3 log n
in [8, 2.1]). The conclusion follows.

Lemma 2.5 The number of maximal subgroups of G lying in C is at most

9 log n

n log log n
|G|.

Proof By Lemma 2.3, any conjugacy class of maximal subgroups of G
has size at least 2|G|/n2. Hence by Lemma 2.4, the number of maximal
non-subfield subgroups in C is at most

(2|G|/n2) ∙ (4n log n/ log log n) =
8 log n

n log log n
|G|.

Finally, Lemma 2.1 shows that the number of maximal subfield subgroups
of G is at most

∑
f |e |G : G(q

1/f )| ≤ |G|
∑
f |e q

−n/f ≤ |G|n−2. The result
follows.

It remains to bound the number of subgroups of G in the family S.
Recall that V is the natural n-dimensional module for G, and denote by
S0 the set of isomorphism types of simple groups which occur as socles of
groups in S. For S ∈ S0, denote by Ŝ the universal covering group of S, and
let k(Ŝ) be the number of conjugacy classes of Ŝ. Note that each subgroup
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in S arises from an absolutely irreducible n-dimensional representation of
some group Ŝ with S ∈ S0.

Lemma 2.6 Let S = Xt(s) be a simple group of Lie type of rank t over Fs,
and suppose that S has an absolutely irreducible (projective) representation
of dimension n.

(i) There is a constant c(t) such that

k(Ŝ)

|S|
< c(t)n−2.

(ii) Given ε > 0, there is N = N(ε) such that for n > N we have

k(Ŝ)

|S|
< n−2+ε.

Proof By [28, 2.2], we have n ≤ 2|S : B|, where B is a Borel subgroup
of S. For some d we have |S| ∼ sd and |B| ∼ s(d−t)/2 (where ∼ denotes
equality up to multiplicative constants depending only on t). Moreover, we
have k(Ŝ) ∼ st by [18, Theorem 1]. Part (i) follows.

To prove part (ii) it suffices to show that c(t) < |S : B|ε for sufficiently
large t. This follows since the implied constants in the above estimates for
|S|, |B| and k(Ŝ) are at most exponential in t, whereas |S : B| is at least
exponential in t2.

Lemma 2.7 For S ∈ S0, the number of subgroups in S with socle isomor-
phic to S is at most

|Δ : G ∩Δ| ∙ |G| ∙
k(Ŝ)

|S|
,

where Δ is the full (projective) isometry group associated with G. Moreover,
|Δ : G ∩Δ| ≤ n.

Proof By [14, 2.10.4(iii)], the conjugacy class of an absolutely irreducible
subgroup in Δ is determined by its representation on V up to equivalence.
Given S ∈ S0, there are at most k(Ŝ) such representations, each giving rise
to at most |Δ : G ∩ Δ| G-classes of subgroups, and each of these classes
has size at most |G|/|S|. Hence the number of subgroups in S with socle
isomorphic to S is at most |Δ : G ∩Δ| ∙ k(Ŝ) ∙ |G|/|S|, as required.

Lemma 2.8 Fix c > 0. Then given any m and any field K, there are at
most f(c) absolutely irreducible KÂm-modules have dimension less than m

c.

Proof Note that for m > 7, Âm = 2.Am. For faithful KÂm-modules,
the result follows from [32], which shows that such modules of dimension at
least 2[(m−logm−1)/2].
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Now consider KAm-modules. Theorem 5 of [13] shows that for suffi-
ciently large m, every irreducible KSm-module of dimension less than m

c+1

lies in a set Rm(c+1), parametrised by (p-regular if char(K) = p) partitions
whose first part is at least m − c − 1; clearly there are at most f(c) such
partitions. For an irreducible KSm-module W , the restriction W ↓ Am is
the direct sum of at most 2 conjugate irreducible KAm-modules, and every
irreducible KAm-module arises in this way. Hence the number of irreducible
KAm-modules of dimension less than m

c is bounded by the number of ir-
reducible KSm-modules of dimension at most 2m

c (< mc+1), which is at
most 2f(c).

Lemma 2.9 Given γ > 0 there is N = N(γ) such that if n ≥ N , then
the number of maximal subgroups in S with alternating socle is at most
|G|n−1+γ.

Proof Let S = Am ∈ S0, and fix ε > 0. Let c = 1/ε. Observe that
m ≤ n + 2 (see [14, 5.3.5]). Also we have n2 ≤ m! by Lemma 2.3, so in
particular m is unbounded.

First consider the case where m > nε. Then n < mc. By the previous
lemma, there are at most f(c) irreducible n-dimensional representations of
Âm, and hence the number of subgroups in S with socle Am is at most

|Δ : G ∩Δ|f(c)|G|/|Am| < 2nf(c)|G|/m!

It follows that the number of subgroups in S with socle Am, m > nε, is at
most

2nf(c)|G|
∑

nε<m≤n+2

1/m! < 2nf(c)|G|2−n
ε

. (1)

Now consider m ≤ nε. By Lemma 2.7, the number of subgroups in S
with socle Am, m ≤ nε, is at most

|Δ : G ∩Δ| ∙ |G|
∑

m≤nε

k(Âm)

|Am|
.

Now k(Âm) ≤ 2k(Am) ≤ 4k(Sm) = 4P (m) < b
√
m for some constant b. Also

b
√
m < (m!)δ for arbitrarily small δ, and m! ≥ n2. Hence the above number

is at most

2n|G|
∑

m≤nε
(m!)−1+δ ≤ 2n|G|

∑

m≤nε
n2(−1+δ) ≤ 2n|G| ∙ nε ∙ n2(−1+δ)

= 2|G|n−1+ε+2δ.

Together with (1), this gives the conclusion.
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Lemma 2.10 The number of maximal subgroups in S with socle of Lie type
in p′-characteristic at most c|G|n−2/3.

Proof Let Sp′ be the set of maximal subgroups in the statement of the
lemma. Let S be the socle of a group in Sp′ , and assume S 6= L2(s), 2B2(s)
or 2G2(s).

We claim that, given t, the number of possible isomorphism types for S
of rank at least t is at most c2n

1/t. To see this, observe that by [15] we have
n ≥ 1

2(s
t − 1). Hence s ≤ c3(n1/t + n1/(t+1) + ∙ ∙ ∙) < c4n1/t, and the claim

follows.

We now apply the claim for t = 4. Recall that by Lemma 2.6, k(Ŝ)/|S| <
n−2+ε. Hence by by Lemma 2.7, the number of subgroups in Sp′ having socle
of rank at least 4 is at most

n|G| ∙ c2n
1/4 ∙ n−2+ε = c2|G|n

−3/4+ε.

Next, for S of rank 3, or S = G2(s), we have n ≥ (s3 − 1)/2 by [15], so
there are at most c5n

1/3 possible isomorphism types for S. For such S we
have k(Ŝ)/|S| < c6n−2 by Lemma 2.6, and so the number of subgroups in
Sp′ having such socles is at most

c7n|G| ∙ n
1/3 ∙ n−2 = c7|G|n

−2/3.

Now consider S = Lε3(s) or PSp4(s). For these groups, it is shown in [9]
(for L3(s)), [12] (for U3(s)), [10] (for PSp4(s), s odd) and [15] (for PSp4(s),
s even), that there is a bounded set of quadratic polynomials fi(x), and a
positive constant c, such that, in any given characteristic coprime to s, the
degree of every irreducible representation of Ŝ either takes one of the values
fi(s), or is greater than cs

3. Hence again, given n, there are at most c8n
1/3

possible isomorphism types for S, and the conclusion follows as before.

It remains to consider subgroups in Sp′ with socle L2(s), 2B2(s) or 2G2(s).
The degrees of the irreducible modular characters of these groups in char-
acteristic coprime to s are determined by the results in [3] (for L2(s)),in [4]
(for 2B2(s)), and in [11],[16] (for

2G2(s)). In particular, there is a bounded
number of degrees of irreducible representations of Ŝ = SL2(s),

2B2(s),
2G2(s)

in any given characteristic coprime to s, given by linear polynomials in s
(respectively, polynomials of degree at most 4 in

√
2s, polynomials of degree

at most 5 in
√
3s). Hence, given n, there is a bounded number of possibili-

ties for s. Using Lemma 2.6 again, it follows that the number of subgroups
in question is at most

c8n|G| ∙ n
−2 = c8|G|n

−1.

This completes the proof.
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Finally we estimate the number of subgroups in S having socle of Lie
type in characteristic p. Denote this set by Sp.

Lemma 2.11 The number of isomorphism types of socles of subgroups in
Sp is at most c15n1/4.

Proof Let S = Xt(s) (of rank t over Fs) be such a socle. We apply
results from [26, 27]. First, [26, Table 1B] provides a list of subgroups of
classical groups, of the form Cly(q

r) < Clyr(q), embedded via a twisted

tensor product representation of the form W ⊗W (q) ⊗ ∙ ∙ ∙ ⊗W (q
r−1), where

W = Vy(q
r). Then [27, Corollary 6] and its proof imply that either S is one

of these subgroups Cly(q
r) (with n = yr), or Fs is a subfield of Fq of index

at most 3. There are at most c log n/ log log n possibilities for Cly(q
r), so we

may assume that the latter possibility holds.

If n < t3/8, the possibilities for the irreducible representations of S =
Xt(s) of dimension n are given by [23, 5.1] (they are just the natural module,
its symmetric and alternating squares, the adjoint module, and tensor prod-
ucts of the natural module with a Frobenius twist of itself). It follows that
in this case the number of possibilities for S up to isomorphism is bounded
by a constant.

In fact, the method of proof of [23, 5.1] shows easily that there is a
positive constant c, such that there is just a bounded number of dimensions
of irreducible representations of Xt(s) less than ct

4. Hence if n < ct4 the
number of possibilities for S up to isomorphism is bounded by a constant.

Finally, when n ≥ ct4, the number of isomorphism types is clearly
bounded by c′n1/4.

Lemma 2.12 Given ε > 0, there is N = N(ε) such that for n > N we have

|Sp| < c|G|n
−3/4+ε.

Proof Let S be the socle of a subgroup in Sp. Then by Lemmas 2.7 and
2.6, the number of subgroups in Sp having socle isomorphic to S is at most

n|G| ∙ k(Ŝ)/|S| < n|G| ∙ n−2+ε = |G|n−1+ε.

Nowmultiplying by the number of possible isomorphism types for S, bounded
by the previous lemma, we obtain the conclusion.

Theorem 1.1 follows from Lemmas 2.5, 2.9, 2.10 and 2.12.

3 A lower bound for max(G)

In this section we establish a lower bound

max(G) ≥ n−2−ε|G|,
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where G is a classical group of suitable (large) dimension n, and ε > 0 is
arbitrary.

To see this, let p be a prime, let d ≥ 3, and let H = Ld(p). There is
an irreducible FpH-module V of dimension pd(d−1)/2, namely the Steinberg
module. This embeds H as an absolutely irreducible subgroup of a classical
simple group G = Cl(V ) = Cln(p), where n = p

d(d−1)/2 and G is the
stabilizer of the non-degenerate bilinear form on V preserved by H.

Proposition 3.1 For sufficiently large p, NG(H) is a maximal subgroup of
G.

The desired conclusion is a consequence of this result, since it implies
that for large p,

max(G) ≥ |G : NG(H)| ≥ |G|/|AutH| > |G|p
−d2 ,

which, given ε > 0, is greater than |G|n−2−ε for sufficiently large d.

Proof of Proposition 3.1 Suppose NG(H) is not maximal; say NG(H) <
M < G, whereM is a maximal subgroup of G. Then by [1], M lies in one of
the families Ci (1 ≤ i ≤ 8) or S of subgroups of G discussed in the previous
section.

Suppose first that NG(H) < M ∈ Ci for some i. The subgroups in C1 are
reducible on V , so i 6= 1. The subgroups in C2 are imprimitive on V ; however
the representation of H on V is primitive, by [29, Theorem 2]. Hence i 6= 2.
Subgroups in C3 have socles which are not absolutely irreducible on V , so
i 6= 3. The socles of subgroups in C4, C7 preserve a tensor decomposition of
V , whereas H does not (see [30, 1.6]); so i 6= 4, 7. Since G is defined over
Fp, there are no subgroups in C5. Finally, members of C6 are normalizers
of extraspecial-type groups, while those in C8 are full classical groups on V ,
and it is clear that M cannot be either of these.

ThereforeM must lie in the collection S. Recall that S consists of almost
simple subgroups whose socle has (projective) representation on V which is
absolutely irreducible. Let M0 be the socle of M , so H < M0 < G. Then
the main theorem of [19] implies that either M0 is a sporadic group, or it
is a group of Lie type in characteristic p. Hence, taking p sufficiently large,
we may assume the latter.

We now have H < M0 < G, where H = Ld(p), M0 = M0(q) and
G = Cln(p) are all groups of Lie type in characteristic p. At this point we
can apply [21, Theorem 11]: this implies that, provided p is sufficiently large
(in fact p > 7 suffices), the embedding H < M0 < G lifts to an embedding
H̄ < M̄0 < Ḡ of connected simple algebraic groups over F̄p of the same
types. Such triples of irreducible algebraic groups are classified in [30], [31],
and the full list is given in [30, Table 1]. Inspecting this table, we see that
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there are no triples in which the embedding of H̄ in Ḡ restricts to H as the
Steinberg representation.

This final contradiction completes the proof of the proposition.

4 Proof of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3 and 1.4. The proofs are given at the
end of the section, after a considerable amount of preparation. The main
ingredients of the proof are Theorem 1.1, the results of Aschbacher and Scott
[2], and the following result of Guralnick and Hoffman [7].

Proposition 4.1 ([7]) If G is a finite group, k a field with char(k) = p and
V an irreducible kG-module which is faithful as a G-module, then

dimH1(G,V ) ≤
1

2
dimV.

Corollary 4.2 Let G be a finite group with a unique minimal normal sub-
group A, such that A is abelian. Then G has at most |A|3/2 core-free maximal
subgroups M . The index of these subgroups is |A|.

Proof If M is a core-free maximal subgroup of G, then it is a complement
of A. Moreover, A is a faithful irreducible FpM -module. By Proposition 4.1,

the number of conjugacy classes of such complementsM inG is at most |A|
1
2 .

Hence the total number of choices for M is at most |A|
3
2 .

We denote by np(G) the product of the orders of Cp composition factors
in a composition series of G.

Lemma 4.3 Let A be an abelian minimal normal subgroup of a finite group G.
If A has order pr, then the number of maximal subgroups of G not containing
A is at most

np(G)|A|
1
2 .

Proof Every maximal subgroup M not containing A is a complement of A
in G. If A is the unique minimal normal subgroup of G, then our statement
follows from Corollary 4.2.

In the general case we proceed by induction on |G|. Assume that G has
another minimal normal subgroup B, such that A and B are non-isomorphic.
We claim that in this case every maximal subgroup M not containing A
contains B. For let P ∼= G/coreG(M) be the primitive permutation group
obtained by considering the action of G on the (right) cosets of M . If
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coreG(M) does not contain B, then P has two non-isomorphic minimal
normal subgroups, which is impossible.

It follows that the maximal subgroups of G not containing A are in one-
to-one correspondence with the maximal subgroups of G/B not containing
AB/B. By induction in this case the number of possibilities for M is at
most

np(G/B)|A|
1
2 ≤ np(G)|A|

1
2 .

It remains to consider the case when B and all other minimal normal
subgroups of G are isomorphic to A.

Consider again the primitive group P ∼= G/coreG(M). The images of
A and B coincide in P , hence they coincide with the image of A × B. It
follows that the intersection of A×B with coreG(M) is a normal subgroup
of order pr, hence it is a minimal normal subgroup intersecting A trivially.

Let A = N0, N1, . . . , Nt be the minimal normal subgroups of G contained
in A × B. The Ni are intersect trivially pairwise, hence their number is at
most (|A×B| − 1)/(|A| − 1) = pr + 1. That is, we have t ≤ pr.

By induction each Ni different from A is contained in at most

np(G/Ni)|A|
1
2 ≤ np(G)|A|

− 1
2

maximal subgroups not containing A. Hence the total number of such max-
imal subgroups in this case is at most

t np(G)|A|
− 1
2 ≤ np(G)|A|

1
2

as required.

The above result essentially reduces the proof of Theorem 1.3 to con-
sidering groups G with no abelian minimal normal subgroups. We have to
handle the case where G has a core-free maximal subgroup M . In [2, Theo-
rem 1], Aschbacher and Scott give a detailed structural description of such
pairs M and G. In the various cases we will quote much simplified versions
of their actual results.

We also need the following fact, which can easily be deduced using the
information given in [14, 5.1].

Proposition 4.4 If L is a non-abelian finite simple group, then |Out(L)|
≤ |L|

1
4 .

The following is an extract from [2, Theorem 1(B)]. For a subgroup K
of a group G, denote by KG the set of G-conjugates of K.
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Proposition 4.5 ([2]) Let G be a finite group with a core-free maximal
subgroup M . Assume that G has two non-abelian minimal normal sub-
groups A and B. Then there exist simple components K and L of G and
a full diagonal subgroup D of K × L such that A = 〈KG〉, B = 〈LG〉 and
M ∩ (A×B) is the direct product of the M -conjugates of D. The groups
A,B and M ∩ (A×B) are isomorphic to Lt for some t.

The number of conjugacy classes of core-free maximal subgroups M of G
is at most t |Out(L)|.

Corollary 4.6 Let G be as in Proposition 4.5. The number of core-free
maximal subgroups M of G is at most |A|5/4 ≤ |G|. The index of these
maximal subgroups M is |A|.

Proof The index of the subgroupsM is clearly |A|. By Proposition 4.5 the
number of choices for M up to conjugacy is at most t |Out (L)|. It follows
from Proposition 4.4 that |Out (L)|t ≤ |A|

1
4 . Hence the number of choices

for M is at most |G :M | |A|
1
4 ≤ |A|

5
4 as required.

If H is a subgroup of G, then AutG(H) denotes the group of automor-
phisms of H induced in G; thus

AutG(H) ∼= NG(H)/CG(H).

The following is an extract from [2, Theorem 4].

Proposition 4.7 ([2]) Let G be a finite group with a unique minimal nor-
mal subgroup D, which is a power of some non-abelian simple group L, say
D = L1 × . . .× Lt (where Li ∼= L). Assume that G has a core-free maximal
subgroup M such that

AutM (L1) = AutG(L1) and M ∩D = 1.

Let E be the set of normal subgroups E of NG(L1) such that D ≤ E ≤
DCG(L1) with DCG(L1)/E ∼= L. Then the number of G-conjugacy classes
of such maximal subgroups M is at most |E| |Out(L)|.

Corollary 4.8 If G is as in Proposition 4.7, then the number of core-free

maximal complements M of D is at most min
(
|G|
20 , |D|

5
4

)
. The index of

these maximal subgroups M is |D|.

Proof From the definition of E it follows that the group DCG(L1)/D has
a quotient isomorphic to Le where |E| = e. Hence Aut(D)/Inn(D) has a
section isomorphic to Le. Since Aut(D)/Inn(D) ≤ Out(L)wr Sym(t) and
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Out(L) is solvable, in fact Sym(t) has a section isomorphic to Le. It follows
that Sym(t) has an elementary abelian section of order pe for some p and
hence that e ≤ t.

As in the proof of Corollary 4.6 we see that the number of choices for M
is at most t|Out(L)| |G :M | ≤ |D|

5
4 .

Also, from the first paragraph we have |M | = |G/D| ≥ |L|e, hence
e|Out(L)| ≤ |M |1/4 < |M |

20 . Hence

e|Out(L)| ∙ |G :M | ≤
|G|
20
.

Let D be a group with a direct product decomposition D = L1 × . . . ×
Lt. A diagonal subgroup A of D (with respect to this decomposition) is
a subgroup for which each projection A → Li is injective; if these maps
are in fact isomorphisms, then A is a full diagonal subgroup of D. For
J ⊆ {1, . . . , t} we write DJ =

∏

j∈J
Lj .

The following is an extract from [2, Theorem 1.C.2] and [2, 6.4.3].

Proposition 4.9 Let G be a finite group with a unique minimal normal
subgroup D, which is a power of some non-abelian simple group L, say
D = L1 × . . .× Lt (where Li ∼= L). Assume that G has a core-free maximal
subgroup M such that AutM (L1) = AutG(L1) and M ∩D 6= 1.

Consider the action of G on the set L1, . . . , Lt as a permutation group.
Let P∗(G,L1) denote the set of minimal non-trivial blocks of imprimitivity
containing L1 under this action. Then M ∩D is the direct product of the M -
conjugates of some full diagonal subgroup M ∩DΓ of DΓ for Γ ∈ P∗(G,L1).
The number of conjugacy classes of such maximal subgroups M is at most
|P∗(G,L1)| |Out(L)|.

Corollary 4.10 Let G be as in Proposition 4.9. The number of maximal
subgroups M as in 4.9 of a given index n is at most n

3
2 . The total number

of such maximal subgroups is at most |G|20 .

Proof Denote by G̃ the transitive permutation group defined by the
action of G on the components Li and let H̃ be the stabilizer of L1 in G̃.
The minimal blocks Γ in P∗(G,L1) are in one-to-one correspondence with
the minimal subgroups of G̃ containing H̃ (see [6, Theorem 1.5.A]). Each
of these minimal subgroups can be generated by H̃ and some coset gH̃ of
H̃ in G̃. Therefore the number of these subgroups is at most t. Hence the
number of possibilities for M up to conjugacy is at most t |Out(L)| ≤ |D|

1
4 .
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Now M ∩ D is a product of at most t2 groups isomorphic to L, which

implies that |L| ≤ |M ∩D| ≤ |D|
1
2 . Therefore |D|

1
2 ≤ |G :M | ≤ |G|

|L|t , hence
the total number of maximal subgroups M considered is at most

t |Out(L)|
|G|
|L|t
≤
|G|

|L|
3
4

≤
|G|
20
.

Finally, since |G :M | ≥ |D|
1
2 , the number of maximal subgroupsM of index

n is at most n|D|
1
4 ≤ n

3
2 .

The following is an extract from [2, Theorem 1.C.3].

Proposition 4.11 Let G be a finite group with a unique minimal normal
subgroup D, which is a power of some non-abelian simple group L, say
D = L1 × . . .× Lt (where Li ∼= L). Assume that G has a core-free maximal
subgroup M , such that AutM (L1) is a core-free maximal subgroup in A =
AutG(L1). Then G =MD, M ∩D is the direct product of the M -conjugates
of M ∩ L1 and AutM (L1) ∩ Inn(L1) = AutM∩L1(L1).

The map MG → (AutM (L1))A gives a bijection between G-conjugacy
classes of such maximal subgroups M and A-conjugacy classes of core-free
maximal subgroups of A.

Corollary 4.12 Let G, M be as in Proposition 4.11.

(i) The total number of such maximal subgroups M is at most C|G|,
where C is the absolute constant in Theorem 1.1.

(ii) Given ε > 0, there exists c(ε) (not depending on G) such that for
all n, the number of such maximal subgroups M of index n in G is at most
c(ε)n1+ε.

Proof Let xi|A| denote the number of maximal subgroups of index i in A.
The number of A-conjugacy classes of such maximal subgroups is xii |A|.

By Theorem 1.1 we have
∑
xi ≤ C. Let B be a core-free maximal

subgroup of index i in A. We have |L : B ∩ L| = |A : B| = i. If M is
a maximal subgroup of G which corresponds via 4.11 to B, then we have
|L1 :M ∩L1| = i and hence n = |G :M | = |D : D ∩M | = it. Therefore the
number of maximal subgroups M which correspond to all such subgroups
B of index i is

xi

i
|A| ∙ it ≤ xi|G|.

Summing up we see that the total number of maximal subgroupsM as above
is at most

∑
xi|G| ≤ C|G| as required.

By [17, Theorem 1.1] for every ε > 0 there is a constant c(ε) such that
xi|A| ≤ c(ε)i1+ε independently of the choice of A. By the above argument
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this implies that the number of maximal subgroups M of index n = it is at
most c(ε)i1+ε ≤ c(ε)n1+ε.

By [2, Theorem 1] the groups G with a core-free maximal subgroup
M and non-abelian socle are described by Propositions 4.5, 4.7, 4.9 and
4.11. Putting together the corresponding corollaries (4.6, 4.8, 4.10 and 4.12),
together with Theorem 1.1, we obtain the following.

Theorem 4.13 Let G be a group with a non-abelian socle. Then G has at
most (C + 1)|G| core-free maximal subgroups.

Similarly these corollaries together with Corollary 4.2 imply Theorem 1.4,
stated in the Introduction.

Finally we can prove Theorem 1.3.

Proof of Theorem 1.3

We prove the result by induction on |G|. Assume first that G has an
abelian minimal normal subgroup A. By induction A is contained in at most
2C|G/A|

3
2 maximal subgroups. Using Lemma 4.3 we obtain that

max(G) ≤ 2C|G|
3
2 |A|−

3
2 + |G| |A|

1
2 ≤ C|G|

3
2 + |G|

3
2 ≤ 2C|G|

3
2 .

Assume now that G has at least three non-abelian minimal normal sub-
groups A, B andD. Each has order at least 60. Then any maximal subgroup
contains A, B orD, hence by induction we have max(G) ≤ 3∙2C(|G|/60)

3
2 ≤

2C|G|
3
2 .

Now suppose that G has exactly two (non-abelian) minimal normal sub-
groups A and B. Then by Corollary 4.6, G has at most |G| core-free max-
imal subgroups. If M is a maximal subgroup of G with coreG(M) 6= 1,
then M contains A or B. Hence by induction we see that max(G) ≤
|G|+ 4C(|G|/60)

3
2 ≤ 2C|G|

3
2 .

Finally, assume that G has a unique non-abelian minimal normal sub-
groupD. Then by Theorem 4.13, G has at most (C+1)|G| core-free maximal
subgroups. The number of maximal subgroups M with coreG(H) 6= 1 is at
most max (G/D) ≤ 2c |G|60 . Theorem 1.3 follows.
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