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Abstract Lateral diffusion of molecules on surfaces plays a very important role in var-
ious biological processes, including lipid transport across the cell membrane, synaptic
transmission, and other phenomena such as exo- and endocytosis, signal transduction,
chemotaxis, and cell growth. In many cases, the surfaces can possess spatial inho-
mogeneities and/or be rapidly changing shape. Using a generalization of the model
for a thermally excited Helfrich elastic membrane, we consider the problem of lateral
diffusion on quasi-planar surfaces, possessing both spatial and temporal fluctuations.
Using results from homogenization theory, we show that, under the assumption of
scale separation between the characteristic length and timescales of the membrane
fluctuations and the characteristic scale of the diffusing particle, the lateral diffusion
process can be well approximated by a Brownian motion on the plane with constant
diffusion tensor D that depends on a highly nonlinear way on the detailed properties
of the surface. The effective diffusion tensor will depend on the relative scales of
the spatial and temporal fluctuations, and for different scaling regimes, we prove the
existence of a macroscopic limit in each case.
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1 Introduction

Diffusion processes are ubiquitous in physics, chemistry, and biology (Crank 1979;
Berg 1993; Van Kampen 2007). In biology, diffusion plays a fundamental role in
many processes occurring at the cellular and subcellular level and is one of the basic
mechanisms for intracellular transport (Bressloff and Newby 2013). Diffusion not
only occurs within the cell, but can also occur along the cell membrane. This lateral
diffusion of molecules along the surface of cells also plays a key role in various
cellular processes. The lipid molecules and integral membrane proteins that constitute
the cell membrane themselves undergo diffusion along the membrane as a result of
thermal agitation (Almeida and Vaz 1995). Lateral diffusion of postsynaptic membrane
proteins between synapses is known to play a fundamental part in synaptic transmission
(Borgdorff and Choquet 2002; Ashby et al. 2006). Other phenomena in cellular biology
in which diffusion over interfaces is involved include vision (Poo and Cone 1974),
exo- and endocytosis, signal transduction, chemotaxis, and cell growth (see Sbalzarini
et al. 2006; Almeida and Vaz 1995).

Experimental techniques such as single-particle tracking (Saxton and Jacobson
1997), fluorescence recovery after photobleaching (FRAP) (Axelrod et al. 1976), and
nuclear magnetic resonance (NMR) (Lindblom and Orädd 1994) have made it possible
to accurately measure displacement in a laboratory-fixed plane of molecules diffusing
laterally on the surface, and thus to measure the macroscopic diffusion tensor D of
the diffusion process, projected into the plane.

Biological interfaces, however, are not typically flat. Indeed, many membranes will
exhibit a nonzero curvature, which is induced by the natural spontaneous curvature
of the constituent lipids (Seifert 1997). They may also be rough, i.e., possess spa-
tial microstructure. Moreover, the shape of the membrane is changing in time due
to thermal fluctuations and possibly also nonthermal fluctuations induced by active
membrane proteins on the surface (Gov 2004).

The geometry of the membrane will cause the macroscopic diffusion tensor D to be
significantly different from the molecular diffusion tensor D0 of the diffusing protein
on the surface itself. The relationship between the molecular diffusion tensor and the
macroscopic diffusion tensor has been widely studied for different types of biomem-
brane. Previous work such as Gustafsson and Halle (1997), Naji and Brown (2007),
Halle and Gustafsson (1997), and Sbalzarini et al. (2006) focuses on the problem of
lateral diffusion of a particle on a static membrane. Various estimates for D in terms
of the surface fluctuation were derived, most notably the effective medium approx-
imation and area scaling approximation (King 2004; Gustafsson and Halle 1997;
Gov 2006; Naji and Brown 2007. Other studies such as Reister and Seifert (2007),
Reister-Gottfried et al. (2007), and Reister-Gottfried et al. (2010) have focussed on the
problem of diffusion on a thermally excited biomembrane fluctuating in a hydrody-
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namic medium and derived expressions for the effective diffusion tensor as a function
of surface parameters such as bending rigidity, surface tension, and fluid viscosity.

The common factor in these models is the presence of small length and timescales
in the resulting evolution equations, which enter due to spatial surface microstructure,
or due to rapid temporal fluctuations of the surface or possibly both. The objective of
this paper was to investigate the macroscopic behavior of a laterally diffusive process
on surfaces possessing microscopic space and timescales using a single, unified math-
ematical approach. By doing so, we provide rigorous justification for some existing
approximations advocated in the literature, clearly explaining the parametric regimes
in which they apply and develop a systematic methodology that can be used to study
other similar problems. Under the assumption that the slow and fast scales are well
separated, it is possible to show that the diffusion process can be approximated by a
Brownian motion on the plane, independent of the small scale, but which accounts for
the macroscopic effects of the fine spatial structure and rapid fluctuations. We use the
classical methods of averaging and homogenization (Bensoussan et al. 1978; Pavliotis
and Stuart 2008, particularly for SDEs, as described in the foundational paper Papani-
colaou (1977). Doing so, we derive expressions for the coefficients of the macroscopic
process in terms of expectations with respect to a relevant measure that captures the
effect of the rapid fluctuations and involves the solution of an auxiliary cell problem in
the case of homogenization. Although these coefficients will not have a closed form in
general, they can be computed numerically, accurately, and efficiently without having
to simulate effects at the microscopic level, and they are amenable to analyze in various
parameter regimes of interest. In particular, we can obtain bounds on the coefficients
in terms of the properties of the surface.

The use of multiscale methods to study lateral diffusion on membranes has been
considered before, with varying degrees of rigor. In Gustafsson and Halle (1997), the
authors derive the correct macroscopic diffusion tensor for a particle diffusing on a
surface with periodic spatial fluctuations basing their result on Jackson and Coriell
(1963), Lifson and Jackson (1962), and Festa and d’Agliano (1978), who consider the
analogous situation of diffusion in a periodic potential. Under the assumption of sym-
metry in the spatial fluctuations, the authors then proceed to derive variational bounds
for the effective diffusion and provide heuristic arguments for a number of other,
tighter approximations. In Naji and Brown (2007), the authors study lateral diffusion
on a Helfrich membrane undergoing thermal fluctuations. They identify two limiting
regimes: the diffusive limit (homogenization) of a diffusion on a quenched surface and
the annealed limit (averaging) of diffusion on a rapidly fluctuating membrane, based
on a formal analysis of the Fokker–Planck equation describing the evolution of the
system, using an adiabatic elimination of the fast variable as in Risken (1996, Sec-
tion 8.3). They then use numerical methods to study the dynamics of the intermediate
regimes where there is no separation of scales.

However, to our knowledge, there are no studies that adopt a rigorous multiscale
approach to solving this problem, nor are we aware of any work that unifies the study
of lateral diffusion on surfaces with both rapid spatial and temporal fluctuations in a
single framework. Moreover, we are not aware of any study that makes use of multiscale
methods to compute the effective diffusion tensor directly rather than via numerical
simulation of the multiscale process, with the exception of Abdulle and Schwab (2005)
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in which the authors describe an heterogenous multiscale method (HMM) scheme for
computing the solution of an elliptic partial differential equation (PDE) on a static
surface possessing fine locally periodic undulations and rigorously prove convergence
of the scheme.

In this paper, we consider two simple models for diffusion on a fluctuating surface.
The first model describes lateral diffusion on a static surface possessing rapid, periodic
fluctuations. Lateral diffusion on quasi-planar periodic surfaces has been previously
studied in the literature, mainly in the context of biological interfaces. The first such
work we are aware of is Aizenbud and Gershon (1985) where the authors consider
the problem of diffusion on a curve possessing rapid periodic fluctuations with the
objective of explaining the slowing down of diffusion of succiny-concanavalin A
receptors on the surfaces of adherent mouse fibroblast. The authors derive the effective
diffusion tensor, in this case, given by D = 1

Z2 , where Z is the average excess surface
area of the curved surface relative to its projection on the plane. In Halle and Gustafsson
(1997), the authors study the same problem in two dimensions, and by recognizing
the problem as diffusion in a periodic potential, they use standard results to obtain the
homogenized diffusion tensor D in terms of the solution of an auxiliary PDE (i.e., the
cell problem). Under some implicit symmetry assumptions on the surface, they then
derive variational bounds for D. The authors discuss various nonvariational bounds for
the D and propose two estimates such as the effective medium approximation, given by

Dema =
〈√|g|(z)

〉−1
I,

where
√

g is the infinitesimal surface element of the surface and 〈·〉 denotes the average
with respect to the surface measure and the area scaling approximation given by

Das = 1

Z
I. (1)

Although both approximations agree at the extremes of weak and strong surface fluc-
tuations, they differ in the intermediate regime. Gustafsson and Halle claim that Dema
is the better approximation; however, they provide no direct evidence to support this
conclusion, which at odds with the numerical experiments demonstrated in Naji and
Brown (2007) and with the conclusions of Proposition 3 of this paper. Indeed, we show
that in the high-frequency, low-amplitude limit of the surface fluctuations, the diffu-
sion process behaves like a pure diffusion process (i.e., a Brownian motion) on R

d

with constant macroscopic diffusion coefficient D and for two-dimensional surfaces,
provided D is isotropic, it is equal to Das .

The second model we consider is a generalization of the thermally excited Helfrich
elastic membrane model (Gov 2006; Naji and Brown 2007; Reister and Seifert 2007).
The surface is defined by a time-dependent periodic random field undergoing rapid
spatial and temporal fluctuations. The macroscopic behavior of laterally diffusing
particles on the surface will depend on the relative speed between the spatial and
temporal fluctuations. We identify a number of natural distinguished limits for this
problem and study the effective properties of the corresponding limit processes and in
particular provide a rigorous justification of the effective diffusion estimates derived
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in Naji and Brown (2007), Reister and Seifert (2007), Gustafsson and Halle (1997)
for lateral diffusion on rapidly fluctuating surfaces.

In Sect. 2 we describe the formulation of lateral diffusion and Brownian motion
on a time-dependent, quasi-planar surface. In Sect. 3, we introduce the framework for
describing diffusion on a fluctuating surface, applicable to both models. Moreover, we
identify four different scaling regimes for the second model. In Sect. 4, we describe
a motivating example, namely that of a quasi-planar membrane with Helfrich elastic
free energy and show that for small deformations, the dynamics can be described by
an Ornstein–Uhlenbeck process for the Fourier modes of the surface (Granek 1997;
Naji and Brown 2007). In Sect. 5, we focus on the first model and using classical peri-
odic homogenization methods, we show that in the macroscopic limit, the projected
lateral diffusion process converges to a Brownian motion on the plane with a constant
diffusion tensor D, which can be expressed in terms of the solution to an auxiliary
Poisson equation. We study the properties of D and provide rigorous justification for
a number of existing results for similar problems (Halle and Gustafsson 1997; Naji
and Brown 2007).

In Sects. 6, 7, 8, and 9, we study the macroscopic limits of the second model under
different scaling regimes. In Sect. 6, we apply the results of Sect. 5 to study the asymp-
totic behavior of the fluctuating membrane model in the quenched fluctuation regime.
In Sect. 7, we consider the problem of lateral diffusion on a surface possessing only
rapid temporal fluctuations, a regime which has been well studied for the particu-
lar model of a thermally excited Helfrich elastic membrane. Using formal multiscale
expansions, we derive the limiting behavior of this model, e.g., Reister and Seifert
(2007), Naji and Brown (2007). For the particular case of the Helfrich elastic mem-
brane, we recover the estimates for the effective diffusion tensor given in Naji and
Brown (2007), Halle and Gustafsson (1997), Reister-Gottfried et al. (2007). In Sect. 8,
we consider diffusion on a surface possessing both spatial and temporal fluctuations
with comparable length/timescales. We derive expressions for the limiting equation
and study the properties of the effective drift and diffusion tensor. Finally, in Sect. 9, we
study the asymptotic behavior of diffusion on a rapidly fluctuating surface possessing
both spatial and temporal fluctuations, but where the temporal fluctuations occur at a
faster scale than the spatial fluctuations.

In Sect. 10, we consider the particular case of diffusion on a two-dimensional fluctu-
ating Helfrich membrane and exhaustively study the particular limits of this problem.
Conclusions regarding the unifying nature and novelty of the multiscale approach to
this problem, as well as further avenues of research, are summarized in Sect. 11. Formal
justifications of the limit theorems given in this paper are provided in “Appendix.”

2 Diffusion on Time-Dependent Surfaces

2.1 Preliminaries

In this section, we describe the formulation of Brownian motion moving on a time-
dependent surface embedded in R

d+1. We are primarily interested in quasi-planar
membranes, so we will restrict our attention to surfaces that can be represented in
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the Monge parametrization, that is, surfaces that can be expressed as the graph of a
sufficiently smooth function H : R

d × [0,∞) → R. Such a surface S(t) can then be
parametrized over R

d by J : R
d × [0,∞) → R

d+1 given by

J (x, t) = (x, H (x, t)) .

The function H is known as the Monge gauge. In local coordinates x ∈ R
d , the metric

tensor of S(t) induced from R
d+1 can be written as

G(x, t) = I + ∇H(x, t) ⊗ ∇H(x, t) (2)

and the infinitesimal surface area element is given by
√|G| (x, t), where

|G|(x, t) := det
(
G(x, t)

) = 1 + |∇H(x, t)|2 . (3)

It is clear that for any unit vector e ∈ R
d ,

1 ≤ e · G(x, t)e ≤ |G| (x, t), for all x ∈ R
d ,

so that G−1 is positive definite (though not necessarily uniformly so, since |G| (x, t)

can be arbitrarily large). Throughout this paper, we denote by
√

G−1(x, t)or G− 1
2 (x, t)

the unique positive square root of G−1(x, t), such that
(

G− 1
2 (x, t)

)� (
G− 1

2 (x, t)
)

= G−1(x, t), x ∈ R
d , t ≥ 0.

Given F : R
d+1 → R smooth in a neighborhood of S(t), the tangential gradient

of F is given in local coordinates by

∇S(t)F(J (x, t)) = P(x, t)∇F(J (x, t)) = ∇ J (x, t)�G−1(x, t)∇ (F ◦ J ) (x, t).

Here, P(x, t) projects vectors in R
d+1 onto the tangent space of S(t) at local coordi-

nate x , that is,

P(x, t) = I − ν(x, t) ⊗ ν(x, t),

where ν(x, t) is the surface unit normal of S(t). The tangential divergence ∇S(t)· is
then obtained from the tangential gradient by contraction. The generalization of the
Laplace operator to curved surfaces is the Laplace–Beltrami operator ΔS(t), which is
given by

ΔS(t)F = ∇S(t) · ∇S(t)F.

One can show (Deckelnick et al. 2005; Dziuk and Elliott 2013) that in local coordinates,
ΔS(t) acts on functions F ∈ C2(Rd+1) as follows:

ΔS(t)F(J (x, t)) = 1√|G| (x, t)
∇ · (√|G| (x, t)G−1(x, t)∇ (F ◦ J ) (x, t)

)
,
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for x ∈ R
d . We thus define the operator Lt acting on functions f ∈ C2(Rd) to be the

local coordinate representation of the Laplace–Beltrami operator

Lt f (x, t) = 1√|G| (x, t)
∇ · (√|G| (x, t)G−1(x, t)∇ f (x, t)

)
, for x ∈ R

d . (4)

It is clear that ΔS(t)F(J (x, t)) = Lt (F ◦ J ) (x, t), for all x ∈ R
d , t ≥ 0 and for all

F ∈ C2(Rd+1). Notice that for a flat surface, for which H ≡ 0, the operator reduces
to the standard Laplace operator on R

d .

2.2 Brownian Motion on an Evolving Surface

While the properties of Brownian motion on static surfaces have been widely studied in
the applied literature (Van Den Berg and Lewis 1985; Sbalzarini et al. 2006; Almeida
and Vaz 1995; Naji and Brown 2007, Brownian motion on time-dependent surfaces
has been given less consideration. In Naji and Brown (2007), the authors formally
derive the overdamped Langevin equation for diffusion on a surface in the Monge
gauge as the limit of a random walk constrained to the surface. In Coulibaly-Pasquier
(2011), the author provides a rigorous definition of Brownian motion on a manifold
with a time-dependent metric. As we are working entirely in the Monge gauge, we
provide the following natural definition of Brownian motion on a fluctuating Monge
gauge surface, which is equivalent to that given in Coulibaly-Pasquier (2011) in the
graph representation.

Definition 1 Let (Ω,F , P) be a complete probability space endowed with a right-
continuous filtration (Ft )t≥0. Let S(t) be a time-dependent surface, with correspond-
ing Monge gauge H(x, t), where H(·, t) ∈ C2(Rd), for all t ≥ 0. Then, an R

d -valued
process Xx (t) defined on Ω × [0, T ) is called a Brownian motion on S(t) started at
Xx (0) = x ∈ R

d , if X (t) is almost surely continuous, adapted with respect to Ft ,
and if for every smooth function f : R

d → R,

f (Xx (t)) − f (x) −
∫ t

0
Ls f (Xx (s)) ds,

is a local martingale Karatzas and Shreve (1991, Definition 5.5), where Ls is the
Laplace–Beltrami operator (4) in local coordinates on R

d .

Remark 1 We note that in the case where H ≡ 0, Definition 1 reduces to standard
Brownian motion on R

d .

Let S(t) be a time-dependent surface with Monge gauge H(x, t) such that for
t ∈ [0,∞), H(·, t) ∈ C2(Rd). It is possible to obtain a standard Itô SDE that describes
Brownian motion on S(t). To this end, define Xx (t) to be the solution of the following
Itô SDE

dXx (t) = F(Xx (t), t) dt +√
2Σ(Xx (t), t) dB(t),

Xx (0) = x,
(5)
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where

F(x, t) = 1√|G(x, t)|∇ ·
(√|G(x, t)|G−1(x, t)

)
,

Σ(x, t) = G−1(x, t),

and B(·) is a standard R
d -valued Brownian motion. By Itô’s formula (Theorem 3.3,

Karatzas and Shreve 1991), for smooth f : R
d → R:

f (Xx (t)) − f (x) =
∫ t

0

1√|G| (Xx (s), s)
∇ ·

(√|G| (Xx (s), s)
)

· ∇x f (Xx (s)) ds

+
∫ t

0
G−1(Xx (s), s) : ∇x∇x f (Xx (s)) ds

+
∫ t

0

√
G−1(Xx (s), s)∇x f (Xx (s)) dB(s)

=
∫ t

0
Ls f (Xx (s)) ds + M(t),

where M(t) is a local martingale. It follows that Xx (t) satisfies the conditions of
Definition 1 to be a Brownian motion on the evolving Monge gauge surface S(t).

Remark 2 Note that when the surface is static, then Xx (t) is equivalent to the local
coordinate description for Brownian motion on an d-dimensional manifold given by
Hsu (2002, Equation 3.3.11), up to a scaling of the infinitesimal generator by 2 which
we adopt for convenience.

Independently, we may derive from first principles the evolution equation for the
probability density ρ(z, t) of a particle undergoing Brownian motion on a time-
dependent surface given in the Monge gauge. The equation corresponds to the Fokker–
Planck equation for the SDE (5). Consider a particle undergoing Brownian motion
moving on the time-dependent surface S(t), and suppose that the process possesses a
density ρ(t, z) with respect to the Lebesgue measure on S(t). Let � be an arbitrary
bounded region in R

d with smooth boundary, and let M (t) be the corresponding
region on the fluctuating surface, that is,

M (t) = J (Θ, t).

The density ρ(z, t) is conserved on the surface S(t) for all t such that

∫

S(t)
ρ(z, t) dz = 1, for t ≥ 0.

Moreover, we assume that ρ(z, t) flows from one region of S(t) to another with local
Fickian flux −∇S(t)ρ(z, t) where ∇S(t). It follows that ρ(z, t) satisfies the following
equation
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∂

∂t

∫

M (t)
ρ(z, t) dz = −

∫

∂M (t)
∇S(t)ρ(z, t) · n(z, t) dz =

∫

M (t)
ΔS(t)ρ(z, t) dz,

where n(z, t) is the conormal vector along the boundary of M (t). See Deckelnick
et al. (2005) for details. Changing variables from z ∈ S(t) to local coordinates x ∈ R

d

induces a change in measure dz = √|G| (x, t)dx where |G| is given by (3). We can
thus rewrite the above equation in local coordinates as

∂

∂t

∫

Θ

ρ(J (x, t), t)
√|G| (x, t) dx

=
∫

Θ

∇x ·
(√|G| (x, t)G−1(x, t)∇ρ(J (x, t), t)

)
dx .

As we are only interested in the diffusion process projected onto the plane, we weight
the density ρ with the surface area element

√|G| (x, t) to compensate for the local
changes in area of the surface. To this end, define the density q : R

d × [0,∞) → R

with respect to the Lebesgue measure on R
d by

q(x, t) := ρ (J (x, t) , t)
√|G| (x, t).

It is straightforward to check that
∫
Rd q(x, t) dx = 1 for all time t . Substituting q(x, t)

in the previous equation, and noting that Θ is arbitrary, we obtain the following PDE
for q on R

d

∂

∂t
q(x, t) = ∇ ·

(√|G| (x, t)G−1(x, t)∇
(

q(x, t)√|G| (x, t)

))
= L ∗

t q(x, t), (6)

where L ∗
t is the formal adjoint of Lt as defined in (4). We note that the PDE (6) is

the Fokker–Planck evolution PDE for a diffusion process with infinitesimal generator
given by Lt (Friedman 2006, Chapter 6), in particular for the SDE (5). The corre-
sponding backward Kolmogorov equation for the observable u(x, t) := E [u0(Xx (t)]
is given by the following PDE:

∂u(x, t)

∂t
= Lt u(x, t), (x, t) ∈ R

d × (0,∞), (7a)

u(x, 0) = u0(x) x ∈ R
d . (7b)

3 A Simple Model for Membrane Fluctuations

In this section, we introduce a simple model for a fluctuating membrane, which is based
on the model for the thermally excited Helfrich membrane derived in Gov (2004), Naji
and Brown (2007), and Reister and Seifert (2007). The fluctuating membrane surface
is represented in the Monge gauge by a time-dependent random field H(x, t) over the
region [0, L]d . We assume that for each t ≥ 0, H(x, t) is smooth in x and H(x, t)
is periodic in x with period L H for each t ≥ 0. Moreover, we shall assume there

123



398 J Nonlinear Sci (2015) 25:389–449

is a characteristic timescale TH associated with H(x, t); it can be a correlation time
when H is random, or the period when H(x, t) is periodic in time. Consider a particle
diffusing on a realization of the surface H(x, t) with an isotropic molecular diffusion
tensor D0. Let X (t) denote the projected trajectory on R

d , and let L and T be the
macroscopic characteristic length and timescales at which the process X (t) is being
observed. We introduce the notation

x = Lx∗, t = T t∗,
X (T t∗) = L X∗(t∗),

H(x, t) = L H H∗
(

x

L H
,

t

TH

)
,

(8)

where L H is a scaling constant, so that rescaled function H∗ has period 1 in space.
Define the parameters δ and τ to be

δ = L H

L
and τ = TH

T
, (9)

which quantify the scale separation between the diffusion process X (t) and the spatial
and temporal fluctuations, respectively. To make explicit the relationship between
spatial and temporal fluctuations, we will assume that δ = εα and τ = εβ for constants
α > 0 and β ∈ R. The assumption of rapid fluctuations implies that ε � 1. Rescaling
(5) using (8), dropping the stars, we obtain the following rescaled SDE

dXε(t) = 1

εα

1√
|G|

(
Xε(t)
εα , t

εβ

)∇y ·
(√|G|G−1

)( Xε(t)

εα
,

t

εβ

)
dt

+
√

2G−1

(
Xε(t)

εα
,

t

εβ

)
dB(t), (10)

where
G(y, s) = I + ∇y H(y, s) ⊗ ∇y H(y, s). (11)

Let K be a finite index set with cardinality K = |K|. As a generalization of the
Helfrich elastic fluctuating membrane model, we will assume that the random field
H(x, t) can be written as H(x, t) = h(x, η(t)), where

h(x, η) =
∑
k∈K

ηk(t)ek(x),

where ek ∈ C∞(Td); these functions can be extended to R
d by periodicity. Note that

the ek need not be orthogonal (although they will be in the examples we consider). We
model the stochastic process η(t) as an R

K -valued Ornstein–Uhlenbeck (OU) process
given by

dη(t) = −Γ η(t) dt + √
2Γ � dW (t), (12)
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where W (·) is a standard R
K -valued Brownian motion. The drift and diffusion matrices

Γ and � are symmetric, positive definite, and are assumed to commute. Substituting
this definition of H(x, t) into (10), the evolution of the system can be described by
the joint process (Xε(t), ηε(t)) satisfies the following Itô SDE

dXε(t) = 1

εα
F

(
Xε(t)

εα
, ηε(t)

)
dt +

√
2Σ

(
Xε(t)

εα
, ηε (t)

)
dB(t), (13a)

dηε(t) = − 1

εβ
Γ ηε(t)dt +

√
2Γ �

εβ
dW (t) (13b)

where F : T
d × R

K → R
d is given by

F(x, η) := 1√|g| (x, η)
∇ ·

(√|g|g−1
)

(x, η) , (14)

Σ : T
d × R

K → R
2×2
sym is

Σ(x, η) := g−1(x, η), (15)

and
g(x, η) := I + ∇h(x, η) ⊗ ∇h(x, η). (16)

Since Γ and � commute, it is straightforward to check that the OU process ηε(t) is
ergodic, with unique invariant measure given by

μη = N (0,�), (17)

with density

ρη(η) ∝ exp

(
−η · �−1η

2

)
, (18)

with respect to the Lebesgue measure on R
K . Since η(t) converges exponentially

fast to its invariant distribution, it is reasonable to assume that η(t) is started in the
stationary distribution, i.e., η(0) ∼ μη, for the sake of simplicity.

Rather than study the asymptotic behavior of Xε(t) as ε → 0, it is often more
convenient to consider the corresponding backward Kolmogorov equation (7) cor-
responding to the system of SDEs (13). This PDE describes the time evolution of
uε : R

d × R
K × [0, T ) → R given by

uε(x, η, t) = E
[
u(Xε(t)) | (Xε(0), ηε(0)) = (x, η)

]
,

for a given observable u(·) as follows:

∂uε(x, η, t)

∂t
= L εuε(x, η, t), for (x, η, t) ∈ R

d × R
K × (0, T ), (19a)

uε(x, η, 0) = v(x, η), for (x, η) ∈ R
d × R

K . (19b)
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One can then employ homogenization methods for PDEs to identify the homogenized
Kolmogorov backward equation in the limit ε → 0, from which one can read off the
homogenized SDE for X0(t). This correspondence between SDE and PDE has been
widely employed to study the homogenization and averaging of stochastic processes,
see, for example, Pavliotis and Stuart (2008), Bensoussan et al. (1978), Pavliotis et al.
(2007).

The infinitesimal generator L ε can be written as

L ε f (x, η) = L ε
1 f (x, η) + L ε

2 f (x, η).

The operator

L ε
1 f (x) := 1√|g| (x/εα, η)

∇x ·
(√|g| (x/εα, η)g−1(x/εα, η)∇x f (x)

)
,

encodes the effect of the rapid spatial fluctuations, while

L ε
2 f (η) := 1

εβ

(−Γ η · ∇η + Γ � : ∇η∇η f
)
,

describes the rapid temporal fluctuations.
The following proposition establishes the well posedness of Eq. (13) for the joint

process (Xε(t), ηε(t)).

Proposition 1 Let X0 and η0 be random variables, independent of B(·) and W (·)
such that E [X0]2 < ∞ and E [η0]2 < ∞. Then, the system of SDEs (13) has a unique
strong solution (Xε(t), ηε(t)) satisfying X (0) = X and η(0) = η0. Moreover, the
solution (Xε(t), ηε(t)) ∈ C([0, T ]; R

d × R
K ). ��

Our objective was to study the behavior of Xε(t) and of solutions to the correspond-
ing backward Kolmogorov equation as ε → 0. The parameters α and β quantify the
relative speed between the spatial and temporal fluctuations, respectively. Thus, we
expect that the limiting behavior will vary for different values of α and β. In this paper,
we will study the asymptotic behavior of the coupled system in the following cases,
which are demonstrative of the different possible limiting behaviors of the system.
Case I: α = 1 and β = −∞

In this regime, the temporal fluctuations occur on a timescale slower than the charac-
teristic timescale of the diffusion process, so that the regime captures the macroscopic
behavior of a particle diffusing laterally over a stationary realization of the random sur-
face field h(x, η). This situation has been studied in the case of diffusion on a Helfrich
elastic membrane with quenched thermal fluctuations in Naji and Brown (2007).
Case II: α = 0 and β = 1

In this regime, the microscopic fluctuations are due to the temporal fluctuations. The
motivating example in this regime is that of diffusion on a Helfrich elastic membrane
with annealed fluctuations; this problem has been studied in detail Naji and Brown
(2007), Gustafsson and Halle (1997), Reister and Seifert (2007).
Case III: α = 1 and β = 1
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In this regime, we consider lateral diffusion on surfaces possessing both rapid
spatial and temporal fluctuations, with the spatial and temporal fluctuations occurring
at comparable scales. While this regime has not been studied before, it naturally
extends the work covered in Halle and Gustafsson (1997), Naji and Brown (2007),
Reister and Seifert (2007) and helps provide a complete picture.
Case IV: α = 1 and β = 2

In this regime, we consider surfaces with both rapid spatial and temporal fluctuations
but the temporal fluctuations occur at a faster scale compared to the spatial fluctuations.
As in Case III, this regime has not been considered previously.

In each of the above cases, we will show that the lateral diffusion process Xε is
asymptotically characterized by a limiting diffusion process with constant diffusion
tensor and drift term which will be qualitatively different in each case.

Before considering the above four regimes for the fluctuating membrane model,
we first consider the problem of lateral diffusion on a static, periodic surface. The
diffusion process Xε(t) can be described by an SDE with rapidly varying, periodic
coefficients. In Sect. 5, we use standard periodic homogenization techniques to show
that the asymptotic behavior is that of a Brownian motion on R

d with constant diffusion
tensor D. The resulting analysis serves as a basis for the subsequent models.

In the Case I regime, considered in Sect. 6, each stationary realization of the random
field gives rise to a homogenized diffusion tensor. As in Naji and Brown (2007),
we consider the average homogenized diffusion coefficient as the effective diffusion
tensor in this regime. In the Case II regime considered in Sect. 7, the limiting behavior
is determined by the properties of the stationary distribution of the OU process η(t)
and deriving the effective diffusion process can be viewed as an averaging problem
(Pavliotis and Stuart 2008).

In the regimes covered by Case III and Case IV, we must consider the interaction
between the temporal and spatial fluctuations. In the Case III regime, considered in
Sect. 8, the spatial fluctuations homogenize the diffusion process “faster” than the
temporal fluctuations, and the result is that the effective diffusion tensor will merely
be the effective diffusion tensor from Case I averaged over the invariant measure of the
OU process η(t). This macroscopic limit was considered in Garnier (1997). Deriving
the asymptotic behavior in the Case IV regime, considered in Sect. 9, proves more
complicated due to the fact that the “fast process” that characterizes the rapid spatial
and temporal fluctuations does not possess an explicit invariant measure. Once the
geometric ergodicity of the fast process with respect to a unique invariant measure
is established, the approach is similar to the classical probabilistic homogenization
arguments of Bensoussan et al. (1978). Although a limiting equation is established,
the lack of an explicit invariant measure makes it hard to establish bounds on the
effective diffusion tensor.

We have not yet addressed the question of the limiting behavior of Xε(t) for other
values of α and β besides those considered in Cases I–IV. The answer to this question
is dependent on the properties of the surface H(x, t). However, in Sect. 10, for the
particular case of diffusion on a thermally fluctuating Helfrich surface, we will show
that the limits corresponding to Case I to Case IV are exhaustive, in the sense that
these are the only distinguished limits that can arise from this system.
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4 Motivating Example: The Helfrich Elasticity Membrane Model

In this section, we describe a particular model of surface fluctuations, namely ther-
mally excited Helfrich elastic membranes. The Canham–Helfrich theory for biological
membranes, originally developed by Canham (1970) and Helfrich (1973), is a clas-
sical continuum model for studying the macroscopic properties of lipid bilayers. The
problem of diffusions on Helfrich elastic surfaces in the context of integral protein
diffusion on lipid bilayers was studied in various works, in particular Naji and Brown
(2007), Reister and Seifert (2007), Lin and Brown (2004), King (2004). Throughout
the paper, we shall revisit this problem as a prototypical example to which the theory
can be applied, exhaustively exploring the different scaling limits of this model.

As in all the previous works, we represent the quasi-planar membrane as a two-
dimensional time-dependent surface with Monge Gauge H , periodic over the square
[0, L]2, where the equilibrium of the fluctuations is governed by the following har-
monic approximation to the Helfrich Hamiltonian

H [H ] = 1

2

∫

[0,L]2

[
κ(ΔH(y))2 + σ(∇H(y))2

]
dy. (20)

Here, the scalars κ and σ denote the bending rigidity and surface tension, respectively.
The surface is coupled with a low-Reynolds number hydrodynamic medium. Using
an analogous approach as in Doi and Edwards (1988) for polymer dynamics, under
the assumption of linear response, the dynamics of the surface fluctuations will be
described by the following SPDE

dH(t)

dt
= R AH(t) + ζ(t), (21)

where AH(t) is the restoring force for the free energy H , that is,

AH(t) = −δH

δH
[H(t)] = −κΔ2 H(t) + σΔH(t)

The operator R which characterizes the effect of nonlocal interactions of the membrane
through the hydrodynamic medium is given by

R f (x) = (Λ ∗ f )(x), f ∈ L2([0, L]2)

where ∗ denotes convolution, and Λ(x) is given by the diagonal part of the Oseen
tensor, Kim and Karrila (1991):

Λ(x) = 1

8πλ |x | ,

where λ is the viscosity of the surrounding hydrodynamic medium.
The space–time fluctuations are given by ζ(t), a centered Gaussian random field

white in time and with spatial fluctuations having covariance operator 2kB T R, where
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kB T is the system temperature. From linear response theory, it follows that the dynam-
ics in (21) satisfy the fluctuation–dissipation relation, required to ensure that, formally,
the invariant measure is proportional to exp(−H /(kB T )).

Rescaling the domain to T
2 = [0, 1]2, let {ek | k ∈ K∞} be the standard Fourier

basis for L2(T2) with periodic boundary conditions, indexed by

K∞ = Z
2 \ {(0, 0)}.

It is straightforward to check that the invariant measure of H(t) is given by the Gaussian
measure N (0,C ) where

C ∝
∑

k∈K∞

(
κ |2πk|4 + σ L2 |2πk|2

)−1
ek(x) ⊗ ek(x).

The operator C − 1
2 satisfies Assumptions 2.9 (i)–(iv) of Stuart (2010), so that its spec-

trum grows commensurately with the spectrum of −Δ. It follows from Stuart (2010,
Lemma 6.25) that the stationary realizations of the random field will be Hölder con-
tinuous with exponent α < 1, but not for α = 1. This implies that realizations are
not sufficiently regular to allow well-defined tangents at every point on the surface.
Indeed, H(x, t) will be almost surely nowhere differentiable with respect to x so that
it is not possible to consider a laterally diffusive process on a realization of this ran-
dom field. We must thus introduce an ultraviolet cutoff by setting 〈ek,C ek〉 = 0 for
wavenumbers k �∈ K, where

K = {k ∈ K∞ | |k| ≤ c},

for some fixed constant c > 0 and define K = |K|. Looking for solutions H(x, t) of
the form H(x, t) = h(x, η(t)), for h : T

2 × R
K given by

h(x, η) =
∑
k∈K

ηkek(x),

after substituting in (21), we note that the SPDE diagonalizes to obtain a system of
Ornstein–Uhlenbeck processes describing the dynamics of the Fourier modes.

Having described the out-of-equilibrium dynamics of a fluctuating Helfrich surface
described by h(x, η(t)), consider the trajectory X (t) of a particle undergoing lateral
diffusion on this surface with scalar molecular diffusion tensor D0. After nondimen-
sionalization, we obtain the following system of equations

dXε(t) = F
(
Xε(t), ηε(t)

)
dt +√

2Σ (Xε(t), ηε (t)) dB(t), (22a)

dηε(t) = −1

ε
Γ ηε(t)dt +

√
2Γ �

ε
dW (t) (22b)

where ε = D0λL and where F and Σ are given by (14) and (15), respectively. The
OU process coefficients are determined by Γ = diag(Γk) with
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Γk = κ∗ |2πk|4 + σ ∗ |2πk|2
|2πk| (23)

and � = diag(�k) with

�k = 1

κ∗ |2πk|4 + σ ∗ |2πk|2 , (24)

where κ∗ and σ ∗ are the nondimensional constants given by

κ∗ = κ

kB T
and σ ∗ = σ L2

kB T
,

respectively. The invariant measure of the R
K -valued OU process η(t) is then given

by

N (0,�) =
∏
k∈K

μk,

where for each k ∈ K, μk is the invariant measure of ηk given by

μk = N (0,�k) . (25)

The parameter χ = ε−1 had already been considered in Naji and Brown (2007) where
it was called the dynamic coupling parameter because it controls the scale separation
between the diffusion and the surface fluctuations. For the particular case of band-3
protein diffusion on a human red blood cell, the typical values of parameters give
ε ≈ 0.3, which suggests that ε is an appropriate small-scale parameter. Of course, the
value of ε will vary greatly for different scenarios.

The Helfrich model only prescribes the dynamics of the surface fluctuations, i.e.,
the coupled system of OU processes. However, from the above discussion, we see
that nondimensionalizing the Eq. (22) for lateral diffusion on this surface gives rise
to a natural scaling, corresponding to (α, β) = (0, 1) in (13). Nonetheless, as an
illustration of our theory, we shall consider the behavior of the Helfrich model under
different scaling regimes, as it provides an illuminating example. In particular, for the
scalings corresponding to Case I–IV, we will consider the effects of the parameters
κ∗, σ ∗ on the effective diffusion tensor, and in Sect. 6, we will provide an exhaustive
study of the scaling limits of this system.

5 Case 0: Diffusion on Static, Periodically Varying Surfaces

In this section, we consider the first case described in Sect. 3, namely lateral diffu-
sion on a prescribed static surface with periodic fluctuations about the plane. More
specifically, we consider a fixed surface Sε with Monge gauge

hε(x) = εh
( x

ε

)
, (26)
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where ε is a small-scale parameter and h is a sufficiently smooth real-valued function
on R

d such that h and its derivatives are periodic with period 1 in every direction. We
make no further assumptions on the geometry of Sε, in particular, the Monge gauge
h(x) need not be a realization of any particular distribution. It is straightforward to
see that Sε has metric tensor gε(x) = g(x/ε), where

g(x) = I + ∇h(x) ⊗ ∇h(x), x ∈ T
d . (27)

We note that the size of the undulations |∇hε(x)| remains constant as ε → 0. For a
given surface Sε, define the excess surface area Z to be the average area of the surface
per unit projected surface area, which for a periodic surface defined by (26) is given
by

Z := lim
R→∞

1

(2R)d

∫

[−R,R]d

√
1 + |∇hε(y)|2 dy

= lim
R→∞

1

(2R)d

∫

[−R,R]d

√
1 + |∇h(y/ε)|2 dy

= lim
R→∞

1

(2R)d

∫

[−R,R]d

√|g| (y) dy

=
∫

Td

√|g| (y) dy. (28)

In particular, the excess surface area remains constant as ε → 0, which suggests that
the scaling in (26) is justified.

Consider a particle diffusing along the surface Sε and let Xε(t) denote the projec-
tion onto the plane. Following the derivation in Sect. 2.2 with H(x, t) = h(x) and
G(x, t) = I + ∇h(x) ⊗ ∇h(x), independent of time, the evolution of Xε(t) is given
by the following Itô SDE

dXε(t) = 1

ε
F(Xε(t)/ε) dt +√

2Σ(Xε(t)/ε) dB(t), (29)

where

F(x) = 1√|g| (x)
∇ ·

(√|g| (x)g−1(x)
)

,

and

Σ(x) = g−1(x).

As discussed in Sect. 3, rather than directly study the asymptotic behavior of Xε(t),
we can equivalently study the asymptotic behavior of the backward Kolmogorov equa-
tion for an observable uε(t, x) diffusing laterally on a surface hε(t), which can be
written in local coordinates as
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∂uε(x, t)

∂t
= L εuε(x, t), (x, t) ∈ R

d × (0, T ], (30a)

uε(t, x) = u(x), (x, t) ∈ R
d × {0}. (30b)

where

L ε f (x) = 1√|g| (x/ε)
∇x ·

(√|g| (x/ε))g−1(x/ε)∇x f (x)
)

, (31)

and where u ∈ Cb(R
d). The process Xε(t) and uε(x, t) are connected via the backward

Kolmogorov equation Friedman (2006, Chapter 6).
Our objective was to study the effective behavior of Xε(t) and uε(x, t) as ε → 0.

We will show that as ε → 0, the R
d -valued process Xε(t) will converge weakly to a

Brownian motion on R
d with constant diffusion tensor D that depends on the surface

map h(x). Equivalently, we show that uε converges pointwise to the solution u0 of the
PDE

∂u0(x, t)

∂t
= D : ∇x∇x u0(x, t), (x, t) ∈ R

d × (0, T ], (32a)

u0(t, x) = v(x), (x, t) ∈ R
d × {0}. (32b)

Since (29) (respectively, (30)) is a SDE (respectively, PDE) with periodic coefficients,
the problem is amenable to classical periodic homogenization methods, such as those
of Bensoussan et al. (1978), Zhikov et al. (1994), Pavliotis and Stuart (2008), and
Papanicolaou (1977). In Sect. 5.1, we state the homogenization result for this model.
The result will be justified formally by using perturbation expansions of the PDE in
(30). The rigorous proof of this result is presented in Duncan (2013).

5.1 The Homogenization Result

For convenience, we introduce the fast process Y (t) = X (t)
ε

mod T
d . We can then

express (29) as the following fast–slow system

dXε(t) = 1

ε
F(Y ε(t)) dt +√

2Σ(Y ε(t) dB(t), (33a)

dY ε(t) = 1

ε2 F(Y ε(t)) dt +
√

2

ε2 Σ(Y ε(t)) dB(t), (33b)

where Xε(t) ∈ R
d , Y ε(t) ∈ T

d and B(t) is a standard Brownian motion on R
d . The

infinitesimal generator of the fast process is the L2(Td) closure of

L0 f (y) = 1√|g| (y)
∇y ·

(√|g| (y)g−1(y)∇y f (y)
)

, f ∈ C2(Td). (34)

It is straightforward to see that L0 is a uniformly elliptic operator with nullspace
containing only constants, that is,
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N [L0] = {1},

and

N [L ∗
0 ] = {ρ(y)},

where ρ(y) =
√|g|(y)

Z , for Z = ∫
Td

√|g| (y) dy.
We expect to be able to compute the homogenizing effect of the fast process Y ε

on the slow process Xε and thereby obtain an effective equation that accounts for, but
removes explicit reference to, the small scale. Given v ∈ C2

b (R2 ×T
d), the observable

vε(x, y) := E
[
v
(
Xε(t), Y ε(t)

) | Xε(0) = x, Y ε(0) = 0
]

satisfies the backward Kolmogorov equation given by

∂vε(x, y, t)

∂t
= L εvε(x, y, t), (x, y, t) ∈ R

d × T
d × (0, T ], (35)

where

L ε = L2 + 1

ε
L1 + 1

ε2 L0 (36)

for
L1v(x, y) := F(y) · ∇xv(x, y) + 2Σ(y) : ∇x∇yv(x, y), (37)

and
L2v(x, y) := Σ(y) : ∇x∇xv(x, y), (38)

and where L0 is given by (34). Note that the last term in (37) reflects the correlation
of the noise between the fast and slow processes. We wish to study the behavior of
Xε and vε in the limit as ε → 0, homogenizing over the fast variable Y ε to identify
a constant coefficient diffusion equation that approximates the slow process. As the
corresponding SDE and PDE have periodic coefficients, we can apply results from
classical homogenization theory such as Bensoussan et al. (1978), Zhikov et al. (1994)
to prove convergence of Xε and vε to solutions of limiting equations. In this section,
we will state the homogenization result for this problem.

The macroscopic effect of the fast-scale fluctuations is characterized by a corrector
χ ∈ C2(Td; R

d), which is the unique, mean-zero solution of the following Poisson
problem

L0χ(y) = −F(y), y ∈ T
d . (39)

which is guaranteed to exist by the Fredholm alternative for elliptic PDEs (Gilbarg
and Trudinger 2001).

The following theorem states the homogenization result for this scaling regime. A
formal derivation using perturbation expansions will be given in section “Case I” of
Appendix, which can be used as the basis for a rigorous proof. However, a probabilistic
approach based on Pardoux (1999, Theorem 3.1) or Bensoussan et al. (1978) is more
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succint. In what follows we will adopt the convention that

(∇yχ(y)
)

i j = ∂χi

∂y j
(y), for i, j ∈ 1, . . . , d

see Chapter 2 of Gonzalez and Stuart (2008).

Theorem 1 The process Xε converges weakly in C([0, T ]; R
d) to a Brownian motion

X0(t) with effective diffusion tensor D given by

D = 1

Z

∫

Td

(
I + ∇yχ(y)

)
g−1(y)

(
I + ∇yχ(y)

)�√|g| (y) dy, (40)

where Z is the excess surface area given by (28).
Moreover, if Eq. (30) has initial data u independent of the fast variable such that

u ∈ C2
b (Rd), then the solution uε of (30) converges pointwise to the solution u0 of

(32) uniformly with respect to t over [0, T ]. ��
Remark 3 In the second part of Theorem 1, we assume that the initial condition of
the backward Kolmogorov equation for this system depends only on the slow variable
x . While this assumption greatly simplifies the analysis, it is not essential. Indeed, if
the initial condition u also depends on the fast variable, then an initial layer arises
at t = 0, which can be resolved by introducing auxiliary correction terms to the
multiscale expansion which decay exponentially fast in time. Refer to Khasminskii
and Yin (1996), Bourgeat et al. (2003) for a similar scenario.

5.2 Properties of the Effective Diffusion Tensor

In the one-dimensional case, by integrating (39) directly, one can show (Pavliotis and
Stuart 2008) that the effective diffusion coefficient is given by

D = 1

Z2 ,

so that the homogenized Eq. (32) becomes

∂u0(x, t)

∂t
= 1

Z2 Δu0(x, t), (x, t) ∈ R
1 × (0, T ]. (41)

In two dimensions or higher, it is not possible to solve for the corrector χ explicitly,
and thus, D has no closed form. However, we can identify certain properties of the
effective diffusion tensor. Let

H1
per (T

d) :=
{
v ∈ H1(Td)

∣∣∣∣
∫

Td
v(y) dy = 0

}
,

and Sd = {e ∈ R
d+1 | |e| = 1}. The following proposition illustrates the basic

properties of D, valid in all dimensions.
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Proposition 2 Let e ∈ Sd−1, then

(i) D is a symmetric, positive definite matrix.
(ii) D can be characterized via the expression

e · De = inf
v∈H1

per (T
d )

L[v, e], (42)

where

L[v, e] := 1

Z

∫

Td
(e + ∇v(y)) · g−1(y) (e + ∇v(y))

√|g| (y) dy

and χe = χ · e is the unique minimizer of (42).
(iii) The following Voigt–Reuss bounds (Zhikov et al. 1994, Section 1.6) hold,

e · D∗e ≤ e · De ≤ e · D∗e

where

e · D∗e = 1

Z
e ·
(∫

Td

g(y)√|g| (y)
dy

)−1

e, (43)

and

e · D∗e = 1

Z
e ·
(∫

Td
g−1(y)

√|g| (y) dy

)
e. (44)

(iv) In particular, the rate of diffusion for the homogenized process is always depleted,
i.e.,

e · De ≤ 1.

Thus, comparing the effective behavior of X ε(t) with that of a free Brownian
motion on R

d with the same microscopic diffusion coefficient D0 = I , we see
that the rapid surface fluctuations always gives rise to a reduction in the rate of
diffusion.

Proof Property (ii) follows by noting that the Euler–Lagrange equation for the mini-
mizer of (42) is given by the following Poisson problem

L0χ
e(y) = −F(y) · e, y ∈ T

d

, which has a unique solution χe = χ · e ∈ H1
per (T

d), where χ(y) is the solution of
(39). Moreover, e · De = L[χe, e]. It follows that for each unit vector e ∈ R

d ,

e · De ≤ L[0, e] = 1

Z
e ·
(∫

T2
g−1(y)

√|g| (y) dy

)
e =: e · D∗e,

proving the second inequality of (iii). To derive the Voigt–Reuss-type lower bound in
(iii), we note that for fixed e ∈ Sd−1,
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e · D∗e := inf
Φ∈L2(Td )d∫

Td Φ(y) dy=0

1

Z
(e + Φ(y)) · g−1(y) (e + Φ(y))

√|g| (y) dy ≤ D.

The corresponding Euler–Lagrange equation is given by

g−1(y) (e + Φ(y))
√|g| (y) = C,

where C is a Lagrange multiplier for the constraint
∫
Td Φ(y) dy = 0, this can be

solved explicitly to show that

Φ(y) + e = g(y)√|g| (y)

(∫

Td

g(y)√|g| (y)

)−1

e,

so that

e · D∗e = 1

Z
e ·
(∫

T2

g(y)√|g| (y)
dy

)−1

e,

thus proving (iii). Moreover, the positive definiteness of D follows immediately from
that of D∗. Using the fact that

∣∣g−1
∣∣ ≤ 1, it follows that

e · De ≤ e · D∗e ≤ 1,

and thus proving (iv). The symmetry of D follows from the symmetry of the inverse
metric tensor, proving (i). ��

By using expression (42), it is possible to obtain variational bounds for D other
than D∗ by minimizing over a proper closed subset of H1

per (T
d). By minimizing over

larger subsets, it is possible to obtain increasingly tighter bounds (see Duncan 2013,
Chapter 4). However, we have not been able to obtain bounds that are consistently
tight over different periodic surfaces using this approach.

5.3 The Area Scaling Approximation

For surface fluctuations that are genuinely two-dimensional (i.e., not constant along
a particular axis), we cannot expect to find an explicit expression for the solution of
the cell equation. Nonetheless, for a large class of two-dimensional surfaces, using a
duality transformation argument, we are able to exploit symmetries that exist exclu-
sively in the two-dimensional case to obtain an explicit expression for the effective
diffusion tensor D, which is known in the literature as the area scaling approximation

Das = 1

Z
I, (45)

where Z is the excess surface area given by (28). Note that, although Das is known as
an approximation in Gov (2004), Gustafsson and Halle (1997), King (2004), and Naji
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and Brown (2007), we shall show that it provides an exact formula for the effective
diffusion tensor D provided that D is isotropic. An immediate corollary of this fact is
that if D is isotropic, it will depend only on the average excess surface area and not
on the particular microstructure of the rough surface.

In their simplest forms, duality transformations provide a means of relating the
effective diffusion tensor σ∗ obtained through homogenizing an elliptic PDE of the
form

−∇ ·
(
σ
( x

ε

)
∇vε(x)

)
= f, x ∈ Ω � R

2

vε(x) = 0, x ∈ ∂Ω,

the effective diffusion tensor σ ′∗ of a dual problem, where σ ′ = Q�σ Q for a 90◦
rotation Q. The existence of such a duality depends strongly on the fact that in two
dimensions, the 90◦ rotation of a divergence-free field is curl-free and vice versa.
Such transforms were used firstly in conductance problems in Keller (1963) and
subsequently by Matheron (1967), Dykhne (1971), Mendelson (1975), Kohler and
Papanicolaou (1982).

Proposition 3 In two dimensions, D satisfies the following relationship

det(D) = 1

Z2 . (46)

Consequently, if λ1 and λ2 are the eigenvalues of D with λ1 ≤ λ2, then

1

Z2 ≤ λ1 ≤ 1

Z
≤ λ2 ≤ 1. (47)

In particular, if D is isotropic, then D can be written explicitly as

D = 1

Z
I.

Proof The above result follows from a straightforward modification of the standard
duality transformation. For a proof using variational principles, see Duncan (2013). ��

When D is not isotropic, Proposition (3) still provides us with useful constraints on
the anisotropy of the effective diffusion tensor. We see that if the macroscopic diffusion
is unhindered in the direction corresponding to λ1, then the effective diffusion will
be 1

Z2 in the orthogonal direction, corresponding to a diffusion on a one-dimensional
surface. In the other extreme, if λ1 = λ2, then we have an isotropic diffusion tensor
and by the above proposition λ1 = λ2 = 1

Z .

5.4 A Sufficient Condition for Isotropy

In all of the previous literature regarding lateral diffusion on two-dimensional biologi-
cal membranes, it is always assumed that the macroscopic diffusion tensor is isotropic,
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i.e., a scalar multiple of the identity. While this is a natural assumption, it is clearly
not true in general. In this section, we identify a natural sufficient condition to guar-
antee the isotropy of the effective diffusion tensor. The condition we will assume is as
follows:

h(x) = h(Qx), x ∈ R
2, (48)

where Q : R
2 → R

2 is a π
2 rotation about some point O ∈ R

2. Without the loss of
generality, we assume that O = (0, 0).

Lemma 1 Let Q ∈ R
2×2 be any rotation about the origin. If (48) holds, then

g−1(Q x) = Q g−1(x)Q� (49)

and
|g| (Q x) = |g| (x), (50)

for all x ∈ R
2. ��

We now prove that the above condition is a sufficient condition for the effective
diffusion tensor to be isotropic. A similar approach can be found in Zhikov et al. (1994,
Section 1.5).

Theorem 2 If condition (48) holds, then D is isotropic.

Proof We use a characterization of D given by (42), namely

e · De = 1

Z
inf

v∈H1
per (T

2)
(e + ∇v(y)) · g−1(y) (e + ∇v(y))

√|g| (y) dy.

Changing variables Q z = y, using (49) and (50), we obtain

e · De = 1

Z
inf

v∈H1
per (T

2)

∫

T2
(e + ∇v(Q z)) · Q g−1(z)Q� (e + ∇v(Q z))

√|g| (z) dz

= 1

Z
inf

v∈H1
per (T

2)

∫

T2

(
Q�e + Q�∇v(Q z)

)

·g−1(z)
(

Q�e + Q�∇v(Q z)
)√|g| (z) dz.

Noting that Q� ∇v(Q z) = ∇w(z), where w(z) = v ◦ Q(z), since Q is a π
2 rotation,

it is clear that w ∈ H1
per (T

2) if and only if v ∈ H1
per (T

2). It follows that

e · De = e · Q D Q� e, (51)

for all e ∈ S1. Using the fact that D is symmetric, one can check directly that (51)
implies that D is a scalar times the identify. ��
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5.5 Numerical Method

To compute the effective diffusion tensor for a general two-dimensional surface, rather
than adopt the MCMC approach as in Pavliotis et al. (2007) of generating sample paths
of Xε(t) using an Euler scheme and estimating D from the mean square deviation,
we instead use a finite element scheme to solve the cell equation and compute D
directly from (40). The latter approach is preferable in this case as, in two dimensions,
assembly of the corresponding linear system of equations is still cheap and the resulting
matrix problem is relatively well conditioned, so that it can be solved efficiently using a
preconditioned conjugate gradient method. On the other hand, a Monte Carlo approach
requires long time simulations or many realizations of the SDE to recover D. Finally,
the finite element scheme described in this section can be applied to compute the
effective diffusion tensors in the fluctuating membrane model considered in Sections 6,
7, 8, and 9, whereas the corresponding Monte Carlo simulations would involve solving
an extremely stiff system of equations over very long time intervals.

The corrector χ is approximated numerically with piecewise linear elements to
solve the cell problem (39). For the approximation of χ , we use a regular triangulation
of the domain [0, 1]2 with mesh width δx . To impose the periodic boundary conditions
of (39), we identify the boundary nodes of the mesh periodically. Thus, for δx = 1

M ,
M ∈ N, the resulting finite element scheme has M2 degrees of freedom.

The stiffness matrix corresponding to the elliptic differential operator L0 is assem-
bled using nodal quadrature (Larsson and Thomée 2009) to compute the local contri-
bution of each triangular element to the stiffness matrix. The load vector corresponding
to the right-hand side of the cell equation is computed similarly. Thus, the derivatives
of the surface map ∂h

∂x1
and ∂h

∂x2
are evaluated only at the nodes of the mesh. For simple

surfaces, the derivatives can be computed directly for each node. The stiffness matrix
S corresponding to L0 is positive semi-definite, with kernel consisting of constant
functions.

Once the stiffness matrix and right-hand side have been assembled, the result-
ing symmetric matrix equation is solved using a preconditioned conjugated gradient
method. Given a piecewise linear approximation χ

ei
δx

of the solution of the cell equa-
tion, we approximate Z and the effective diffusion tensor D using linear quadrature.
We note that D can be written as

e · De = 1

Z

[∫

Td
e · g−1(y)e

√|g| (y) dy − 〈χe, χe〉V

]
,

where

〈χe, χe〉V =
∫

Td
∇χe(y) · g−1(y)∇χe(y)

√|g| (y) dy

is the energy norm of χe. Thus, using standard a priori error estimates (Brenner
and Scott 2008) for the finite element approximation Dδx , one can show a rate of
convergence δx

2 of the approximate effective diffusion tensor Dδx to the exact value
D.
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Fig. 1 Effective diffusion tensor for an “egg-carton” surface with Monge gauge h(x) =
A sin(2πx1) sin(2πx2) for varying A. The dots indicate computed values of D. The dash-dotted line shows
D∗, and the dashed line shows D∗

5.6 Numerical Examples

To illustrate the properties described in the previous sections, we apply the numerical
scheme of Sect. 5.5 to numerically compute the effective diffusion tensor for diffusions
on various classes of surfaces, along with the bounds D∗, D∗ derived in Proposition
2 as well as the area scaling estimate (45).

In Fig. 1, we consider a surface defined by h(x) = A sin(2πx1) sin(2πx2) for
varying A. The isotropy condition holds, so that D is isotropic and is given by (45).
The Voigt–Reuss bounds are sharp in the weak-disorder regime (small A) but become
increasingly weak as A increases, with D∗ approaching 1

2 in the strong-disorder limit
(large A) while D∗ converges to 0. As predicted by Proposition 3, the area scaling
approximation correctly determines the effective diffusion tensor.

In Figs. 2 and 3, we consider the surface given by

h(x) = sin(2πx1) sin(6πx2) + A sin(6πx1) sin(2πx2).

The effective diffusion tensor will not be isotropic except for A = 1. In Fig. 2, we
plot D11 := e1 · De1 for varying A. The Voigt–Reuss bounds D∗ and D∗ are not tight
for any A with D∗ converging to 0.5 as A → ∞. We also see that the area scaling
approximation (45) agrees for A = 1, at which D is isotropic. In Fig. 3, we plot the
maximal and minimal eigenvalues Dmax and Dmin of the effective diffusion tensor. As
predicted by (47), 1

Z lies between Dmax and Dmin, meeting at A = 1.
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Fig. 2 Effective diffusion tensor for h(x) = sin(2πx1) sin(6πx2) + A sin(6πx1) sin(2πx2). We plot D
in the e1 direction
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Fig. 3 Effective diffusion tensor for h(x) = sin(2πx1) sin(6πx2) + A sin(6πx1) sin(2πx2). D is
anisotropic except for A = 1. The maximal and minimal eigenvalues of D, Dmax and Dmin, respec-
tively, are plotted along with the area scaling approximation Das , illustrating the bound on the eigenvalues
given by (47)
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Fig. 4 A plot of the periodic bump surface with Monge Gauge hε(x) for h(x) given by (52) and with
ε = 1

3

In Fig. 5, we consider a surface given by a periodic tiling of the standard “bump”
function with center c = ( 1

2 , 1
2

)
, radius r = 0.45 and amplitude A, that is,

h(x) = A exp

(
− 1

1 − | x−c
r |2

)
, |x − c| ≤ r

h(x) = 0 |x − c| > r. (52)

A plot of the corresponding multiscale surface for ε = 1
3 is shown in Fig. 4. It is

clear that the symmetries of the surface fluctuations will induce an isotropic effective
diffusion tensor. We note from Fig. 5 that for A < 1.0, the effective diffusion is not
very sensitive to changes in amplitude, but that it rapidly diminishes as we increase A
beyond 2.

6 Case I: Diffusion on a Surface with Quenched Fluctuations

We can apply the results of the previous sections to study the effective behavior of
the fluctuating membrane model (29) in the Case I regime where (α, β) = (1,−∞),
which models a particle diffusing laterally on a static surface obtained by a stationary
realization of the process η(t) given in (13). This particular regime had been previously
studied in Naji and Brown (2007) for lateral diffusion over a Helfrich elastic membrane
with quenched fluctuations. In this section, we will study how the distribution of the
surface realization affects the averaged effective diffusion. In Sect. 6.1, we focus on
the specific case of a fluctuating Helfrich elastic surface.
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Fig. 5 Effective diffusion for diffusion on a periodic surface, where each cell is a “bump” with width 0.45
and amplitude A given by the graph of (52)

By homogenizing the diffusion process over a stationary realization of the surface
fluctuations η, we obtain an η-dependent homogenized diffusion tensor. To character-
ize the effective diffusive behavior of particles on the surface, we define the effective
diffusion coefficient D to be the effective diffusion tensor averaged over all stationary
surface realizations. To this end, given g(y, η) as in (16), and the stationary density
ρη(η) given by (18), define

ρy(y, η) =
√|g(y, η)|

Z(η)
, (53)

where Z(η) is the η-dependent excess surface area given by

Z(η) =
∫

Td

√|g(y, η)| dy.

Then, by Theorem 1, D is given by

D =
∫

RK

∫

Td

(
I + ∇yχ

)
g−1(y, η)

(
I + ∇yχ

)�
ρy(y, η) ρη(η) dy dη, (54)

where χ(y, η) is the unique, mean-zero solution of

∇ ·
(√|g| (y, η)g−1(y, η) (∇χ(y, η) + I )

)
= 0, (y, η) ∈ T

d × R
K . (55)
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Properties of the effective diffusion tensor such as isotropy depend on the symme-
tries that exist in the distribution of the random field h. It is thus more natural to work
with a distribution P of the periodic random field h(y), rather than η. To this end,
given the stationary measure μη of the OU, let P be the probability measure on C(T2)

given by the pushforward of μη under the map P : R
K → C(T2) where

P(ζ ) =
∑
k∈K

ζkek .

Given a single realization h ∈ C∞(Td) of P(dh), define D(h) to be the unique
effective diffusion coefficient arising from lateral diffusion on the surface defined by
h, corresponding to (40) in Theorem 1. We can then rewrite D as follows:

D =
∫

D(h)P(dh). (56)

The first result we show is an analogue of Proposition 2.

Proposition 4 Suppose d = 2 and let Q ∈ R
2×2 be a rotation by π

2 . Define Q :
C(T2) → C(T2) by

(Q f ) = f (Q�·).

Suppose P is invariant with respect to Q, that is, Q−1 ◦ P = P, then D is isotropic.

Proof Let h be a realization of P. Similar to the proof of Proposition 2, we have that

∇ (Qh) (x) = Q ∇h(Q� x).

Denoting by g(x, h) the metric tensor for the graph of h evaluated at x ∈ R
d , that is,

g(x, h) := I + ∇h(x) ⊗ ∇h(x), then

g−1(x,Qh) = Q g−1(Q� x, h) Q�

and

|g| (x,Qh) = |g| (Q� x, h).

Let D(h) be the homogenized diffusion tensor for a particular realization h of P. Then,
using a similar argument to that of Proposition 2 gives

e · D(Qh)e

= inf
v∈H1

per (T
2)

∫

T2
(∇v(x)+e) · Q g−1(Q�x, h)Q� (∇v(x)+e)

√
|g| (Q�x, h) dy

= inf
w∈H1

per (T
2)

∫

T2

(
Q�∇w(Q�x) + Q�e

)
· g−1(Q�x, h)
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×
(

Q�∇w(Q�x) + Q�e
)√

|g| (Q�x, h) dy

= e · Q D(h)Q�e.

The result follows immediately from the previous relation since using the invariance
of the measure P with respect to Q:

D =
∫

D(h)P(dh)

=
∫

D(Qh)P(dh)

=
∫

Q D(h)Q�
P(dh)

= Q D Q�. (57)

Using the fact that D is symmetric, one can check directly that D is isotropic. ��
Although D = EP [D(h)] is isotropic, one cannot directly apply the area scaling

approximation from Sect. 5.4 to obtain a closed-form expression for D. Two estimates
were proposed for D in Naji and Brown (2007), namely the averaged area scaling
estimate and effective medium approximation given by

Das = EP

[
1

Z(h)

]
I and Dema = EP

[
Z(h)∫ |g| (y, h) dy

]
I,

respectively. Although both these estimates agree in the limits |∇h| � 1 and
|∇h| � 1, they differ in the intermediate regime. Based on numerical experiments,
by comparing the values of Dema and Das with diffusion tensors obtained from direct
stochastic simulations, the authors of Naji and Brown (2007) concluded that the area
scaling estimate Das gives the best agreement with D.

Let Q be a 90◦ rotation and define Q : C(Td) → C(Td) to be

Q (h) = h(Q·).

It is straightforward to see that D → Das as δ = EP |∇h|2 → 0. Moreover, with the
additional assumption that the measure P is invariant under Q, the following result
provides us with a higher-order approximation.

Theorem 3 Suppose that
P ◦ Q−1 = P, (58)

and that δ = EP

[|∇h(y)|2] � 1, then for any unit vector e ∈ R
2,

e · De = e · Dase + O(δ2). (59)
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Proof We look for solutions of the cell equation

∇ ·
(√|g| (y, h)g−1(y, h)

(∇χe(y, h) + e
)) = 0. (60)

We look for solutions χe of (60) satisfying
∫
T2 χe(y, h) dy = 0 and in the form of a

power series in δ:

χe(y, h) = χe
0 (y, h) + δχe

2 (y, h) + O(δ2). (61)

Write ∇h(y) = δ
1
2 ∇h0(y), where E [|∇h0|2] = 1. By Taylor’s theorem, we have that

√
1 + δ |∇h0(y)|2 = 1 + δ |∇h0(y)|2

2
+ O(δ2). (62)

Similarly, we can write

√|g| (y, h)g−1(y, h) =
(

1 − δ |∇h0(y)|2
2

)
(I + δH(y, h0)) + O(δ2), (63)

where H(y, h0) = (∇h0)
⊥ ⊗ (∇h0)

⊥. Substituting (62) and (63) into (60) neglecting
terms of order δ2 and higher, it follows that

−∇ ·
((

1 − δ |∇h0(y)|2
2

)
(I + δH(y, h0))

(∇χe
0 + δ∇χe

2

)
)

= −∇ ·
((

1 − δ |∇h0(y)|2
2

)
(I + δH(y, h0)) e

)

Collecting terms of order 0, we get

− Δχe
0 (y, h0) = ∇ · e = 0, (64)

which implies that χe
0 = 0 as expected. Similarly, collecting O(δ) terms

− Δχe
2 = ∇ ·

(
H(y, h0)e − |∇h0(y)|2

2
e

)
. (65)

Since the integral of the right-hand side is 0, by the Fredholm alternative, there is
a unique solution χe,2 with mean zero. The effective diffusion tensor D(h) can be
computed from χe as follows:

e · D(h)e = 1

Z(h)

∫

T2
e · g−1(y, h)e

√|g| (y, h) dy

− 1

Z(h)

∫

T2
∇χe(y, h) · g−1(y, h)∇χe(y, h)

√|g| (y, h) dy. (66)
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Substituting the above expansions in (66)

e · D(h)e = 1

Z(h)

∫

T2
e ·
(

1 − δ |∇h0(y)|2
2

+ O(δ2)

)
(I + δH(y, h0)) e dy

− δ2

Z(h)

∫

T2
∇χe

2 (y, h0) ·
(

1 − δ |∇h0(y)|2
2

+ O(δ2)

)

× (I + δH(y, h0))∇φe
2(y) dy.

Collecting terms of equal powers of δ:

e · D(h)e = 1

Z(h)
+ δ

Z(h)

∫

T2
e ·
(

H(y, h0) − |∇h0(y)|2
2

)
e dy + δ2 K (h0).

The O(δ) term is given by

∫

T2
e ·
(∫

1

Z(h)

[
H(y, h0) − |∇h0(y)|2

2
I

]
P(dh)

)
e dy. (67)

By the assumption of invariance with respect to Q, taking expectation with respect to
P, integrating with respect to y, and applying Fubini’s theorem, we see that

EP

∫
1

Z(h)

(
∂h0

∂y1

)2

dy = EP

∫
1

Z(h)

(
∂h0

∂y2

)2

dy,

and

EP

∫
1

Z(h)

∂h0

∂y1

∂h0

∂y2
dy = 0.

It follows that (67) is 0. Therefore, taking expectation on both sides, we have that

D = EP [D(h)] = EP

[
1

Z(h)

]
+ δ2

EP [K (h)] .

The leading order term of K (h) is given by

K (h) = − 1

Z(h)

∫

T2

|∇h0(y)|2 e · H(y, h0)e

2
− 3 |∇h0(y)|4

8
+ ∣∣∇χe

2 (y, h0)
∣∣2 dy.

The fact that EP[K (h)] is bounded follows from the fact that P is Gaussian, so |∇h0|
has all moments finite, along with standard L2(T2) bounds on

∣∣∇χe
2

∣∣, which follow
from (65). ��
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It follows by Taylor expanding Das that

D = 1 − 1

2
δ + O(δ2), (68)

for δ = EP |∇h(y)|2 , which gives a first-order approximation for D in the weak-
disorder limit (i.e., where |∇h| is small).

Note that the results of this section do not depend explicitly on the fact that P is
Gaussian, beyond ∇h having finite first and second moments. Indeed, the above can
be applied to more general distributions.

6.1 Diffusion on a Helfrich Surface in the (α, β) = (1,−∞) Regime

We can apply the results of the previous section to study the macroscopic behavior of
particles diffusing on a two-dimensional quenched Helfrich elastic membrane. To this
end, as in Sect. 4, we set K = {k ∈ Z

2 \ {(0, 0)} | |k| ≤ c}, and set the coefficients of
ηε(t) to be Γ = diag (Γk)k∈K and � = diag (�k)k∈K, where Γk and �k are given by
(23) and (24), respectively. The spatial variation is then determined by {ek}k∈K where
ek(x) = e2π i x .

Since Γk and �k depend only on |k|, the conditions for Proposition 4 and Theorem
3 hold trivially. Therefore, the average effective diffusion tensor is isotropic, although
individual realizations of D(h) will not be isotropic in general. This anisotropy will
decrease as the magnitude of the fluctuations (characterized by δ) goes to 0. The
parameter δ, which quantifies the surface disorder, can be related to the constants κ∗
and σ ∗ in the Helfrich model by

δ = EP |∇h|2 =
∑
k∈K

1

κ∗ |2πk|2 + σ ∗ . (69)

Thus, as κ∗ and σ ∗ increase, the magnitude of the fluctuations decreases, and individual
realizations of the surface give rise to isotropic diffusion tensors, the average of which
is well approximated by Das .

To verify these two predictions, we approximate D numerically for various para-
meter values. Realizations of the stationary surface field were generated by sampling
the Fourier modes ηk from their respective invariant distribution and performing a
fast Fourier transform. For each realization of the surface, D(h) was computed using
the numerical scheme described in Sect. 5.6. In Fig. 6, we plot D for varying bending
modulus κ∗, surface tension set to σ ∗ = 0, 100 and 500, and K = 32. The effect of
κ∗ and, to a lesser extent σ ∗ on the variance in the effective diffusion tensor, is clear.
We also plot the averaged area scaling approximation for this case. As predicted by
Theorem 3 for large values of κ∗, which corresponds to the weak-disorder limit, that
is, EP

[|∇h|2] � 1, the averaged area scaling approximation Das provides a good
approximation to D, but as κ∗ → 0, the disparity between D and Das increases, with
Das underestimating the average diffusion tensor.
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Fig. 6 Plot of the distributions of the isotropic effective diffusion tensor D for a quenched realization of
a Helfrich surface, with K = 32, and σ∗ = 0, 100 and 100. Dots denote the mean of the distribution for
each κ∗ while error bars denote the standard deviation. The dotted line denotes the average area scaling
approximation

7 Case II: Diffusion on Surfaces Possessing Purely Temporal Fluctuations

In this section, we study the Case II regime, where the fast-scale fluctuations are
entirely temporal, corresponding to (α, β) = (0, 1) in Eq. (29). In Sect. 7.1, we use
formal expansions to identify the drift and diffusion tensors of the annealed limit
process, which are given by the ergodic averages of the drift and diffusion tensors of
the multiscale problem. The subsequent sections will then focus on the Helfrich elastic
model where we derive exact and asymptotic expressions for the effective diffusion ten-
sor providing a rigorous justification of the “preaveraging” approximation described
in Reister and Seifert (2007), Gustafsson and Halle (1997), Naji and Brown (2007).

7.1 Averaging Result

In this regime, (13) can be written as

dXε(t) = F(Xε(t), ηε(t)) dt +√
2Σ (Xε(t), ηε (t)) dB(t), (70a)

dηε(t) = −1

ε
Γ ηε +

√
2

ε
Γ � dW (t), (70b)

where F and Σ are given by (14) and (15), respectively, and where B(·) is a stan-
dard d-dimensional Brownian motion. The process W (·) is a standard K -dimensional
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Brownian motion. The generator of the fast process ηε(t) is 1
ε
L0, with

L0 f (η) = −Γ η∇ f (η) + Γ � : ∇∇ f (η), f ∈ C2
b

(
R

d
)

.

The fast process ηε(t) is geometrically ergodic with invariant distribution N (0,�).
In particular,

N [L0] = {1} and N [L ∗
0 ] = {ρη},

where

ρη(η) = 1√
(2π)d |�|

exp

(
−1

2
η · �−1η

)
, (71)

The corresponding backward Kolmogorov equation for this coupled system is given
by

∂vε

∂t
(x, η, t) = L εvε(x, η, t), (x, η, t) ∈ R

d × R
K × (0, T ] (72a)

vε(x, η, 0) = v(x, η), (x, η) ∈ R
d × R

K . (72b)

where

L ε = 1

ε
L0 + L1, (73)

for

L1 f (x, η) = 1√|g| (x, η)
∇x ·

(√|g| (x, η)g−1(x)∇x f (x, η)
)

.

We now state the averaging result for this regime. A formal justification using per-
turbation expansions is provided in section “Case II” of Appendix. For a rigorous
justification, refer to Duncan (2013).

Theorem 4 Let T > 0 and suppose that ηε(t) is stationary. Then, the process Xε

converges weakly in C([0, T ] ; R
d) to a Wiener process X0(t), which is the unique

solution of the following Itô SDE:

dX0(t) = F(X0(t))dt +
√

2Σ(X0(t)) dB(t), (74)

where

F(x) =
∫

RK
F(x, η) ρη(dη) (75)

and

Σ(x) =
∫

RK
Σ(x, η)ρη(dη). (76)
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Moreover, assume that the backward Kolmogorov equation (72a) has initial data v

independent of η such that v ∈ C2
b (Rd), then the solution vε of (72a) converges

pointwise to the solution v0 of the following PDE,

∂v0

∂t
(x, t) = F(x) · ∇xv

0(x, t) + Σ(x) : ∇x∇xv
0(x, t), (x, t) ∈ R

d × (0, T ]
v0(x, 0) = v(x), x ∈ R

d .

uniformly with respect to t over [0, T ]. ��

7.2 Diffusion on a Helfrich Surface in the (α, β) = (0, 1) Regime

We can apply Theorem 4 to obtain the annealed limit equations for diffusion on a
rapidly fluctuating Helfrich elastic membrane. Indeed, we will show that as ε → 0,
the process X (·) converges weakly to a pure diffusion process with constant diffusion
tensor. To this end, as in Sect. 4, we set K = {k ∈ Z

2 \ {(0, 0)} | |k| ≤ c}, and set the
coefficients of ηε(t) to be

Γ = diag (Γk)k∈K and � = diag (�k)k∈K ,

where Γk and �k are given by (23) and (24), respectively. For the spatial functions,
we choose the standard L2(T2) Fourier basis {ek}k∈K where ek(x) = e2π ikx . The
invariant distribution of ηε

k(t) is then given by μk = N (0,�k).
The form of the limiting equation is strongly dependent on the symmetry properties

of the stationary random field.

Lemma 2 Let h(x) be a stationary realization of the random field, that is,

h(x) =
∑
k∈K

ηkek(x),

where (ηk)k∈K ∼ μk . Then, for each x ∈ T
2, the vectors

(
hx1(x), hx2(x), hx1x2(x), hx1x1(x)

)
,

and (
hx1(x), hx2(x), hx1x2(x), hx2x2(x)

)
,

are both jointly Gaussian with mean zero, and the components of each vector are
independent, where hxi = ∂h(x)

∂xi
, for x = (x1, x2).

Proof Since a finite linear combination of centered Gaussian random variables is again
a centered Gaussian random variable, it is clear that both vectors are centered Gaussian
random vectors. Moreover, the components of each vector are pairwise uncorrelated.
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To see this for hx1(x) and hx2(x)

E
[
hx1(x)hx2(x)

] = E

⎡
⎣
(∑

k∈K

(2π ik1)ηkek(x)

)⎛
⎝∑

j∈K

(2π i j2)η j e j (x)

⎞
⎠

∗⎤
⎦

= (2π)2
∑
k∈K

k1k2�k .

Due to the symmetry of K around 0, it follows that the term on the RHS is 0, so that
hx1(x) and hx2(x) are uncorrelated. Similar arguments follow for the other pairs of
components.

We now state the limit theorem for diffusion on a rapidly fluctuating Helfrich elastic
membrane. A formal derivation of formula (77) has been derived in Naji and Brown
(2007) and Reister and Seifert (2007).

Theorem 5 Let T > 0, the process X (·) converges weakly in C([0, T ]; R
2) to a

Brownian motion with scalar diffusion tensor given by

D = 1

2

⎛
⎝1 +

∫

R
K

[
1

|g| (x, η)

]
ρη(dη)

⎞
⎠ I. (77)

Furthermore, the resulting diffusion tensor D is independent of x.

Proof By Theorem 4, the process X (·) converges weakly to a process with drift coef-
ficient F(x) and diffusion tensor Σ(x) given by (75) and (76), respectively. Consider
first the drift coefficient

F(x) =

∫

R
K

[
(1 + h2

x1
)hx2x2 − 2hx1 hx2 hx1x2 + (1 + h2

x2
)hx1x1

(1 + h2
x1

+ h2
x2

)2

(
hx1

hx2

)]
ρη(dη),

Applying Lemma 2, every term in the above sum is an odd function of a centered,
Gaussian random vector. Thus, each term equals 0.

Consider now the effective diffusion tensor

Σ =
∫

R
K

[
1

1 + h2
x1

+ h2
x2

(
1 + h2

x2
−hx1 hx2

−hx1 hx2 1 + h2
x1

)]
ρη(dη).

By the symmetry of hx1 and hx2 , the off-diagonal terms are also zero; moreover, the
diagonal terms are equal. Thus,
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∫

R
K

[
1 + h2

x2

1 + h2
x1

+ h2
x2

]
ρη(dη) = 1

2

∫

R
K

[
1 + h2

x2

1 + h2
x1

+ h2
x2

]
ρη(dη)

+1

2

∫

R
K

[
1 + h2

x1

1 + h2
x1

+ h2
x2

]
ρη(dη)

= 1

2

⎛
⎝1 +

∫

R
K

[
1

1 + h2
x1

+ h2
x2

]
ρη(dη)

⎞
⎠ ,

as required. Finally,

∇x D =
⎡
⎣
∫

R
K

∇x

[
1

|g| (x, η)

]
ρη(dη)

⎤
⎦ I

=
⎡
⎣−2

∫

R
K

[∇x∇x h(x, η)∇x h(x, η)

|g| (x, η)2

]
ρη(dη)

⎤
⎦ I = 0,

by the symmetry arguments of Lemma 2, so that D is independent of x . ��
Besides κ∗ and σ ∗, the effective diffusion tensor also depends on the ultraviolet

cutoff c (or equivalently K ). One can observe that

lim
K→∞

∫

R
K

[
1

|g| (x, η)

]
ρη(dη) = 0,

so that for any fixed κ∗, σ ∗, the effective diffusion D will approach 1
2 as K approaches

∞. In fact, for fixed K , σ ∗ and κ∗, the effective diffusion tensor D satisfies

1

2
< D < 1,

and recalling that the molecular diffusion tensor D0 was rescaled to 1, this implies that
the diffusion is depleted in the limit of ε → 0. In the weak-disorder regime (i.e., when
E |∇h|2 � 1), which corresponds to the large κ∗ or large σ ∗ regime, it is possible to
derive estimates for D by applying Taylor’s theorem and using the fact that ∇h(x) is
Gaussian to get, as a first-order approximation

D = 1 − 1

2
δ + O(δ

3
2 ), (78)

where the constant δ is related to κ∗ and σ ∗ by (69). Comparing with the corresponding
equation for Case I given in (68), we see that, to first order, both regimes exhibit the
same behavior in the weak-disorder limit.
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Fig. 7 Effective diffusion tensor for a diffusion on a fluctuating Helfrich elastic membrane in the (α, β) =
(0, 1) scaling for varying κ∗ and K = 32

7.3 Numerical Examples

We can study how the bending modulus κ∗, surface tension σ ∗, and the ultraviolet
cutoff c (or equivalently K ) affect the effective diffusion tensor numerically. The
ensemble average in (76) is computed using a straightforward Monte Carlo method,
taking the sample average of 1

|g|(x,η)
for η sampled from its corresponding stationary

measure. As (78) suggests, for small values of κ∗ and σ ∗, the larger thermal fluctuations
of the surface cause a greater reduction in the speed of diffusion of a particle diffusing
laterally on the surface. Indeed, one can see that (1 − D) ≈ 1

κ∗ for fixed σ ∗ and
(1 − D) ≈ 1

σ ∗ for fixed κ∗. In Fig. 7, we plot D for varying values of κ∗, K and
for σ ∗ = 0, 100, 500. The convergence of D to 1

2 becomes immediately apparent. As
expected, D decays with c, converging to 1

2 as c → ∞ (Fig. 8).

8 Case III: Diffusion on Surfaces with Comparable Spatial and Temporal
Fluctuations

In this section, we consider the Case III regime where (α, β) = (1, 1) in (13). This
scaling describes lateral diffusion on a rough surface which is also fluctuating rapidly,
but the temporal surface fluctuations occur at a scale commensurate to the characteristic
scale of the spatial fluctuations. This scaling was considered for SDEs with periodic
spatial and temporal fluctuations in Garnier (1997). A unique characteristic of this
scaling regime is that it gives rise to a macroscopic drift term in the limit as ε → 0,
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Fig. 8 Effective diffusion tensor for a diffusion on a fluctuating Helfrich elastic membrane in the (0, 1)

scaling for varying K and κ∗ = 0.1

which is determined by the rate of change in the corrector χ(y, η) with respect to the
temporal fluctuations.

A similar effective drift term arises in the model considered here. It is not clear
that this drift is identically zero in general. However, we identify a natural symmetry
condition for the surface fluctuations for which we can prove the effective drift term
vanishes. In the remainder of this section, we identify and study the properties of
the macroscopic diffusion tensor and provide sufficient conditions for the isotropy of
the effective diffusion tensor. Finally, we study the limiting properties of the Helfrich
model in this regime.

8.1 Homogenization Result

Introducing the fast process Y ε(t) = Xε(t)
ε

mod T
d , Eq. (29) can be written as fast–

slow system

dXε(t) = 1

ε
F
(
Y ε(t), ηε (t)

)
dt +√

2Σ (Y ε(t), ηε (t)) dB(t), (79a)

dY ε(t) = 1

ε2 F
(
Y ε(t), ηε (t)

)
dt +

√
2

ε2 Σ (Y ε(t), ηε (t)) dB(t), (79b)

dηε(t) = −1

ε
Γ ηε(t)dt +

√
2Γ �

ε
dW (t), (79c)

where F and Σ are given by (14) and (15), respectively, and where we impose periodic
boundary conditions on Y ε(·). The processes B(·) and W (·) are standard d and K -
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dimensional Brownian motions, respectively. Although the definition of Y ε(t) is only
a trivial rescaling of Xε(t) (albeit on a different domain), we include it to make
explicit the relationship between the rapidly varying processes Y ε(t) and ηε(t). The
infinitesimal generator of the fast process Y ε(t) is given by 1

ε2 L0, where L0 is given
by

L0 f (y) = 1√|g| (y, η)
∇y ·

(√|g| (y, η)g−1(y, η)∇y f (y)
)

, f ∈ C2(Td). (80)

We note that although the spatial and temporal fluctuations appear commensurate in the
system of SDEs, the spatial fluctuations relax to equilibrium at a timescale faster than
the temporal fluctuations. The limiting equation can thus be considered the result of
a reiterated homogenization/averaging problem of the form described in Bensoussan
et al. (1978, Section 2.11.3). The limiting equation is thus obtained by homogenizing
over Y ε(t) for a frozen value of ηε(t) and then averaging over the invariant measure
ρη(·) of ηε(t).

For η fixed L0 satisfies

N [L0] = {1} and N [L ∗
0 ] = {

ρy(y, η)
}
,

where ρy(y, η) is given by (53).
As in Sect. 6, for η ∈ R

K fixed, we define the corrector χ(y, η) to be the mean-zero
solution of the cell Eq. (55), or equivalently

L0χ(y, η) = −F(y, η), (y, η) ∈ T
d × R

K . (81)

The backward Kolmogorov equation corresponding to the coupled system (79) is
given by

∂vε

∂t
(x, y, η, t) = L εvε(x, y, η, t), (x, y, η, t) ∈ R

d × T
d × R

K × (0, T ]
(82a)

vε(x, y, η, 0) = v(x, y, η), x ∈ R
d × T

d × R
K . (82b)

where

L ε = 1

ε2 L0 + 1

ε
Lη + 1

ε
L1 + L2, (83)

for

L1 f (x, y, η) = F(y, η) · ∇x f (x, y, η) + 2Σ(y, η) : ∇x∇y f (x, y, η),

and
L2 f (x, y, η) = Σ(y, η) : ∇x∇x f (x, y, η),

and Lη is the infinitesimal generator of the OU process and is given by

Lη f (η) = −Γ · ∇η f (η) + Γ � : ∇η∇η f (η). (84)
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The following theorem states the homogenization result for this scaling. A formal
justification will be given in section “Case III” of Appendix. A rigorous proof using
probabilistic methods can be found in Duncan (2013). As in the previous chapters, we
use the convention that

(∇yχ
)

i j = ∂χei

∂y j
.

Theorem 6 Let 0 < ε � 1 and T = O(1), and suppose ηε(t) is stationary. Then, as
ε → 0, the process Xε(·) converges weakly in C([0, T ]; R

d) to X0, which is a weak
solution of the following Itô SDE

dX0(t) = V dt + √
2D dB(t), (85)

where the effective diffusion tensor D is equal to D1 given by (54), that is,

D =
∫

RK

∫

Td

(
I + ∇yχ

)
g−1(y, η)

(
I + ∇yχ

)�
ρy(y, η) ρη(η) dy dη, (86)

and the effective drift term V is given by

V =
∫

RK

∫

Td
Lηχ ρy(y, η) ρη(η) dy dη. (87)

Moreover, if the backward Eq. (82a) has initial data v, independent of the fast process,
such that v ∈ C2

b (Rd), then the solution vε of (82a) converges pointwise to the solution
v0 of

∂v0

∂t
(x, t) = V · ∇xv

0(x, t) + D : ∇x∇xv
0(x, t), (x, t) ∈ R

d × (0, T ],
v0(x, 0) = v(x), x ∈ R

d .

(88)

uniformly with respect to t over [0, T ]. ��

8.2 Properties of the Effective Diffusion Process

Comparing the effective behavior of the homogenized diffusion processes in Case I
and Case III, we see that the introduction of fast temporal fluctuations gives rise to
a time-averaging of the effective diffusion tensor D, so that the effective diffusion
in the (α, β) = (1, 1) case is equal to the averaged effective diffusion tensor D1 for
diffusion on a surface with quenched fluctuations, as described in Sect. 6. Thus, all the
properties of the effective diffusion tensor hold identically in this case. The following
proposition summarizes the most important properties.

Proposition 5 Let D be the effective diffusion given by (86), then

(i) D is a strictly positive definite matrix.
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(ii) In particular, for a unit vector e ∈ R
d

0 < D∗ ≤ e · De ≤ D
∗ ≤ 1, (89)

where D
∗ = E

[
D∗(h)

]
and D∗ = E [D∗(h)], for D∗ and D∗ given by (44)

and (43), respectively, and where E [·] denotes expectation with respect to the
invariant measure of ηε(t).

(iii) For d = 2, if the condition of Proposition 4 holds, then D is isotropic.
(iv) If additionally E

[|∇h(x)|2] = δ � 1, then

D = Das + O(δ2),

where Das = E

[
1

Z(h)

]
. ��

We turn our attention to the effective drift term V given by (86). Unlike D, the
effective drift depends on χ(y, η), which is only unique up to a constant depending
on η. However, for any function c(η), we have that

∫ ∫

Td
Lηc(η)ρy(y, η)ρη(η) dydη =

∫
Lηc(η)

(∫

Td
ρy(y, η) dy

)
ρη(η) dη

=
∫

Lηc(η)ρη(η) dη = 0,

since
∫
Td ρy(y, η) dy = 1 for all η. It follows that the effective drift V is uniquely

defined independent of any additive terms independent of y.
The fact that a macroscopic drift V arises in this scaling regime is surprising.

While numerical simulations suggest that V is always zero, we have not been able to
prove this in general. However, we can show that it is true for surfaces that satisfy the
following natural symmetry condition. Suppose there exists a linear orthogonal map
C : R

K → R
K which commutes with � and Γ (in particular ρη is invariant with

respect to C ) such that
h(x,C ⊥ η) = h(x⊥, η), (90)

where x⊥
i = 1 − xi for i ∈ {1, . . . d}, or equivalently that

C e(x) = e(x⊥),

where e(x) = {ek(x)}k∈K.
Condition (90) arises naturally in the case where ek are the Fourier basis for the

Laplacian on [0, 1]2. The surface perturbation h can then be rewritten as

h(x, η) =
∑

k∈Keven

ηe
kee

k(x) +
∑

k∈Kodd

ηo
k eo

k (x),

where ee
k and eo

k are, respectively, even and odd functions on [0, 1]2 for all k ∈ K. If
C is the diagonal matrix defined by
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C �η = C �(ηe, ηo) = (ηe,−ηo),

for ηe = (ηe
k)k∈Keven and ηo = (ηo

k )k∈Kodd , we see that condition (90) is trivially
satisfied. We can show the following result.

Proposition 6 Suppose (90) holds, then the effective drift V equals 0.

Proof We first note that (90) implies that

g−1(x,C η) = g−1(x⊥, η),

and

|g| (x,C η) = |g| (x⊥, η).

Consider the cell equation for the corrector χe(y, η) given by

∇ ·
(√|g| (y, η)g−1(y, η)

(∇χe(y, η) + e
)) = 0.

Making the substitution η → C η, then using the relations for g−1 and |g| and changing
variables in y, we have

− ∇ ·
(√|g| (y, η)g−1(y, η)

(−∇χ̃e(y, η) + e
)) ∣∣∣∣

y=y⊥
= 0, (91)

where χ̃e(y, η) = χe(y⊥,C η). It follows that

χe(y⊥,C η) = −χe(y, η). (92)

Applying (91) and using the fact that C commutes with Γ and �, we obtain

−Lηχ
e(y⊥, η) = −Γ η · C ∇ηχ

e(y,C �η) + C �Γ �C : ∇∇χe(y,C �η)

= −Γ C �η · ∇ηχ
e(y,C �η) + Γ � : ∇∇χe(y,C �η)

= Lηχ
e(y,C �η).

Using the invariance of ρy with respect to C , the effective drift term V will then be
given by

V =
∫ ∫

Td
Lηχ

e(y⊥, η)ρy(y⊥, η)ρη(η) dy dη

= −
∫ ∫

Td
Lηχ

e(y,C �η)ρy(y,C �η)ρη(η) dy dη

= −V,

proving the result. ��
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As an example, we can consider the model for a thermally excited Helfrich surface
in the (α, β) = (1, 1) scaling. It follows from Proposition 5 that the effective diffusion
tensor is isotropic. Moreover, since the conditions of Proposition 6 hold, the effective
drift is 0. It follows that the diffusion process Xε(t) converges to a Brownian motion
on R

2 with a scalar diffusion tensor D. As the effective diffusion D is equal to the
effective diffusion tensor D1 of Sect. 6.1, the dependence of D1 on the parameters κ∗,
σ ∗ and K hold equivalently.

9 Case IV: Diffusion on Surfaces with Temporal Fluctuations Faster than
Spatial Fluctuations

In this section, we consider the (α, β) = (1, 2) scaling. In this scaling, the surface
possesses rapid spatial and temporal fluctuations but the temporal fluctuations are
much faster than the spatial fluctuations. Writing Y ε(t) := Xε(t)

ε
mod T

d the fast–
slow system for this regime is given by

dXε(t) = 1

ε
F
(
Y ε(t), ηε (t)

)
dt +√

2Σ (Y ε(t), ηε (t)) dB(t), (93a)

dY ε(t) = 1

ε2 F
(
Y ε(t), ηε (t)

)
dt +

√
2

ε2 Σ (Y ε(t), ηε (t)) dB(t), (93b)

dηε(t) = − 1

ε2 Γ ηε(t) +
√

2Γ �

ε2 dW (t), (93c)

where B(·) is a standard d-dimensional Brownian motion, and W (·) is a standard
K -dimensional Brownian motion. As in Sect. 8, the process Y ε(t) is introduced
to make explicit the relationship between the rapidly varying processes Y ε(t) and
ηε(t). The infinitesimal generator of the underlying fast process is given by 1

ε2 G
where

G f (y, η) = (
L0 + Lη

)
f (y, η), f ∈ C2

c (Td × R
K ),

where L0 and Lη are given by (80) and (84), respectively.
Unlike in the previous cases, it is not immediately clear that the fast process is

geometrically ergodic, i.e., that the fast process converges exponentially fast to a
unique invariant measure. Moreover, due to the unbounded support of the surface
fluctuations, the infinitesimal generator is no longer uniformly elliptic. Thus, we cannot
apply standard elliptic theory to obtain a Fredholm alternative for this operator. In
Proposition 7, we prove the geometric ergodicity of the fast process. The proof is
a straightforward application of the results in Mattingly et al. (2002), Mattingly and
Stuart (2002), which are based on the results of the classical Meyn and Tweedie theory
(Meyn and Tweedie 2009). In Proposition 7, we show that there exists a unique, smooth
solution of the Poisson problem for this scaling regime, provided the centering equation
holds.
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9.1 Homogenization Result

We first identify the fast process (Y ε(t), ηε(t)) as a rescaling of a T
d × R

K -valued
process independent of ε. Indeed, define (Y (t), η(t)) as follows:

dY (t) = F(Y (t), η(t))dt +√
2Σ(Y (t), Z(t)) dB̂(t), (94a)

dη(t) = −Γ η(t) + √
2Γ �dŴ (t), (94b)

where B̂(t) is a standard R
d -valued Brownian motion, Ŵ (t) is a standard R

K -valued
Brownian motion. The joint process (Y (t), η(t)) has infinitesimal generator G . It is
straightforward to show that the following equality holds (in law),

(
Y ε(t), ηε(t)

) =
(

Y (t/ε2), η(t/ε2))
)

.

Proposition 7 The process (Y (t), η(t)) possesses a unique invariant measure ρ with
smooth, positive density with respect to the Lebesgue measure on T

d × R
K , which is

the unique normalizable solution of

G ∗ρ = 0. (95)

Let Pt be the Markov semigroup corresponding to (Y (t), η(t)). Then, there exists a
constant μ ∈ (0, 1) such that for all functions f : T

d × R
K → R, such that

| f |(y, η) ≤ CU (η), (y, η) ∈ T
d × R

K , (96)

where
U (η) := (1 + |η|2) (97)

the following estimate holds

∣∣∣∣E(y0,η0) f (Y (t), η(t)) −
∫

f (y, η)ρ(dy, dη)

∣∣∣∣ ≤ C ′U (η0)e
−μt , (98)

where E
(y0,η0) denotes expectation conditioned on (Y (0), η(0)) = (y0, η0) ∈ T

d ×
R

K . In particular, this implies that

∥∥∥∥Pt f −
∫

f (y, η)ρ(dy, dη)

∥∥∥∥
L2(ρ)

≤ C ′′e−μt , (99)

for some positive constants C ′, C ′′.

For this scaling regime, the Poisson problem takes the form

G χ(y, η) = −F(y, η), (y, η) ∈ T
d × R

K . (100)
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The existence of a smooth solution χ to (100) is guaranteed by the following
result.

Proposition 8 Suppose the following centering assumption holds

∫

Td×RK
F(y, η) ρ(dy, dη) = 0. (101)

Then, there exists a unique, smooth solution χ ∈ D(G ) such that

∫

Td×RK
χ(y, η) ρ(dy, dη) = 0

which solves (100). The solution χ satisfies

|χ(y, η)| ≤ C(1 + |η|2), (y, η) ∈ T
d × R

K

where C > 0 is a constant independent of (y, η). Moreover,

∫
∇yχ

�g−1∇yχ ρ(dy, dη) +
∫

∇ηχ(y, η)� Γ �∇ηχ(y, η) ρ(dy, dη)

= −2
∫

χ(y, η) ⊗ G χ(y, η) ρ(dy, dη) < ∞. (102)

��
As before, the backward Kolmogorov equation corresponding to (93) is given by

∂vε

∂t
(x, y, η, t) = L εvε(x, y, η, t), (x, y, η, t) ∈ R

d × T
d × R

K × (0, T ]
(103a)

vε(x, 0) = v(x), (103b)

where

L ε = 1

ε2 G + 1

ε
L1 + L2 (104)

for

L1 f (x, y, η) = 1√|g| (y, η)
∇ ·

(√|g| (y, η)g−1(y, η)
)

· ∇x f (x, y, η)

+2g−1(y, η) : ∇x∇y f (x, y, η),

and

L2 f (x, y, η) = g−1(y, η) : ∇x∇x f (x, y, η).
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We assume that the initial condition v is independent of the fast processes. Having
Propositions 7 and 8, we can state the homogenization result for this regime. As in
the previous cases, we provide a formal derivation based on multiscale expansions in
section “Case IV” of Appendix and refer interested readers to Duncan (2013) for a
rigorous proof, based on the central limit theorem for additive functionals of Markov
processes Komorowski et al. (2012).

Theorem 7 Suppose Assumption (101) holds and ηε(t) is stationary. Then, as ε →
0, the process Xε(·) converges weakly in C([0, T ]; R

d) to a Brownian motion with
diffusion tensor D given by

D =
∫ (

I + ∇yχ
)

g−1 (I + ∇yχ
)�

ρ(dy, dη) +
∫

∇ηχ Γ �∇ηχ
� ρ(dy, dη).

(105)
Moreover, if the backward Eq. (103a) has initial data v, independent of ε such that
v ∈ C2

b (Rd), then the solution vε of (103a) converges pointwise to the solution v0 of

∂v0

∂t
(x, t) = D : ∇x∇xv

0(x, t), (x, t) ∈ R
d × (0, T ] (106a)

v0(x, 0) = v(x), x ∈ R
d , (106b)

uniformly with respect to t over [0, T ]. ��
Due to the lack of an explicit invariant measure for the fast process, it is not clear

whether or not the centering condition holds. Numerical experiments suggest that the
centering condition does hold for the surfaces we consider; however, it is not clear that
this holds in general. If the centering condition is not satisfied, then one can consider
the effective behavior of the process Xε(t) close to where the mean drift V ′t has taken
it, where

V ′ =
∫

Td×RK
F(y, η) ρ(dy, dη).

Indeed, we can show that the process Xε(t) − V ′t
ε

converges to a Brownian motion
for small ε (Pavliotis et al. 2007).

For surfaces that satisfy the symmetric condition given by (90), we are able to show
that the centering condition holds. The proof is very similar to that of Proposition 6
and is omitted.

Proposition 9 Assume that condition (90) is satisfied, then the centering condition
(101) holds. ��

9.2 Numerical Experiments

Rather than resort to direct numerical simulations of the coupled SDEs, we instead
use a finite element scheme to solve the equations for the invariant measure and the
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corrector. The finite element approximation then becomes K +2-dimensional problem.
For the sake of tractability, we restrict our interest to when d = 2 and K = 1. We
calculate D numerically as follows:

1. We construct a piecewise linear finite element approximation to Eq. (95) on a
regular, triangulated mesh of the domain

ΩM = {(y1, y2, η) ∈ [0, 1] × [0, 1] × [−M, M]},

where M is chosen so that the support of ρ outside [−M, M] is small. We impose
periodic boundary conditions on the boundaries in the y1 and y2 directions, and
no-flux boundary conditions in the η direction.

2. The solution ρ of (95) is then obtained by solving the corresponding generalized
eigenvalue problem for the eigenvector corresponding to the zero eigenvalue. The
resulting eigenvector is then normalized over ΩM to give an approximation to ρ.

3. The components of the corrector are computed by solving the Poisson Eq. (100)
using a piecewise linear finite element scheme on the same mesh.

4. Finally, the components of the effective diffusion tensor are computed by integrat-
ing (105) using standard quadrature over ΩM .

We apply the above steps to compute the effective diffusion tensor for the surface
given by h(x, η(t)) where

h(x, η) = η sin(2πx) sin(2πy), (107)

and η(t) is an OU process with SDE

dη(t) = −Γ η(t) dt + √
2Γ �W (t),

where Γ = κ∗|2πk|4+σ ∗|2πk|2
|2πk| , � = 1

κ∗|2πk|4+σ ∗|2πk|2 , and where k = (1, 1)�.

In Fig. 9, we plot the components of D for κ∗ ∈ [10−3, 1.0]. We note immediately
that the symmetry in h(x, η) is sufficient to ensure that D is isotropic. Moreover, as in
the previous macroscopic limits being considered, D appears to be bounded above by
1, so that the macroscopic diffusion is depleted with respect to the molecular diffusion
tensor.

10 Other Distinguished Limits

The four cases considered in this paper are not exhaustive, and indeed, for any α and β,
one can use a similar approach to derive a well-defined limit. While not every choice
of (α, β) will give rise to a limiting SDE without further assumptions, in the particular
case of lateral diffusion on a Helfrich surface, the limiting equations can be described
very succinctly.

By relabeling εα as ε, we need only consider the regimes (α, β) = (0, 1) and
(α, β) ∈ {1} × [−∞,∞). If we denote by D1(η), D2, D3 and D4, the effective
diffusion tensors given by (40), (77), (86), and (105), respectively, corresponding
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Fig. 9 Plots of the D1,1 component of the effective diffusion tensor for the surface given by (107) in the
(α, β) = (1, 2) regime

Table 1 Distinguished limits
for the system (Xε(t), ηε(t))
describing the evolution of a
particle diffusion on a Helfrich
elastic surface undergoing
thermal fluctuations

Scaling regime Macroscopic limit

α = 0, β = 1, X0(t) = √
2D2 B(t)

α = 1, −∞ ≤ β < 0, X0(t) = √
2D1(η(0))B(t)

α = 1 and β = 0, X0(t) = √
2D1(η(t))B(t)

α = 1 and 0 < β < 2, X0(t) = √
2D3 B(t)

α = 1 and β = 2, X0(t) = √
2D4(t)

α = 1 and 2 < β ≤ 3, Not determined

α = 1 and β > 3, X0(t) = √
2D2 B(t)

to Case I to IV, then one can show that the process Xε(t) will converge weakly in
C([0, T ]; R

d) to a process X0(t) as defined in Table 1.
The justification of this result can be found in Duncan (2013) where a probabilistic

approach similar to Garnier (1997) is adopted. To prove the weak convergence of
Xε(t) to X0(t) as ε → 0, we use Itô’s formula and the solution of an auxiliary PDE to
decompose each singular drift into a sum of a martingale and a number of “remainder”
drift terms. While some of these remainder terms may also be singular, they are of
lower order, and this process may be iterated until Xε(t) has been decomposed into
a sum of martingale terms and remainder terms that are O(1) with respect to ε. The
result then follows by the martingale central limit theorem.

When applying this approach to the α = 1, 2 < β ≤ 3 regime, it is not clear
whether the auxiliary PDEs that arise are well posed. By the Fredholm alternative,
existence of a solution depends on a solvability condition, which is not satisfied in
general for the fluctuating Helfrich surface. Thus, it does not appear possible to remove
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the singular drift terms that arise in this regime, so that a well-defined limit will not
exist as ε → 0.

As can be seen, the different effective behavior can be broadly split into three sep-
arate classes depending on the relative speed of the spatial and temporal fluctuations.
For β ≤ 0, the fast fluctuations are contributed entirely by the small-scale spatial
structure of the surface and no averaging over the fluctuating surface modes occurs.
This regime can thus be considered to be a trivial extension of the macroscopic limit
derived in Case I. If the relaxation time of the Fourier modes is comparable with
the timescale of the lateral diffusion process, then the effective diffusion tensor will
depend on the current state η(t) of the surface. If the surface is fluctuating at an much
shorter timescale, then, at the O(1) timescale, the surface is quenched and the effective
diffusion tensor will depend only on the initial surface configuration.

For 0 < β < 2, the OU process will relax to equilibrium sufficiently fast for averag-
ing to occur at O(1) scales. At an O( 1

ε
) timescale, the process will have homogenized

over the spatial fluctuations for a “frozen” surface configuration. At the O(1) timescale,
additional averaging will take place due to temporal fluctuations. The effective dif-
fusion tensor D3 will be the spatially homogenized diffusion tensor D1(η) averaged
over the invariant measure of η(t), as was described in Case III.

For β > 3, the rapid temporal fluctuations dominate the fast process, and the
diffusion process will have been averaged over the surface Fourier modes even at
the characteristic timescale of the rapid spatial fluctuations. Thus, over macroscopic
timescales, the diffusion process is well approximated by its annealed disorder limit,
as in Case II for (α, β) = (0, 1).

11 Conclusion

We have studied a model for the diffusion of particles on a rough, rapidly fluctu-
ating quasi-planar surface where the surface is periodic in space and with temporal
fluctuations modelled by a stationary, ergodic Markovian process. By considering the
coupled system of particle diffusion and surface fluctuations, we identified a natural
set of distinguished limits that arise from different relationships between the spatial
and temporal fluctuations. Through the application of multiscale expansions, we thus
provided a unified approach to studying the macroscopic effects of both rapid spatial
and temporal fluctuations on a laterally diffusing particle. We identified four natural
scaling regimes that possess interesting limiting behavior and in each case identified
which properties of the surface fluctuations have a dominant effect on the macroscopic
diffusion tensor.

The regimes described in Case I and Case II have previously been considered
in Gustafsson and Halle (1997) and Naji and Brown (2007) to study diffusion on
quenched and annealed Helfrich fluctuating membranes, respectively. Using mul-
tiscale analysis techniques, we rederived the main results in each of these papers
and recovered bounds that had been previously obtained heuristically. After making
explicit the fact that these two cases correspond to different scalings of the same model,
we then consider other possible scalings limits for this model, namely Case III and
Case IV as examples of scalings containing both rapid spatial and temporal fluctu-
ations. We believe that this work provides a clear unified approach to the problem
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of lateral diffusion on rapidly varying surfaces, bringing together previously derived
results in a single framework that can be analyzed with a common set of methods.

While the effective diffusion and drift coefficients do not always have closed forms,
we identified natural symmetry assumptions that guarantee that the effective diffusion
has an explicit expression depending only on the surface area. Moreover, we derive
bounds of varying degrees of tightness that are satisfied by the effective diffusion
tensor for general surfaces. To illustrate the derived results, numerical schemes which
compute the effective diffusion tensor using finite elements were implemented.

As noted in Naji and Brown (2007), for the fluctuating Helfrich elastic membrane
model, the measured diffusion tensor will deviate significantly from the effective
diffusion tensor when the small-scale parameter ε is not small. In such cases, the
multiscale approach can still be applicable in these regimes by computing higher-
order correctors (Pavliotis and Stuart 2008; Bensoussan et al. 1978) that quantify the
disparity between the multiscale process and the homogenized process in terms of
powers of ε.

The model presented in this paper can be extended in several directions. It would
be interesting to consider extensions of this problem such as curvature-coupled diffu-
sion [similar to the models presented in Reister and Seifert (2007), Leitenberger et al.
(2008), Reister-Gottfried et al. (2010)] or diffusion on membranes with nonthermal
fluctuations, such as Lin et al. (2006). Furthermore, it would be interesting to extend
the approach to study more general surfaces, where a curved manifold is perturbed
by rapid normal fluctuations, and possibly extending this to the case of closed sur-
faces embedded in R

3, which to our knowledge has not been previously considered
analytically.
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12 Appendix: Formal Multiscale Expansions

In this section, we formally derive the limiting equations in each of the scaling regimes
using multiscale expansions.

12.1 Case I

To derive the homogenized equation in this regime, we make the ansatz that the solution
vε of (35) is of the form

vε = v0(x, y, t) + εv1(x, y, t) + ε2v2(x, y, t) + · · · , (108)

for smooth vi : R
d × T

d × [0, T ] → R
d . Substituting (108) in (35) and identifying

equal powers of ε, we obtain the following equations

O
(

1
ε2

)
: L0v0(x, y, t) = 0, (109)

123



442 J Nonlinear Sci (2015) 25:389–449

O
( 1

ε

) : L0v1(x, y, t) = −L1v0(x, y, t), (110)

O (1) : L0v2(x, y, t) = ∂v0
∂t − L1v1(x, y, t) − L2v0(x, y, t), (111)

for (x, y, t) ∈ R
d × T

d × (0, T ].
Since the nullspace of L0 contains only constants in y, Eq. (109) thus implies that

v0 is a function of x and t only. Equation (110) becomes

L0v1(x, y, t) = −F(y) · ∇xv0(x, t). (112)

Let χ ∈ C2(Td; R
d) be the unique, mean-zero solution of the cell Eq. (39). If we

choose v1 = χ · ∇xv0(x, t), then it is clear that v1 solves (110).
Finally, by the Fredholm alternative on L0, a necessary condition for Eq. (111) to

have a solution is that the RHS of (111) has mean zero with respect to the measure ρ,
that is,

∂v0(x, t)

∂t
= 1

Z

∫

Td
L1v1(x, y, t)ρ(y) dy + 1

Z

∫

Td
L2v0(x, t)ρ(y) dy.

Substituting v0 and v1, we obtain

∂v0(x, t)

∂t
= 1

Z

∫

Td
∇y ·

(√|g| (y)g−1(y)
)

· ∇x (χ · ∇xv0(x, t)) dy

+ 2

Z

∫

Td

√|g| (y)g−1(y) : ∇x∇y (χ · ∇xv0(x, t)) dy

+ 1

Z

∫

Td

√|g| (y)g−1(y) : ∇x∇xv0(x, t) dy.

Integrating the second term by parts with respect to y and simplifying, we obtain

∂v0(x, t)

∂t
=
( 1

Z

∫

Td
g−1(y)

(
I + ∇yχ(y)

)√|g| (y) dy
)
: ∇x∇xv0(x, t),

where we have used the symmetry of g−1. Thus, the homogenized diffusion equation
for v0 is

∂v0(x, t)

∂t
= D : ∇x∇xv0(x, t), (113)

where

D = 1

Z

∫

Td
g−1(y)

(
I + ∇yχ(y)

)√|g| (y) dy.

Multiplying (39) by χ(y)ρ(y) and integrating by parts gives

∫

Td

(
I + ∇yχ(y)

)�
g−1(y)∇yχ(y)

√|g| (y) dy = 0,
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so that the effective diffusion matrix can be written in the following symmetric form

D = 1

Z

∫

Td

(
I + ∇yχ(y)

)�
g−1(y)

(
I + ∇yχ(y)

)√|g| (y) dy.

From the limiting backward Kolmogorov equation (113), we can read off the lim-
iting SDE dX0(t) = √

2D dB(t). A rigorous proof of this result can found in Duncan
(2013).

12.2 Case II

Analogous to the previous case, we look for solutions v of the form

vε(x, η, t) = v0(x, η, t) + εv1(x, η, t) + · · · ,

for some smooth functions vi : R
d × R

K × [0, T ] → R
d . Substituting this ansatz in

(72a) and identifying equal powers of ε, we obtain the following pair of equations

O
( 1

ε

) : L0v0(x, η, t) = 0, (114)

O(1) : ∂v(x,η,t)
∂t = L0v1(x, η, t) + L1v0(x, η, t), (115)

where (x, η, t) ∈ R
d × R

K × (0, T ].
The O( 1

ε
) equation immediately implies that v0 is independent of the fast-scale

fluctuations. The second equation then becomes

L0v1(x, η, t) = ∂v(x, η, t)

∂t
− L1v0(x, η, t).

Applying the Fredholm alternative, a necessary condition for the existence of a solution
v1 is that the RHS is orthogonal to the invariant measure ρη, that is,

∂v0

∂t
(x, t) =

[∫

RK
F(x, η)ρη(η)

]
· ∇v0(x, t) +

[∫

RK
Σ(x, η)ρη(η)

]
: ∇∇v0(x, t),

which is the backward equation for SDE (74).

12.3 Case III

We make the ansatz that

vε = v0 + εv1 + ε2v2 + · · · ,

for some smooth functions vi : R
d ×T

d ×R
K ×[0, T ] → R. Substituting vε in (82a)

and identifying equal powers of ε, we obtain the following equations
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O
(

1
ε2

)
: L0v0 = 0, (116)

O
( 1

ε

) : L0v1 = −Lηv0 − L1v0, (117)

O(1) : L0v2 = −
(

∂v0
∂t − Lηv1 − L1v1 − L2v0

)
. (118)

The first equation implies that v0 ∈ N [L0] so that v0 is a constant in y. The second
equation thus becomes

L0v1(x, y, η, t) = (
Lηv0(x, η, t) + F(y, η) · ∇xv0(x, η, t)

)
.

By the Fredholm alternative applied to L0, we require that the RHS is centered
with respect to

√|g|, for each fixed x and η that is,

∫

Td

(
F(y, η) · ∇xv0(x, η, t) + Lηv0(x, η, t)

)√|g| (y, η) dy = 0.

The first term in the above integral is clearly 0. Since Lηv0 is independent of y, the
centering condition becomes

Z(η)Lηv0(x, η, t) = 0.

Since Z > 1, it follows that v0 ∈ N [Lη] is a sufficient condition for the centering
condition to hold, which we therefore will assume. By ergodicity of the Ornstein–
Uhlenbeck process η(t) over R

K , it follows that v0 is also independent of η so that v0
is a function of x only. The second equation thus becomes

L0v1 = F(y, η) · ∇xv0.

Let χ(·, η) be the unique, mean-zero solution of the cell equation solution by the
Fredholm alternative, since the centering condition holds. Choosing v1 = χ · ∇xv0, it
is clear that v1 solves the O( 1

ε
) equation.

We now consider the O(1) equation. By the Fredholm alternative, a necessary
condition for the existence of a unique solution v2 is that the RHS is centered with
respect to the invariant measure of L0, that is,

∂v0

∂t
=
∫

Td

(
Lηv1 + L1v1 + L2v0

)
ρy dy,

which, substituting the definitions of the Li ’s and v j ’s, can be written as follows:

∂v0

∂t
=
∫

Td
F ⊗ χ ρy dy : ∇x∇xv0 (119a)

+
∫

Td
g−1∇yχρy + ∇yχ g−1ρy dy : ∇x∇xv0 (119b)

+
∫

Td
g−1ρy dy : ∇x∇xv0 (119c)
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+
∫

Td
Lηχρy dy ∇xv0. (119d)

First, we note that

∫

Td
F(y, η) ⊗ χ(y, η)

√|g| (y, η) dy = −
∫

Td
L0χ(y, η) ⊗ χ(y, η)

√|g| (y, η) dy

=
∫

Td
∇yχ(y, η)g−1(y, η)∇yχ(y, η)�

√|g| (y, η) dy,

so that we can write (119) as

∂v0

∂t
=
∫

Td

(
I + ∇yχ

)
g−1 (I + ∇yχ

)�
ρy dy : ∇x∇xv0

+
∫

Td
Lηχρy dy · ∇xv0.

Averaging with respect to the invariant measure ρη of L1, we derive the effective
diffusion equation

∂v0

∂t
=
∫ ∫

Td

(
I + ∇yχ

)
g−1 (I + ∇yχ

)�
ρy ρη dy dη : ∇x∇xv0

+
∫ ∫

Td
Lηχρyρη dy dη · ∇xv0,

or more compactly

∂v0

∂t
= D : ∇x∇xv0 + V · ∇xv0,

where D and V are given by (86) and (87), respectively. From the limiting backward
Kolmogorov equation, we can read off the limiting SDE (85) for the process Xε(t).

12.4 Case IV

We look for solutions v of the form

vε = v0 + εv1 + ε2v2 + · · ·

of (103a) for some smooth functions vi : R
d × T

d × R
K × [0, T ] → R. Substituting

this ansatz in (103a) and equating equal powers of ε, we obtain the following three
equations

O
(

1
ε2

)
: G v0 = 0, (120)

O
( 1

ε

) : G v1 = −L1v0, (121)
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O(1) : G v2 = −
(

∂v0
∂t − L1v1 − L2v0

)
. (122)

As the fast process is ergodic, the first equation implies that v0 is independent of y
and η. The second equation thus becomes

G v1 = −F(y, η) · ∇xv0.

Since we are assuming Assumption (101), there exists a unique solution of the Poisson
problem (100), by Proposition 8. By choosing v1 = χ · ∇xv0, we see that the second
equation is satisfied.

By Proposition 8, a sufficient condition for the final equation to have a solution is
that the RHS is orthogonal to the measure ρ(dy, dη), (assuming that the RHS grows
at most polynomially), that is,

∂v0

∂t
(y, η) =

∫
F(y, η) · ∇xv1 ρ(dy, dη) +

∫
2Σ(y, η) : ∇x∇yv1 ρ(dy, dη)

+
∫

Σ(y, η) : ∇x∇xv0 ρ(dy, dη),

which we can rewrite as

∂v0

∂t
= D : ∇x∇xv0,

where the effective diffusion tensor D is given by

D =
∫ [

1√|g|∇y ·
(√|g|g−1

)
⊗ χ + g−1∇yχ

� + ∇yχg−1 + g−1
]

ρ(dy, dη)

Note that the first term on the RHS

∫
1√|g|∇y ·

(√|g|g−1
)

⊗ χ ρ(dy, dη) : ∇x∇xv0,

can be rewritten as K : ∇x∇xv0, where

K = Sym

[∫
1√|g|∇y ·

(√|g|g−1
)

⊗ χ ρ(dy, dη)

]
,

where Sym [·] denotes the symmetric part of the matrix. Let e ∈ R
d be a unit vector

and consider

K e := e · K e =
∫

1√|g|∇y ·
(√|g|g−1e

)
χe ρ(dy, dη),
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where χe = χ · e. Noting that

−G χe = 1√|g|∇y ·
(√|g|g−1e

)
,

it follows that

K e =
∫

χe (−G χe) ρ(dy, dη),

which, by (102), can be written as

K e =
∫

∇yχ
e · g−1∇yχ

e ρ(dy, dη) +
∫

∇ηχ
e · Γ �∇ηχ

e ρ(dy, dη),

so that

e · De=
∫ (

e + ∇yχ
e) · g−1 (e+∇yχ

e) ρ(dy, dη)+
∫

∇ηχ
e · Γ �∇ηχ

e ρ(dy, dη),

or in matrix notation

D =
∫ (

I + ∇yχ
)

g−1 (I + ∇yχ
)�

ρ(dy, dη) +
∫

∇ηχ Γ �∇ηχ
� ρ(dy, dη),

as required. A rigorous proof of this result can be found in Duncan (2013).
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